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Abstract: In this study, we consider the tardiness and earliness-mimmizing inexact flexible flow line problem
with n jobs and m stages and uncertain processing times, setup times and due-dates. For each operation, an
uncertainty interval is given and it is assumed that the processing time of each operation can take on any value
from the corresponding uncertainty interval, regardless of the values taken by processing times of other
operations. For most of scheduling problems, processing times, setup times and due-dates are treated as certain
values, but that is not proper to all actual situations. Processing times and setup times are not constant because
of measurement errors in the data sets for deciding them and/or human actions in the manufacturing process.
In some cases, a decision maker may prefer using interval numbers as coefficients of an inexact relationship.
As a coefficient an interval assumes an extent of tolerance or a region that the parameter can possibly take. A
model mixed integer design of the problem is formulated in inexact environment. On the basis of a comparative
study on ordering interval numbers, inequality constraints involving interval coefficients are reduced in their

satisfactory crisp equivalent forms and a satisfactory solution of the problem is defined.
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INTRODUCTION

The objective of a flow-shop sequencing problem is
to find the sequence of jobs that minimizes the maximum
flow time. Johnson published the first paper on the flow-
shop problem in 1954. This problem has held the attention
of many researchers and has been extensively studied in
the literature (Kwrz and Askin, 2003; Logendran et al.,
2005). A survey paper about the flow-shop problem was
presented by Ruiz and Maroto (2006), Ruiz ef al. (2008)
and Coffman (2002). Scheduling jobs m flexible flow-
lines is considered an NP-complete problem (Liu and
Chang, 2000; Taniak et al, 2007), which prompted the
development of many heuristics to provide a valuable and
quick solution (Gupta et al., 2002, Vob and Witt, 2007).
Most of the methods proposed in the literature assume
that all of the time parameters and relevant data are
already exactly known. However, m the practical sense,
this assumption 1s unrealistic since there are many
vaguely formulated relationships between jobs and
many imprecisely quantified job processing time values in
a real world descripton of the flow-shop problem
(Pugazhendh et al., 2004; Iin et al., 2006).

In conventional mathematical programming,
coefficients of problems are usually determined by the

experts as crisp values. But in reality, in an imprecise and
uncertain environment, it is an unrealistic assumption that
the knowledge and representation of an expert are so
precise. Hence, in order to develop good Operations
Research methodology fuzzy and stochastic approaches
are frequently used to describe and treat unprecise and
uncertain elements present in a real decision problem. In
fuzzy programming problems the constraints and goals
are viewed as fuzzy sets and it 1s assumed that their
membership functions are known (Sakawa and Kubota,
2000; Hong and Wang, 2000; Litoiu and Tade1, 2001) On
the other hand, in stochastic programming problems the
coefficients are viewed as random variables and it is also
assumed that their probability distributions are known
(Kurz and Askin, 2004; Lin and Liao, 2003; Allaoui and
Artiba, 2006). These membership functions and
probability distributions play important roles in their
corresponding methods. However, mn reality, to a Decision
Maker (DM) it 15 not always easy to specify the
membership function or the probability distribution in an
inexact environment. Therefore, it 18 much easier for a
Decision-Maker (DM) to specify a value range than to
give an exact value for the processing time of each job.
Accordingly, use of an interval coefficient may serve the
purpose better. Though by using a-cuts, fuzzy numbers
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can be degenerated into interval numbers (Tiang et al.,
2008), deliberately we keep this concept out of the scope
of thus paper. Here, an interval number 1s considered as an
extension of a real number and as a real subset of the real
line R (Tiang et al., 2007). As a coefficient an mterval also
signifies the extent of tolerance (or a region) that the
parameter can possibly take.
problems its use is not much attended as its merits. In this
study, we concentrate on a satisfactory solution approach
based on DM's interpretation of inequality relations and
objective of the problem with respect to the inexact
environment.

