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Abstract: This study presents a new high-speed CMOS multiplier in nanotechnology. In this research, we have
evaluated the effects of reduction technology size (from 130 to 80 nm) on power, delay and power-delay product
of multipliers. Using nanotechnology scale electronic parameters had major effect in implementing multipliers
in this research. We used HSPICE and Synopsys for simulations. A new multiplier, which accepts a redundant
multiplicand, has been planned, simulated and compared with previous designs. A novel algorithm using carry
save adder architecture and a new full-adder has been presented. To work at low power voltage, the pass
transistor circuit that produces the XOR and XNOR outputs has been enhanced to solve delay problem. A
carry-select adder has been implemented by using single ripple carry adder and an adder tree circuit. This
research proposes a new adder tree using the high-speed circuits and multiplexers. Decreasing technology size
with powerful design has decreased the power by 38% in these multipliers. The latency has decreased by almost

36%. Our design decreased transistor count by 32%.
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INTRODUCTION

With  the of nanotechnology, the
requirements for low power, high-speed design has
become more mmportant. Multipliers have an important
effect on anthmetic processors performance. A new high-
speed low-power multiplier has been presented in
nanotechnology. Redundant mumber representation has
been one of the essential aspects of computer arithmetic,

advent

which has been used i processor design to increase
performance. The profits of using redundant number
representations are obtained primarily from the ability to
do carry-free addition. Unfortunately, in traditional
processors the result of an operation must be changed
back to traditional form before the instruction is
completed. An improvement, which is possible for
processors, 1s to use the result in redundant form, which
avolds the delay related with conversion. The change to
traditional form still must be done for saving stage, but
this may be done in parallel with other operations. There
has been mterest in these techmiques in which there 1s an
additional pipeline stage added to the processor to hold
the conversion step. The redundant form is done without
passing through that pipeline step. Another purpose of
this technique has been studied in Jou et af. (2003) which
the redundant form is used n a multiply component.

Due to the fast growing mobile systems, not only
faster arithmetic components but also smaller and low
power anthmetic components are needed. However, it has
been difficult to increase speed and reduction m area. In
general, ripple adder provides a compressed design but

suffers an extensive delay time. Carry lookahead adder
gives a high-speed design but has a large area. Carry-
select adder is middle of two other concerning in speed
and area. Therefore, carry save adder is suitable in many
applications that comsider both speed and area. Carry
save adder 15 also used with carry lookahead adder to
increase the speed. This paper purposes a new structure
to decrease area and power of carry save adder.

MATERIALS AND METHODS

Thus study started in 2007 at Islamic Azad University
Varamin-Pishva branch. In the multiplication operation,
P=X*Y, where X and Y are magmtudes m redundant
representation and P is in traditional format as shown in
Fig. 1. Block diagram of the multiply component has been
shown.

It follows that Z = Y™*X, + Y™*X, where Y' 15 Y
recoded into radix 4, Y' = (Yup, Vuose-o¥o) Tory, €4-2, -1,
0,2} for i <n/2, v, €40,1,2} and X, X, are the sum and
carry bits of the camry save illustration In this case,
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Fig. 1. Block diagram of the multiply component
producing redundant partial product Z and
traditional partial product, P
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Fig. 2: (a) Anexample of a carry lookahead adder which generates radix-2" and radix-2% k, = 4, k, = 8. Dashed lines show
a single carry bit, solid lines are 4-bit. (b) A summation of the structure of the multiplier using carry lookahead
adders to generate M1 and M2. The generator produces multiples, the indices e, f are chosen depending on the

delay which can be tolerated m the reduction array

this results to a multiplication by both X, and X, vectors.
To reduce the size of the reduction array, the multiplicand
is converted into radix-2* camry/save representation
by slicing the multiplicand into k-digit groups. In
this representation, the multiplicand is used which
M = (m, ,n1,,,...,m,) where m, £{0,..25-1} and ! = n/k for
n digits. This can be split mnto two vectors, M, and M,
where M, = Xm,2" and p_ - "ka:Mmgj*k and M;, M {01},
=1

The value of k 1s essential, because as k increases, the
delay of the conversion step increases while the amount
of signals in the array decreases. There are at least two
methods, which one can take to minimize the delay related
with this conversion. The first way is to calculate the size
of the group, k, across the multiplicand with the purpose
of finding some mixture of group sizes, which mimmizes
the overall delay. The second way is to use different
group sizes depending on which multiple outputs are
used. The first way was studied widely, but did not make
a delay as short as the second way, which 1s modified
below for n = 32 and two grouping sizes, k, and k, = 8.

