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Medical Image Segmentation Using Enhanced Hoshen-Kopelman Algorithm
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Abstract: This research present a method of 2D and 3D segmentation based on the Enhanced Hoshen-
Kopelman algorithm and its extension to non-lattice structure. The main feature of this method 1s to combine
a merging strategy of a region growing algorithm with the multiple labeling technique of the EHK algorithm for
regular and non-regular lattice. An efficient reconstruction algorithm is then applied to the set of edge points
for the obtained segmented regions. The latest uses 3D Delaunay weighted triangulation. The combination of
these already known algorithms makes the proposed approach very fast, efficient and appropriate to volumetric
segmentation and particularly the anatomical structures i MRI and CT Scan images.
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INTRODUCTION

Segmentation is an indispensable tool in medical
image processing and is useful in many applications such
as early pathology detection, precise tumor localization,
simulation and plamming of clururgical nterventions, etc.
The principal aim of segmentation is the extraction of
significant objects present in the image either by
partitiorung this image mto connected semantic regions or
by extracting one or many specific objects from this
image.

Proposed approaches attempting to
segmentation problem are numerous and extremely varied.
The choice of a method depends on the nature of the
image, what primitives are to be extracted and what are the
usage constraints (algorithm complexity, real time
requirement, available memory, etc...). This variety of
possible methods shows that the segmentation problem
is far from being solved and there exists no single
technique satisfying all the image types.

In the literature, two major classes of segmentation
algorithms are present: contour approach based on the
estimation of the locale discontinuities of the gray level
function and region approach based on homogeneous
region extraction. Among the later, a fimdamental
algorithm 18 region growing which has received
considerable attention from 2D and 3D image analysts and
researchers. The principle of the technique is to define
some criteria, called homogeneity criteria, which allow

solve the

regrouping comnected image pixels into larger regions.
These criteria are often based on differential surface
characteristics of the 3D object and a stable segmentation
in quadric pieces 1s achieved (Monga and Bricault, 1994).

They can also be obtained from some evaluation function
{(Revol and Jourlin, 1994) or by RMS-approximation of
image points by simple polynomial swurfaces such as
planes or quadrics (Djebaili, 1998). Region growing
method has also been used for 3D medical image
reconstruction where the voxel gray level defines some
density of the volume to reconstruct as well as a
regrouping criterion.

Another approach that 15 fundamentally geometrical
which 1s mathematical morphology mainly consists on
comparing objects under analysis to other objects with
known shapes. Morphologic operators applied to 3D
images are described mn Agnus er el (2000) where
temporal 1mage sequences considered as 3D mmages are
segmented Based on mathematical morphology, three-
dimensicnal segmentation has been applied to anatomical
structures in MR images on large databases (Bueno ef al.,
2000).

In the last two decades, a promising mathematical
framework based on variational models and partial
differential equations has been developed and used to
solve the segmentation problem. There exist two major
categories of such models: parametric models introduced
inKass et al. (1988) and geometric models based on curve
evolution theory and level sets (Caselles ef al, 1993,
Malladi et al., 1995). They allow segmentation and object
reconstruction by providing compact geometric
representations where evolution laws similar to physical
mechamcs laws are mtroduced such as forces, physical
constraints and friction (Cohen, 1992; Lachaud, 1998,
Montagnat, 1999; Montagnat et al., 2001). Procedures
using deformable models have been widely used for
segmentation since they are well suited for object
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extraction from temporal and volumetric data from image
sequences such as TRM, CT scanned, X Tomography,
ARM and Echography (Cohen, 1992; Montagnat, 1999,
Delingette and Montagnat, 1999). These procedures have
been made more efficient by using 3D pyramid images
(Lachaud and Montanvert, 1999) and such hierarchical
structures allow coarse to fine type segmentation. Region
and edge information has also been integrated mto these
models (Pardo et al., 2001).

In some applications, the segmentation is viewed as
a pattern recognition problem. Thus, the task of delimiting
regions 1s assoclated to a high level ability to classify
regions in particular semantic classes. These approaches
are widely used for segmenting cerebral MRI; a review is
given in Bezdek et al. (1993). Among these, we can cite:
statistical methods usmg Markov fields and Bayesian
classification (Jaggi, 1998), the non parametric methods
such K-NN algorithms introduced by Duda and Hart
(1973), Parzen windows, fuzzy logic based methods
(Bezdek et al., 1997) and the so called Biologists methods:
neural networks, genetic algorithms, etc. (Takatsuka and
Taivis, 2001 ; Kobashi et al., 2001 ;, Kim et al., 2001).

