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Abstract: This study presents the implementation of back propagation neural network method to improve
forecasting of electricity load demand where the demand 1s highly dependent on various independent variables
such as the weather, temperature, holidays, days of the week or even strikes. The implementation of this method
requires mathematical software, data preparation and the calculation of degree of freedom, which 1s necessary
for the neural networks architecture. We also consider the use of various combinations of activation functions
mn input layer to hidden layer and hidden layer to output layer and using analysis of variance and multiple
comparison using Duncan’s tests to analyze the neural network’s performance. Two modifications to the
backpropagation methods were developed to improve error with selected activation functions and a new
improved error using mean square error. The data used are the daily electricity load demand for Malaysian from
2006 to 2007. The forecast accuracy based on the error statistics of forecast between the models for a month
ahead is presented and behaviour of data is also observed.
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INTRODUCTION

The areas Artificial Newural Networks (ANN) have
seen an explosion of interest over the last decades and are
being applied across an extraordinary range of problem
domains. A number of ANN model have been
successfully implemented in solving complex problems
(Khamis et al., 2006, Lee, 2008). ANN 15 a causality model
that 1s widely used to solve complex problems. The
problem becomes more complex m a situation where
information is incomplete. Back propagation networks in
ANN with solutions.
Backpropagation is the most wide used algorithm for
training multilayer feedforward neural network (Rumelhart
and McClellana, 1986). Backpropagation consists of three
layers namely the input layer, at least one intermediate
hidden layer and the output layer. In backpropagation
network the commection weights is in a one-way direction.
Typically, units are connected m a feed-forward manner
with the mput units fully connected to the hidden layer
while the hidden units are fully connected to the output
layer.

A backpropagation network consists
elements or neurons that are

may provide us some

of many
connected by
These
connectors carry numeric data arranged by a variety of
means and organized into layers. The network can perform

communications channels or connectors.

a particular function when certain values are assigned to

the connections or weights between elements. To
describe a systemn, there 1s no assumed structure of the
model, instead the networl are adjusted or trained so that
a particular input leads to a specific target output (Haylkin,
1999; Bansel ef al., 1993). The mathematical model of a
backpropagation network comprises a set of simple
functions linked together by weights. The network
consists of a set of mput x, output units y and hidden
units z, which link the inputs to outputs (Fig. 1). The
hidden units extract useful information from nputs and
use them to predict the output. The type of neural
network shown here 1s known as the multilayer perceptron
(Haykin, 1999).

A network with an mput vector of elements x, (1 =1,
2,..NJ) is transmitted through a connection that is
multiplied by weight, w;, to give the hidden unit z (j = 1,
2,3, .., Ny

Bias Bias

w; (1) b,
Input layer Hidden layer

wy (2)
) Output layer

Fig. 1: Feed-forward neural network
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WX Wy (1)

1=

Z]=

1

where, N, 18 the number of hidden units and N s the
mumber of input units. The hidden units consist of the
weighted input and a bias (w;;). A bias is simply a weight
with constant input of 1 that serves as a constant added
to the weight. These inputs are passed through a layer of
activation function { which produces:

Ny
hj:f{;WﬂXﬁwju} (2)

The activation functions are designed to
accommodate the nonlinearity in the input-output
relationships. A common activation function is the
sigmoid or hyperbolic tangent:

2
_ 3
[L+ exp(2z)] 3

f(z)=tanh (z) =1-
The outputs from hidden units pass another layer of
filters:

M Hy,

My
V=2 wh +wy :Zwkjf[z:wﬂxl +Wj0}+wkU (4

= i=1 1=1

and feed into another activation function F to produce
outputy (k=1,2,3,...,N)

My, Ny
v, =F(v,) F{lequ[;WﬂXﬁrWJDJerkD} (5)
= =

The weights are adjustable parameters of the network
and are determined from a set of data through the process
of training (Lai, 1998; Zhang et al., 2001). The training of
a network is accomplished using an optimization
procedure (such as nonlmear least squares). The
objective 1s to mimmize the Sum of Squares of the Error
(SSE) between the measured and predicted output. There
are no assumptions about functional form, or about the
distributions of the variables and errors of the model,
ANN model is more flexible than the standard statistical
techmque (Fareway and Chatfield, 1998). It allows for
nonlmear relationship and complex classificatory
equations. The users do not need to specify as much
details about the functional form before estimating the
classification equation. Tnstead, it lets the data determine
the appropriate functional form Limsombunchai ez al
(2004) and Herrera et al. (2007).