Partial product reduction: The inputs to the array are the
multiples, (; in Fig. 2b. These mputs are reduced via a
network of compressors. Some inputs to the array are
used in the first step of the network (as in a traditional tree
network), therefore, the delay of some (Q; can be larger. An
advantage of having a larger delay time for these Q; 1s that

the value of k used for those multiples can be larger, with
a equivalent reduction in the number of bits in M,. To
generate modified multiplicands with special values of k,
a novel adder was proposed. The topology chosen is
combination of the Carry Select adder and Carry
Lookahead adder designs as shown in Fig. 2a. To reduce
the hardware complexity of the conversion step, some of
the outputs from the small groups are also used to
produce the larger groups.

Multiple generations: The multiples, Q €{-2M, -1M, 0,
1M, 2M3} for O<a=<n/2 and Q,, €10, 1M, 2M}, are produced
from the recoded multiplier variable Y’ and multiplicand
M. The multiples can be produced in a straightforward
method given the multiplicand and the recoded multiplier
bits where the output 1s a smgle bit variable. However,
this method is not the wanted format when the
multiplicand is in carry save adder form because there are
two bits stream produced. These problems will be more
difficult when producing negative multiples, smce the
empty positions in the carry stream become ones, which
would affect the event of using sparse carry streams in
the first place. To avoid this, a technique similar to that
were proposed m Sunar and Koc (2001) 1s produced in
which a constant, B, is added to the multiplicand to
recompense for the ones produced by the multiples. The
following example (Fig. 3) shows how this is done
for n=12, k=4 and the multiplier in the {-2,-1,0,1,2}.
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Fig. 3: Generation method (a) The 2M multiple bits,
(b) The -2M multiple bits with the ones arising
after negating the carry stream. The constant, B, is
also shown after addition step, the multiple, —2M,
15 shown, (¢) a procedure 13 followed to produce
—-M,, using the same bias which results to an extra
one in each carry column and (d) after adding the
ones and using all multiples, the outputs Q, are
shown

Primary, the 2M multiple is presented with sum stream,
S = M, and carry stream C = M,. Step (b) uses —-2M with
the ones produced by negating the multiple as m two's
complement form. The constant B is added to generate
the multiple —2M, with a carry stream, as in (a). Step (c)
shows the consequence of adding the same constant
to -M, but because of a shift n the position of the
carry bit relative to B, not all ones are deleted. After
adding the ones and computing with the other multiples,
the outputs of Q; are shown m (d). The constant 1s
calculated as:

jenik-1

B, = Z 91

i=1

(1)

Which is a one just to the left of carry position, except the
most significant, in M_. The generator produces multiples,
Q, as two bit streams, an n bit sum stream and a sparse
carry stream. The carry stream has n/k groups of two bits
divided by k two bit positions and an additional bit of
value 2' for negative multiples. The last multiple does not
use negative values, so the carry vector has only single
bits divided by k-1 bit locations. To do correctness, there
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Fig. 4: Three sub parts of the proposed novel full adder
circuit

must be a recompense constant subtracted m the array,
this constant, C is the sum of all B; shifted suitably,

niz-1 .
C= Z B, *4" -

i=0

A novel high-speed adder: As shown in Fig. 4, the
proposed full adder has three parts. The logic equations
for the middle signals and outputs are given as follows:

Y=A®B (2)
Y-A®B (3)
Sum = Y&, (4)
C,=AB+C_ Y (5)

One method to mnplement the XOR and XNOR gates 1s to
synthesize the XOR gate and generate the XINOR gate
through an inverter. This method of implementation has
the difficulty of delaying one of the Y and Y’ outputs,
giving rise to signal arrival time to the consecutive parts.
This will enlarge the chance of generating fictitious
switching and glitches in the last two parts. A better
method is to use other sets of transistors to produce
the XOR and XNOR gates individually, with the
possibility of having a larger transistor count. To
decrease the number of transistors, we use a pass
transistor circuit with only six transistors to produce the
balanced XOR and XNOR gates.

Compare with those designs that use an mverter to
generate the complement signal, the switching speed is
increased by deleting the inverter from the critical chain.
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The two complementary feedback transistors have the
weak logic obtaned by the pass transistors. They return
the output by either pull it up through PMOS transistors
to the power supply or pull it down through NMOS to
ground so that enough drive is provided to the other
parts. In addition, since there 1s no direct path between
the V, and GND short circuit current has been decreased.