In quest of better efficiency and precision various
hybridations of these different techmiques have been
successfully attempted (Kapur et al, 1996; Geraud,
1998 Benoit-Catlin ez al., 2000, Helliera and Barillot, 2001 ;
Rey et al., 2002).

In this research, a method for 2D and 3D image
segmentation based on the Hoshen-Kopelman algorithm
is proposed. The main feature of this method is to
combine a merging strategy of a region growmng algorithm
with the multiple labeling techmque of the EHK algorithm
for regular and non-regular lattice. This procedure is very
efficient and fast and may be adapted to the segmentation
of anatomical structures in MRI and CTS can images
which are i general quite large. An efficient
reconstruction algorithm is then applied to the set of edge
points for the obtained segmented regions. The latest
uses 3D Delaunay weighted triangulation. The later 1s
very efficient and fast approach makes 1t possible to adapt
it to the segmentation of anatomical structures in MRI and
CT Scan images.

THE HOSHEN-KOPELMAN ALGORITHM

Connected component analysis of grey level image
divides this image into regions by labeling uniquely each
pixel to a defined region. The regions diserimmated by the
connected component depend on the definition of
neighborhood. Several definitions of neighborhood exist,
however the most commonly used 1s the 4-connected.
Basically, the algorithms for comected components

assign new labels to the first pixel of each component
and  attempt to propagate these labels through the
neighbors. In image processing, Rosenfeld and Pfalz
(1966) described an algorithm based on the classical
component algorithm for graphs which is known as the
classical algorithm for connected component analysis.
The algorithm makes two passes through the image. The
first pass assigns and propagates labels, while at the same
time it creates an equivalence class table. The second
pass re-assigns the labels that belong to the same class
using the equivalence class table, such that all
equivalence 15 assigned with a umque label The final
image has its connected components indexed with a
unique label. While being relatively fast this algorithm
requires a large amount of memory to store the equivalent
class table, which depends on the image size and on the
complexity of the images. The most recent algorithms, for
connected component analysis, attempt to overcome the
fundamental problems of either being too slow or
requiring a large amount of computer memory.

In physics connected component analysis is known
as cluster analysis and it is widely used for problems
related to the percolation phenomena. In mid 1970s,
Hoshen and Kopelman (1976) published an ingenious and
efficient cluster analysis algorithm, which is known as the
Hoshen-Kopelman (HK)) algorithm. The time complexity of
this algorithm 1s linear and requires small computer
memory size. It remams an mmportant breaktlrough in
statistical physics, since it allows the study of cluster size
and the percolation problem through computer
simulations. Recently, Hoshen (1998) has developed the
Enhanced Hoshen-Kopelman (EHK) algorithm, which 1s
an improvement toward cluster analysis. Tt is capable to
yield various shape parameters and still preserves the
computational time and memory space complexities of the
original HK algorithm. The key idea for the efficiency of
the HK algorithm, which is also essential in the EHK
algorithm, lies on the concept of multiple labeling
techmique. The multiple labeling technique assigns
different labels to pixels belonging to the same cluster.
Unlike the classical connected component algorithm,
which stores an equivalence class table and the
equivalence are executed by a second pass over the
image. The HK algorithm generates the proper label by
assigning negative indexes to equivalent labels and
recursively searching for the final label.

In the statistical physics terminology, an unage is
referred to as a lattice, the connected components are
called clusters and a pixel is known as a site. The
algorithm begins by scanning the lattice, pixel by pixel or
site by site, from up to down and right to left direction
{(and back to front for 3D 1images).
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SEGMENTATION

Grey level segmentation may be achieved using
standard region growing technmique which is a merging
process at various levels. Usually, two or more steps are
used; the first step (step 1) operates at the pixel level
which 1s referred as a pre-segmentation step. At this
stage the lattice is regular. The further segmentation
merging steps consist on whether regions obtained
from step 1 may be merged or not. The first two
segmentation steps may make use of uniformity
predicates associated to the characteristic attributes of
region say Ri are as follow:

« P (Ri)=[(MAXi- MINi) < Threshold, ] where MAXi
and MIN1 are respectively the minimum and maximum
gray level n region Ri

* P, R1)=[V(Ry) < Threshold, ] where V(R1) 1s the gray
level variance of points in region Ri. We have
Threshold, = (Threshold, )*

The thresholds may be chosen in any standard
manner, this issue is not discussed here. Other merging
steps may make use of other predicates such as shape or
texture.