However, in decision

THE MATHEMATICAL MODEL

A hybrid flow-shop system 1s defined by the set
M =141, ...,], ..., m} of m processing stages (machine
center). Each stage j, ] € M is a set composed of k
identical machines. Set 1= {1, . ., n} composed of n
independent jobs has to be processed at the M stages
and one of K identical machines at each stage. Each job i,
i €1 is considered as a sequence of m operations with
processing times P, > 0,j € M) P, = (P, P;.).

The Tth operation of a job at the jth stage can
commence only after the completion of (j-1) previous
operations from the sequence. Processing of each job can
not be started before its release date and each machine
can process only one operation at a time. All jobs are
available at time zero. Most of the parameters used in this
problem are mexact and perhaps appropriately given in
terms of simple intervals. In reality inexactness of this kind
can be cited in countless numbers.

Thus, the optinization hybnid
mathematical model 1s defined as follows:

flow-shop

Decision variables and parameters: In this study, the
assumptions and notations are described as follows:

Assumptions:

*  Fach machine can process only one job at a time;

* All jobs are available for machine processing
sinultaneously at time zero;

¢ Jobs are not pre-emptive;

¢  Each job has m tasks to be executed in sequence on
m machine centers;

¢« All machine centers have the same number of
identical machines;

Decision variables and parameters are defined as
follows:

i =Index of jobs 1=1,2...,N
7 = Index of stages j=1,2...,m
k =Index of machines k=1,2,..

C = (C,, C.) completion time of job 1

C; = (Cj, Cy.) completion time of job i in stage j
T, = (T, T tardiness of jobi
E =(E.E, earlinessofjob1

d =1(d, d, duedateofjobi

R, = (R, R ) ready time of job i

P; = (P, P;) processing time of job i in stage j
S = (8., 8;.) set-uptime of job 11in stage
H, = (H, H,) holding cost of job 1 per time unit
B. = (P.. B.) shortage costof job i per time unit
U; = (U, U, starting time of job i in stage j

ij
1
Xuk
0

Objective function: The objective i1 to mimmize the total
holding and shortage cost associated with earliness and
tardiness.

ija + ijc

i

if jobiin stage jis allocated to machine k

otherwise

Min Z =" [(H,.H,)E, + (5,..6,)T] (1
St
C+E-T=(d,.d)i=12. (2)
" Xp=1i=12..N, j=12,...m (3)
" Xp=k k=lL.,K j=lL..m (4
C!,[,+1] i.[j] +L1-X k) e (an ch)"' (S1Ja ch) (5)
i=1,2,..N, j=12..m, k=12..K
G230 (BB +(85,8,)  i=L2..N ()]
U, 2U 4 (BB )+ (8,8, i=L2..N. j=12,..m (7)
U, >(R_R,) i=12..N (8)
X, =01 i=12..,N, j=12..m, k=12..K (9)
(E,T.U)20  i=12..N, j=l2Z..m  (10)

Relation (2) reflects the earliness or tardiness for each
part with respect to the defined due date. Relation (3)
indicates that job 1 n stage j requires only one machine.
Relation (4) guarantees that a machine can process at
most one job at a time. Relation (5) asswres that
completion time of each job that immediately precedes
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another job is greater than or equal to the sum of
processing and set-up times of that job on all machines.
In this relation L denotes larger positive munber. Relation
(6) ensures that completion time of each job in stage j 1s
greater than or equal to the sum of processing and set-up
times on all machines. Relation (7) shows that total
starting time of each job at stage j 1s greater than or equal
to its starting time in the previous stage and its
processing and set-up times at that stage. Relations (8)
represents the starting time constraint for job i and
Relations (9) and (10) represent the state of the variables.

However, for solution, techmiques of classical linear
programming cannot be applied if and unless the above
interval-valued structure of the problem be reduced into
a standard linear programming structure and for that we
have to clear up the followng main issues:

+  First, regarding interpretation and realization of the
mequality relations involving mterval coefficients.

*  Second, regarding interpretation and realization of
the objective "Min' with respect to an inexact
environment.