This circuit has the same voltage fall problem as
other pass transistor circuits. The worst form delay
happens at the state from 01 to 00 for AB. This could be
realized with Fig. 4. When the circuit is at the transition of
01 for AB, logic 0 1s going through the NMOS transistor
and 1 goes through the PMOS transistor. However, when
the next transition of 00 for AB obtains, a weak 0 (V) is
obtained through two PMOS pass transistors to the
XOR output and XNOR 15 at lugh state. This 0 uses the
feedback PMOS so that the XNOR output is pulled up to
logic 1, which use the feedback NMOS to discharge the
XOR output completely to ground. Thus, a voltage step
happens at the output of XOR. Similar state happens at
the conversion from 10 to 11 for AB, due to the lower V,,,
and high electron transition of NMOS transistor, the
entire procedure is faster than the previous case, which
depends heavily on the PMOS switch. This slow
response problem is more serious in low-voltage
operation.

Due to the unacceptable performance at low-power
voltage, we customized the circuit of Fig. 4. Two type
PMOS transistors are used to resolve the worst-case
delay problem of transition from 01 to 00 for AB. Two
types NMOS transistors are used to resolve the problem
of transition from 10 to 11 for AB. When the state of
AB =00 receives, the XNOR output could achieve a good
1 through two series PMOS pull-up transistors to the V,,
which prevent the high state as i the previous example.
Similarly, the XOR output could receive a strong 0
through two types NMOS pull-down transistors to
ground when the state of AB changes to 11.

There are some methods for part 2. Since its logic
equation 1s similar to that of part 1, the six transistor
circuit can also be used. Tt suffers from inadequate driving
power because of the pass transistors. In result of that,
we use a related circuit, but fully make use of the
presented XOR and XNOR outputs from module 1 to
permit only a single inverter to be attached at the last
step. The output inverter causes that adequate drive is
obtained to the cascaded component. The least number of
transistors for producing the C,, signal 1s two (circuit 10
transistor), but it has the threshold voltage drop problem.
Although a four transistor circuit can be used to produce
an appropriate C,, signal, it does not offer enough driving
power. The presented circuit 15 based on CMOS logic
method. Tts logic equation is given by:

Cu=AB+C, (AaB) (6)

This circuit has the benefits of complementary CMOS
logic, which has been shown to be better in performance
to all pass transistor logic for all logic function except
XOR at high power supply. Its strength against voltage
scaling and transistor sizing results to work consistently
at low voltage and arbitrary transistor size. It has been a
good experiment to treat the adder function as a stand
alone component m simulation. It 1s also not usual that
the adder functions that work well in such simulation still
does not work upon actual implementation because of the
weakness of driving power. This is because adder
functions are normally chained to form a functional
arithmetic circuit. Therefore, the adder functions must
hold adequate drivability to provide the next component
with appropriate inputs. The driving component must
provide almost appropriate outputs to the driven
components. Otherwise, the performance of the circuit will
be decrease considerably or become unpractical at low
power supply. For this reason, the adder components
cannot be chained without buffers attached to the
outputs of each module.

Proposed carry save adder architecture: Carry save adder
15 composed of many small ripple carry adder blocks.
Thus, reducing the delay of ripple carry adders is
important for designing a carry save adder. In order to
optimize the ripple carry adder delay, all ripple carry
adders in this paper use the mirror adders and the inverter
elimination scheme in carry path (Kang and Gaudiot,
2006). The inverter elimination scheme uses two
properties of the mirror adder. The first property is
inverting all inputs on the full adder results in inverted
values for all outputs. The second one 15 the mirror adder
generates the complement of carry out first and inverts it
to generate the carry out. Therefore, by putting even and
odd cells as shown m Fig. 5, the number of the inverting
stages in the carry path is reduced. This reduces n, x
inverter delay in the carry pass where n 13 the block size.
There is no transistor penalty for this scheme. In fact, one
less transistor 1s used than the traditional full adder with
28 transistors.

A new adder tree circuit: Previous designs used half
adders, mverters and multiplexers to perform the adder
tree circuit, which is proposed as shown in Fig. 6.
According to the previous complement method, a 8,' is
either the 8, or the complement of 5." where &' shows a
sum of kth bit for C = 0. Since the full adder produces both
sum and the complement of sum, no extra inverter is
needed to obtain the complement. To produce the adder
circuit, a multiplexer is needed for each bit to select either
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Fig. 5: Inverter elimination in carry chain
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Fig. 6: Proposed multiplexer-based adder tree circuit

S The control signal of the multiplexer achieves from the
first cireuit. The first circuit 1s NMOS and PMOS cascades
as presented in the middle of Fig. 6. This circuit produces
0 at the kth nede if no zero is produced until kth bit from
the least sigmificant bit; otherwise, it produces 1. If the
control signal is 0, the multiplexer selects S,; otherwise, it
selects the mverted 3,. The least significant bit does not
require a multiplexer since S' is always the opposite value
of S'. This needs a few transistors for each block. The
carry out for a block can be selected between the carry
out for the ripple carry adder or the carry out for the adder
circuit is one if and only if all sums form the ripple carny
adder are equal to one. When all sums are equivalent to
omne, the first circuit produces zero at the last node. For all
other cases it produces one. Therefore, the mverted last
node can be used as the carry out for C = 1. Finally, the
multiplexers is suited in the bottom to select between the
results for C = 0 and the results for C=1.