In this research, we propose using a variation of the
EHK algorithm for grey level image segmentation. Whle
the main features of the algorithm are preserved, the
notion of non occupied site does no longer apply here
since all sites (or pixels) are labeled. The background is
also a region. For step 1, the standard HK algorithm 1s
used since at the pixel level, the lattice is regular. The
clusters obtained correspond to the regions of the pre-
segmentation step. After the completion of step 1, a
region adjacency graph may be constructed. This graph
corresponds to a non regular lattice. This latter may
become quite large for very large images. In order to
perform step 2 and further merging steps in an efficient
manner, we propose and make use of EHK algorithm to
non-lattice environments as described by Al-Futaisi and
Patzek (2003).

Relative to other region growing segmentation
methods which are at best O(nlogn) in time complexity
(n being, the number of pixels or voxels), this method
is linear in O(n). In Fig. 1, we have plotted the
computational time in seconds for random binary 3D
images of sizes ranging from 100° to 300° (a 2.6 GHz
Intel Pentium IV with 2 GB DDR400 RAM PC
was used).

Two more features make this method very attractive.
Firstly, the memory requirement depends solely on the

Cpu time (sec)

30

10° voxels

Fig. 1. Cpu times as function of 3D image size in
voxels; our method (+), standard region growing

method (x)

maximum number of labels needed and not on the
size of the image. Secondly, this method can be ighly
parallelized as shown in Tiggemann’s work on percolation
{Tiggemann, 2001 ) where system sizes as high as 20000’
where considered.

RECONSTRUCTION

Once done with previous steps, each region of the
segmented 3D 1mage 1s delimited with a set of edge points
from which we can get the region swface using
appropriate reconstruction method. In practice, even
for modest regions, the number of pomts can be
quite large (for example a 20 pixel diameter cylinder
across 10 slices counts some 600 points) while large
regions may require more than 100,000 pomnts.
Following (Kies et al., 2005), were efficient 3D Delaunay
triangulation (3DT) algorithm is used. The outcome of
3DT is a set of pair wise linked edge points, in which
each linked triplet forms a triangular face and each
face quadruplet forms a tetrahedron. The outer surface
or the crust of the region of mterest is a subset of
the set of all tmangular faces resulting from 3DT.
If the crust 1s convex that the solution 1s
straightforward: it 1s the Convex Hull To tackle the
problem  of the Concave Hull, much elaborated
algorithms have been developed.

In the reconstruction process, we used principally
Nina et al. (2001). We have also used Patrice Koehl’s
(2002), TETRAFOR which has very efficient 3D
Delaunay Triangulation (Weighted). Once the crust faces
obtained, there is one last step which consists on
correctly orienting the normal of each face toward the
outside of the object. The success of this last step
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allows for a 3D rendering with no defects during final
visnalization of the results.

RESULTS

First of all and in order to validate our results, we
have tested this method on various test 3D images
conitaining various zimple objects (cubes, gpheres and
cylinders). We have also tested random binary images
of various sizes and warious ratio black/white, Wethen
segmented a 256 slices 256x256 scaled to % bits MRI
Brain 3D image and extracted and reconstructed the
brain surface as the largest region Figure 2 shows
several slices. Figure 3 represents the outer surface

imagel72 imagel73 imagel174

imagel76

imagel179

image177

imagel7s image180

Fig. 2: A get of WMRI Brain Image slices

Fig. 3. A bottom view of the whole brain reconstructed

from 50% of all the edge points

reconstructed using a  subszet of edge pointz  for
the largest zegmented region representing the whole
brain,

Similar results were chtained from 256x256%256 CT
Scanner image of the skull of a Monkey. Figure 4 shows
a sample set of glices used,

The 3D rendering after using half of all edge points
ag input for powercrust i shown in Fig. 5.

cksagls4 cksaglas cksagl9s

Fig 4 A set of CT gcanner image slices

Fig. 5: 3D rendering of crust obtained for the region
repregenting the Skull of a Monkey
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CONCLUSIONS

We have presented a new and very efficient method
of 3D segmentation base on both the Enhanced Hoshen-
Kopelman algorithm for both lattice and non-lattice
envirorment and applied it to some test umages. We have
llustrated our results by reconstructing the largest region
using POWERCRUST. The efficiency of the proposed
segmentation approach makes it possible to tackle very
large medical images with very small CPU time. An
ongoing work is underway for further benchmarking.
Also, an implementation of this method on parallel
machines 18 in preparation where better performance 1s
expected.
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