THE BASIC INTERVAL ARITHMETIC

All lower case letters denote real nmumbers and the
upper case letters denote the mterval numbers or the
closed mtervals on R.

31 A=[a;.a;] .
={a:a =a<a;acR}

where, a; and a; are left and right limit of the interval A on
the real line R, respectively. If a; = ap, then A = [a; a] s a
real number.

Interval A is alternatively represented as A = {m(A),
w(A) where, m (A) and w (A) are the mid-point and half-
width (or simply be termed as 'width') of interval A, i.e.,

1 1
m(A):E(aL"'aRl W(A):E(ER—aL)

3.2. Let* € {+, —,., +} be a binary operation on the set of
real numbers.

Then, AxB={a*basAbeB} a binary
operation on the set of closed mtervals. In case of
division it 1s assumed that 0¢B.

If A is a scalar, then

defines

AA=Aa;,a:]
Aa ,a,] for A=z0,
| Afag.a ] for A<

The extended addition + and extended subtraction
_, are defined as follows:

A+B=[a +b .2, +b.],
A+B=[a -b;,a,-b ]

The following equations alsc hold for A+Band A=B:

m{A+B)=m(A)+m(B)
m(A=B)=m{A)-m(B),
W{A+tB) =w(A-B)=w{A)+w(B)

INEQUALITY RELATION WITH INTERVAL
COEFFICIENTS

An extensive research and wide coverage on interval
arithmetics and its applications can be found in We1 and
Chen (2007). Here we find two transitive order relations
defined over intervals: the first one as an extension of *<’
on the real line as A < B iff a; <b, and the other as an
extension of the concept of set inclusion ie.,

AcB iff a =zb, and ay <hg.

These order relations cannot explam ranking between
two overlapping intervals. The extension of the set
inclusion here only describes the condition that the
mterval A 1s nested in B; but 1t cannot order A and B in
terms of value. We need to develop a defimition of
comparing two interval numbers.

Sevastianov (2007) approached the problem of
ranking two interval numbers more prominently. In their
approach, in a maximization problem if mtervals A and B
are two, say, profit intervals, then maximum of A and B
can be defined by an order relation < ; between A and B
as follows:

A=y Biff a, =b; and ap =by, A<y B iff A=;B and A#B.

Sevastianov (2007) suggested an another order relation
<. Where, <;p cannot be applied, as follows:

A< B iff m(A)<m(B)
and w(A)zw(B),

A < Biff A <, B and A#B Both of the above order
relations < and <. are antisymmetric, reflexive and
transitive and hence, define partial ordering between
intervals. Sevastianov (2007) showed that both of the
order relations never conflict in the sense that there exists
no such pair of A and B) A # B (sothat A<, ; Band B<_,
hold.

Sengupta et al. (2001) showed that there exists a set
of pairs of intervals for which both of < ; and <

= I

do not

2555



J. Applied Sci., 8 (14): 2533-2560, 2008

hold. They proposed a simple and efficient index for
comparing any two interval numbers on the real line
through decision maker's satisfaction.

Tong's approach: Tong (1999) deals with mterval
inequality relations in a separate way.
For a mimimization problem as follows:

s
Minimize Z =7 [c.cq]x;,

=1

Subject to

Z:,[aupam,']xj 2 [bLi=bRi]
=

vi=1,2,...,m,
X2 0, ¥,

each inequality constraint is first transformed into 2™!
crisp mnequalities to yield
D, = {D/k=12,..,2""},

which are the solutions te the ith set of 2°"' inequalities.
On the other hand, Tong defines a characteristic
formula (CF)

ax zb

iRy =0
j=1

of the ith inequality relation, Vi, where 8;=[a,;.8] and
b, [b,,.by]
Now, if the ith CF generates solution D, such that

jwl
_ &
D, = JD;,
k=1

then CF is called maximum-value range inequality and if
CF generates solution D, such that

Ti»l
D, =[\D;.
k=1
then it is called minimum-value range inequality. Tong
(1999) then defines mimmum and maximum optimal

objective value of the problem using max and min value
inequalities, respectively.