In accordance to standard analytical practice, the
sample size was divided on a random basis mto two sets,
namely the training set, which contain 80 and 20% of the
total sample, respectively. To evaluate the modeling

accuracy the correlation coefficient, r and Mean Squares
Error (MSE) were calculated. The model with a huigher r
and lower MSE was considered to be a relatively superior
model.

MATERIALS AND METHODS

In Malaysia, the short term forecast of electricity
demand is being generated by senior engineer at
Operation and System Planning Division from the Tenaga
National Berhad, the national power electricity company
in order to arrive at howrly, daily and weekly forecast,
various factors need to be taken mto account (Ismail and
Mahpol, 2007). Some of the factors are the daily
temperature, weather, days of the weel, legal and religious
holidays. Seasonal effects and human behaviour whether
they will take a day off preceding and following the
holidays as to take advantage of a long break
(Nimna, 2001).

This study proposed the modification of the
backpropagation algorithm to predict the Malaysian daily
electricity load demand. Backpropagation 1s the most
widely used techniques mn the ANN lLiterature and the
easiest to understand. Tts learning and update procedure
1s intwtively appealing because it 1s based on a relatively
simple concept, if the network gives the wrong answer,
the weights are corrected so that the error is lessened and
as a result, future responses of the network are more likely
to be corrected (Klein and Rossin, 1999a; Mandal ef af.,
2007). When the network is given an input, the updating
of activation value propagates forward from the input
layer of processing umits through each mternal layer, to
the output layer of processing units (Haykin, 1999). The
output units then provide the network’s response. When
the networle corrects its internal parameters, the correction
mechanism starts with the output units and back
propagates backward through each internal layer to the
mput layer. Backpropagation network 1s a gradient
descent method and its objective is to minimize the mean
squared error between the target values and the network
outputs (Manda et af., 2007). Thus the Mean Square Error
(MSE) function is defined as:

E= 300, -0, (6)

Where:

t; = Target value from output node (k) to hidden node
\);

o, = Network value from output node (k) to hidden
node (j)

function for standard

The proposed ermor

backpropagation (mm) 1s defined implicitly as:
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Fig. 2: Proposed error function of backpropagation model
with activation function of 1/41+e™ ™)

mm = Z Py
K
E,
P 2a,(1-al)

where, B, =t, - a,
E, = Errorat output unit k
t, = Target value of output unit k
a; = Anactivation of unit k

A proposed backpropagation error function 1s shown
inFig. 2, with its errors reducing rapidly compared to MSE
(Fig. 3), thus the proposed error will give less iterations
for convergence.

The updating weight of standard backpropagation
model 1s proportional to the negative gradient of weight
changes as shown:

(7

dE
AW, « —

k

Thus, in this case, the above relation m Eq. 1 can be
rewritten as:

Op, __ 8p  @Net, (R)
ow, ONet, ow,

1

It 18 known that, Net, = > w,0, +6, where 0, is a bias
1

term, thus by taking partial derivative and substituting it
into Eq. 8 gives:

9 _ % (9)
@Wk 6‘Netk ]

el . . L.
Assumethat—t -5 . By using chain rule, this gives:
oNet K
k

0.57

0.47

0.37

0.2

0.19

X

Fig. 3: Mean square error of backpropagation model with
activation function of 1/(1+e™)

Op _Op Ay (10)
Net, 8a, aNet,

By taking partial derivatives of our first activation
function, sigmoid function e, y-1/0 e 2Velyand
simplifying it by substituting in terms of a,, gives:

1

=

a, =f(net,) = m

2

f'inet, ) =————
( k) (1 + C—Enad.k )2

1 wehave gen _ 178

14 g a,

Derivative of f (net,) in terms of a, 1s given by:

Given a, =

da
f'(Net, )= aNektk =2a, (1-a,) (11)
It 15 known that , = Eizk Thus taking the
P 2
£ 2a.(l-a’)

partial derivatives with respect to a, gives:

oy _ —[4ak(tk —a)1-a" )+ 20, —a, )" (1- 3a§)] (12)

da, 4a® (1-al)

In simplified form, Eq. 12 becomes

p, [E+p(13ai)] (13)

En a, (1-a;)

k

By substituting Eq. 11 and 13 mto Eq. 10 we have the
unproved error signal of backpropagation for the output
layer as:

op, _2E+p(l-3a)) (14)
cNet, 1+a, *
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and an error signal for modified backpropagation of the

hidden layer which is the same as standard
backpropagation:
8,=Y 8w @) (15)
ACTIVATION FUNCTION

Activation function: Inverse tangent {(x) = tan™'(x)