The results present that proposed adder 1s faster
than the traditional adder (Yeh and JTen, 2000; Cho et al.,
2004). The worst-case delay happens when the camy
chain form the LSB to MS3B. In that case, the mputs for
each adder are either (a,=1.b,=1)or(a,=0. b, =1)as

Table 1: Comparison between 54x54 bit multipliers

Present
Multipliers study (Cho et al, 2004)  (Jou et @i, 2003)
Technology (mm) 80 30 130
Transistor counts 28178 34268 45669
Multiplication time (ns) 3.1 4.4 5.2
Chip Area (mm) 0.69 0.95 1.32
Power Diss. (mW/MHz) 0.75 0.95 1.23
PDP (pIi@100MHz) 691 850 1150

nm: Nanometer; ns: Nano second; MHz: Mega hertz

well the LSB where both a, and b, should be 1. The Cout
for C, =1 in a block generates and result a long delay time
for Cout. Thus, if the arrival time of C_ 1s faster than the
time for producing Cout for C,, = 1, the whole delay time
become slower than the proposed adder where no carry
chain occurred. The arrival times for the C,, and the Cout
for C_ = 1 should be obtained to be the same. Then, the
original carry save adder is faster than the proposed as
predictable previously. However, it would be quite
complicated since full adder delay is not equal to a
multiplexer delay. Therefore, no carry propagation mn the
critical chain is preferred for a carry save adder design.

A multiplier core has been designed using 54x54 bits
(Table 1). The multiplier is recoded in the standard
method to radix-4 (Law and Rofail, 1999). The carry
lookahead adder component has been selected with four
bit carry network for the first two multiples and eight bit
carry network for the remaining multiples. This results to
an additional four bits in the largest column in the array.
Since the simulation condition includes estimations of
wire delay, buffers were stated i the multiplicand and the
modified multiplier. The topology selected for buffer
intercormects 1s one into two, with each of the two dniving
about half of the multiple producers.

It is understood, for the purposes of comparison, that
whatever carry chain adder 1s used to change the result
back to traditional form can be used for both the
presented design and the traditional design. For this
reasor, the conversion component 1sn't measured mn this
simulation and the traditional multiplier is planned in the
same manner as above, with the exception that the carry
lookahead adder is not shown. The buffer state is similar
to that above.

Speedup: The delay profile information needs to be
verified by calculating the speedup of the design. A
program was designed to synthesize several standard
programs by looking at functions of floating-point
multiplication operands. The speedup, S, 1s determined
only for fleating-point multiply instructions and is
calculated by,

_ —cm+ T, (M
T E (T, + T)*A- 1)
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where, T,, is the delay the multiplier T, T, is the delay
time of the traditional multiplier and f is the fraction
of multiply operations, which could achieve its operand
mn redundant form. The time to do an exchange, T, 1is
taken to be four nano-second, roughly one third of the
time for a multiply operation. The latency has decreased
by almost 36%.

CONCLUSIONS

A new multiplier for nanotechnology based systems
has been designed and simulated. This study has
presented a new high-speed low-power multiplier, which
uses redundant operands. The design presented here can
also easily be calculated to larger operands with a
corresponding increase 1n performance, due to the
logarithmic delay related with conversion to traditional
form. Simulations have been done with HSPICE and
Synopsys.

Replacing the ripple carry adder for C = 1 by the
presented adder circuit with the complement method
decreases the nmumber of transistors of the carmry save
adder compared to the traditional and other carry save
adders. The proposed adder required 38 and 29% fewer
transistors, respectively. Fewer transistors show less area
and less power. The power consumption of proposed
carry save adder 1s calculated to be only 75% of the
traditional carty save adders from the HSPICE sumulation.
The proposed 64 bit adder has 1.45 ns delay time at 2.5 V

power supply using an 80 nm CMOS technology. Table 1
shows comparisons between multipliers. Decreasing
technology size from 130 to 80 nm has decreased the
power by 38% m these multipliers. The latency has
decreased by almost 36%. Ow design decreased
transistor count by 32%.
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