Discussion: Let us take a very simple inequality relation
with a single variable, [10, 20] x < [5, 35]. According to
Gupta et al. (2002) the interval inequality generates 2"
crisp inequalities:

10x =5 =>x=05

10x €35=x<3.5
205 =>x=025
20 €35 =>x=1.75

D:{Dk/k:1,2,3,4}

22
D= D" = x <3.5: max value range inequality;
k=

j— 22
D= ﬂD“ = X = 0.25: min value range inequality;
k=

Here we would like to raise a question on Tong's
approach (1999): how does one interpret the use of the
operators union and intersection in  defining max and
min-value range inequalities, respectively?

Using the union operator m defming the crisp
equivalent form of the ith original constraint may be
interpreted as at least one element of the interval Ax is
less than or equal to at least one element of interval B,
which clearly does not validate the origmal constramt
condition. Using O-index it can be shown that
8B, xAX)=1 e, Axis definitely greater than B,

On the other hand, using the mtersection operator in
defining the crisp equivalent form may be interpreted as
all elements of Ax is less than or equal to all elements of
B, which is merely an oversimplification. Using ¥-index, it
can be shown that %8B, xAx)=1,

In actual practice, for a wide range of feasibility of the
decision variable vector, DM may allow Ax even to be
nested in B, i.e., some/all elements of Ax may even be
allowed to be greater than or equal to some elements of
B, and that how much to be allowed will be decided by the
DM and this will depend on his optimistic attitude, on his
risk versus benefit assessment and as a whole, on the
level of satisfaction the DM tries to aclueve from the
decision-making process.

Hence, in our opinion, some sort of conditions
indicating DM's satisfaction/utility requirement has to be
incorporated in generation of a crisp equivalent structure
of the mequality constramt with interval coefficients.
Using the properties of -index we develop a satisfactory
crisp equivalent structure of an inequality constraint with
interval coefficients.

A satisfactory crisp equivalent system of Ax<B: Let
A =a;, ay], B =[by, byl and x is a singleton variable.
According to U-index the acceptability condition of
Ax<B may be defined as H{Ax <B)=0
Le.,m (Ax) < m (B).
Now, let us take the condition m (Ax) = m(B), then,
for a given value of x, we may have two different possible
setups.

Case-I: When interval A is relatively narrower than
mterval B: Ax may be nested in B. For example, for x = 2,
the relation [2, 4] x < [2, 10] may be viewed as given:
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|

-Ax:

R

|

2 4 6 8 10

0 2 4 6 8 10 12

Case-TT: When interval A is relatively wider than it was in
case I: B may be nested in Ax. For example, for x = 2, the
relation [0, 6] x < [2, 10] may be viewed as shown:

From the examples given above, for both of the
cases, the following remarks may be made:

» Case [ defimitely satisfies the origmnal mterval
inequality for x < 2 because $(Ax<B)=0. However,
an optimistic DM may remain under-satisfied with the
optimal constraint condition and for getting higher
satisfaction, he may like to increase the value of x to
such an extent that $(Ax<B) does not pass over a
threshold assumed and fixed by him.

¢+ On the other hand, by case 11, the original interval
mequality condition 1s not demed even for x < 2
because MAx=<B)z0 Buta pessimistic DM may not
be satisfied if the right limit of Ax spills over the right
limit of B. To attain his required level of satisfaction
the DM may even like to reduce the value of x so that
agx<byg.

To shed more light on interval inequality relation
from a different angle, let us refer an equivalent form of a
determimstic mequality where:

ax <bisaze ] -, b]

Let us extend this concept to an inexact environment:
if the real numbers a and b are allowed to be replaced by
intervals A and B, respectively, that one's possible
reaction 1s as much as similar to Wei and Chen's concept
of set-inclusion, 1.e.,

AX<B=AxcD
where D =] — <=, by

Keeping in view the two remarks stated above and
the We1 and Chen's concept (2007), we propose a
satisfactory crisp equivalent form of interval inequality
relation as follows:

agXx <hbg,
AX<B =
HAX <B) < e[0,1]

where, ¢ may be interpreted as an optimistic threshold
assumed and fixed by the DM.