If the arctangent activation function (Fig. 4) 13 used

instead of sigmoid function then we have another

improved error function:

ap

rule, this gives ﬂzﬂ_ﬂ. We know that, a, =
oNet, &a, dNet,

f(Net,). For the proposed method, instead of using

sigmoid function we use the arctangent function, tan™

(x). By taking partial derivatives of a, and sumphfy it by

substituting in terms of a,, gives:

From Eq. 11, we assume =5, . By using chain

fx)=tan'{(x) —w<X<w® (16)
Fy= L (17)
1+x

a, =f(Net,) = tan™'(Net, ), Net, = tana, (18)

From the Eq. 16-18, we have

6i:f’(net)=;2 —mf2<a, <wf2 (19)
dnet, I+tan®a,
= 12 = kos’a,
sek’a,

Improved error signal of backpropagation using inverse
tangent is obtained as:

Opy :% da,
ONet, da, dNet,

{E+p0—3ﬁ)

ak(l—ai)

(20)
}koszak =3,

The derivatives of sigmoid and mverse tangent are
shown in Fig. 5. The inverse tangent has ligher
derivatives value at the saturation region, when output s
approaching +1 or 0 for sigmoid function.

Activation function: Hyperbolic tangent f(x) = Tan h(x)
Another function to be used is hyperbolic tangent
(Fig. 6, 7) function,

2431

Fig. 4 Activation  function  of

f(x) = tan"'(x)

mverse tangent

Y1

T T x
-2 -1 1 2

Fig. 5. Derivative of arctangent y, = kos’a, and sigmoid,
y2 = 2a,(1-a,)
1.0

0.5

Fig. 6: Activation function of tan h f{x) = tan h (x)
f(x) =tanh{x) —w<X<®

a, ={f(net,)=tanh(net,)

da,
dnet

=f'(net, )= (1-a%,)

k

Kalman Error (Kalman and Kwasny, 1997) was
defined as:
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4

Fig. 7: First derivative of tanh f{(x) = tan h (x)

— ek2 _ (tk - El.k)2
-2,y (-a%
o8, _ g, _aﬂﬂk _ dg, Q.
ow,  onet, ow, onet, '
G, _ G &
ONet,  da, Net,
5g, [ 20 -2 CD(1-ap)- (L ~a,)(-2a,)
1-a’y

_ —2e,.+2a,8,
l-a/

dg, __ —2e, +2a,8, (1-2,%)
anet, 1-a° .

2y

da,

=2e, —a,8,) =8
Error signal at the hidden layer is ;= > 8,w,f'(net))

MODIFICATION OF IMPROVED ERROR WITH MSE

E; 1 1
p, = Zak(liai) where E= E; {ty— olg)z, Log(E) = log(EEk: ity - okJ)E)
Activation function: Sigmoid {{x) = 1/(1+e ™)
We modify the error function further by substituting the
error term By, = t-a, with mean squared error, in the
improved error function in Eq. 6 ; - _ B
2a,{l—a})

Where:

1
E=_>'(t,—a,
25

E, = Error at output unit k
t, = Target value of output unit k
a, = Anactivation of unitk

—[%Z(tk —a, P +2p, (- 3ai)}
(1+a,)

M _
cNet,,

=38,

If n = 2, then the error signal becomes:

ap, _—[Z(tk—ak)%zfak(l—sai)]:&

aNet, {l+a,) *

Activation function: Inverse tangent, f(x) = tan™" (x)

1 3 2
3, —{EZ(tk—ak) + pk(1—3ak)}

- kos?
&Net, a, (1-al) (kos'a,)
If n =2, then the error signal becomes:
1
ap, _[Ez(tk - ak)3 +p (1= 3ai):| ,
= (kos'a, ) =8,

aNet, a (l—al)

Activation function: Tangent hyperbolic f(x) = tan h (x)
ap, _ @& oa,
dNet, da, &Net,
%Z(tk —a,F +2p,(1-3al)

- ak(l—ai) (1-a)1+a.)

If n =2, then the error signal becomes:

__ Z(tk - ak)3 +2p,(1- 33%)
ay

=5

k

RESULTS AND DISCUSSION

The variables used m this study is to train and test
the backpropagation networks including the peak load
demand, mean temperature, maximum temperature and
minimum temperature for Penmsular Malaysia, previous
day load, previous 7 days load (same day of the previous
week) and the previous 6 days load. The input neurons
were selected based on a correlation analysis which
shows the existence of a significant correlation between
peak load, lag loads and temperature. Thus there are
seven input signals to the neural network with one hidden
layer and one output layer which produces the single
output — the system peak load. In this study, various
combinations of networks were trained to get the optimum
value. For comparison, we selected networks with 10 and
20 hidden neurons. The performance of proposed error
function was compared to the mean squared error from
standard backpropagation. Both algorithm were measured
using MAPE (mean absolute percentage error), given as:
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Table 1: Comparison of convergence speed between sigmoid and arctangent.
thidden =20)

Table 4: Comparison of percentage error between sigmoid and arctangent:
(hidden=10)

Tmproved error (sigmoid)  Tmproved error (arctangent)

n o Time (sec) Iteration  Time (sec) Iteration
0.01 0.9 3 566 153 27850
0.8 5 1091 221 40138
0.7 9 2060 137 45367
0.02 0.9 1 315 199 36470
0.8 3 607 333 60705
0.03 0.7 3 706 566 102737

Table 2: Comparison of convergence speed between sigmoid and arctangent.
(hidden = 10)
Improved error (sigmoid)

Improved error (arctangent)

ol o Time (gec) Iteration  Time (gec) Tteration
0.01 0.9 2 509 67 21924
0.8 3 912 9 32865
0.7 4 1329 137 45367
0.02 0.9 1 341 104 34598
0.8 2 558 a8 32654
0.03 0.7 2 631 270 89093

Table 3: Comparison of percentage error between sigmoid and arctangent
(hidden = 20)
Improved error (sigmoid)

Improved error (arctangent)

hal o Learning Testing Learning Testing
0.01 0.9 5.08869 6.203020 3.245404 5.743697
0.8 5.133071 5.700943 3.249369 5.337469
0.7 5.186969 5.555489 3.192278 6.454494
0.02 0.9 5.169751 5.880153 3.510042 7.518763
0.8 5.108866 5.789114 3.379688 6.083081
0.03 0.7 5.137113 5.665796 3.525647 6.454494
13 p—a
MAPE N ; "

i

where, p, 138 the predicted value and a, 15 the actual
value, N 1s the number of patterns used for training and
testing.

Table 1 and 2 show the convergence rates of
umproved error used by backpropagation algorithm for the
sigmoid function and the arctangent function. From the
chosen learning rate (1) and momentum (¢t), it is clear that
mnproved error with sigmoid function converges faster
compared to mnproved error with arctangent function.
This is true for all chosen learning rate (1) and momentum
(e and for both 20 and 10 hidden nodes.

Table 3 shows the forecasting accuracy of daily
maximum load using hidden nodes of 20 and Table 4
shows the forecast accuracy using 10 hidden nodes. From
these results, we find that the inverse tangent function
has smaller learming error compared to sigmoid function
for all chosen learning rate (1)) and momentum (o). When
both networks were used for testing for two months
ahead, the percentage errors of both functions was
comparable in the range of 5-8%.

Improved error (sigmoid)  Improved error (arctangent)

n o Learning Testing Learning Testing
0.01 0.9 5111438 5.795093 3.235687 5.701169
0.8 5115418 6.021092 3.250164 5.640709
0.7 5120176 5.823463 3.214065 5.741585
0.02 0.9 5154532 5.667570 3.218197 5.783885
0.8 5.163044 5446131 3.221758 5.569385
0.03 0.7 5.133071 5.700943 3.247321 5.252509

Activation finction f{x)

04

1 4 71013161922 2528 3134 37 40 43 46 49 5255 58 61
Days

Fig. 8: Forecasted Load for arctangent and sigmoid
functions (hidden = 20, Eta = 0.01, alpha = 0.9)

Figure 8 shows the forecasted load for months of
March and April 2006. From the graph, both activation
functions show that there is not much difference in terms
of forecast accuracy. However, but when forecast value
were plotted, we can see that the sigmoid fimction does
follows the actual pattern better compare to arctangent
function, even though the accuracies of both functions
are not quite satisfactory for forecasting purposes.

CONCLUSION

This study introduces improved error signals of
backpropagation using two activation functions, the
sigmoid and the arctangent, in forecasting daily maximum
electricity load. The improved error has been tested on
daily maximum load data for year 2006 until 2007 for
Peninsular Malaysia. The result shows that convergence
rate of improved error with sigmoid function is much
faster compared to the improved error with arctangent
function. The arctangent function should theoretically
vield faster convergence speed as it has higher denivative
values compare to the sigmoid function. The results are
contradictory to the expectation. In terms of forecast
accuracy both function shows similar results, with
sigmoid fimction following the actual pattern better. From
both results, it seems that sigmoid function with improved
error has better convergence rate and better forecast
ability but needs further refinement in terms of forecast
accuracy to be used as forecasting tools.
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