Similarly, for Ax > B, we have the satisfactory crisp
equivalent form by the following pair:

axzh,,

Y Ax <B)sae[0,1]

ANINTERVAL LINEAR PROGRAMMING
PROBLEM AND ITS SOLUTION

Let us consider the following problem:

n
Minimize Z=7"[c ¢y %,

i=1

Subjectto > [a;. 8., 1%, =[by,, by ]
j=1
¥i=12,...,m,
X2 0, v

As 18 described in the previous section a satisfactory
crisp equivalent system of constramts of the ith mterval
constraint can be generated as follows:

a
>aux zb,, Vi

j=1

n
by +bg = > (A +ap,)x, <
=1

a(bg, —by )+ U‘Z (aRu - aLiJ)XJ'

j=1

The working of ¥-index may be summarized by the
following principle:

The position (of mean) of an interval compared to
that of another reference interval results i whether the
former 1s superior or mnferior to the later. On the other
hand, the width of a superior (inferior) interval compared
to that of the reference interval specifies the grade to
which the DM 1s satisfied with the superiority (inferiority)
of the former compared to the later.

The objective of a conventional linear programming
problem is to maximize or minimize the value of its (one
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only, single-valued) objective function satisfying a given
set of restrictions. But, a single-objective mterval linear
programming problem
objective function. As an interval can be represented by
any two of its four attributes (viz., left himit, right limit,
mid-value and width), an interval linear programming, by
using attributes mid-value and width (say) can be reduced
into a linear bichjective programming problem as follows
(Sengupta et al., 2001):

contains an interval-valued

Max/Min {mid-value of the interval objective function},
Min {width of the interval objective function},
sub: to {set of feasibility constraints}.
From thlis problem naturally one may get two
conflicting optimal solutions:
x* = {x*} from max/min {mid value}
sub: to {constraints?,
x** = {x**} from min {width}
sub: to {constraints}
and from there two optimal interval values 7* and Z**.

If x* = x** then there does not exist any conflict and
x* is the solution of the problem:

But if x* # x** for the maximization problem,
m(Z*) > m(Z**) and w(Z*>w(Z**) (because, 7* is
obtained through maximizing m(Z) and Z** 1s obtaned
not by maximizing m (Z), but through another goal, by
mimmizing w (Z)).

Similarly, for mimmizing problem, if x* # x**_ then,
m(Z*) <m(Z**) and w(Z*) > w(Z**) (because Z* here 1s
obtamed by mimmizing m(Z) and Z** by mmimizing
wi(Z).

Therefore, if x* # x**, Z* and Z** are said to be two
non-dominated altemative extreme interval objective
values Tiang et al. (2008). On the other hand, the principle
of O-index indicates that for the
(minimization) problem, an interval with a higher mid-value

maximization

1s superior (inferior) to an mterval with a lower mid-value.

Therefore, though Z* and Z** are two non-
dominated alternatives from the viewpoint of a biobjective
problem, as two mterval values of the terval-valued
objective function of the original problem they can be
ranked.

Hence, in order to obtain max/min of the interval
objective function, considering the mid-value of the
interval-valued objective function is our primary concern.
We reduce the interval objective function its central value
and use conventional LP techniques for favour of its
solution.

We also consider width but as a secondary attribute,
only to confirm whether it 1s within the acceptable limit of

the DM. If it is not, one has to reduce the extent of width
{(uncertainty) according to s satisfaction and thus to
obtamn a less wide interval from among the non-dominated
alternatives accordingly.

The following LP problem 1s the necessary equivalent
form of the original problem:

L 12
Minimize m(Z)= EZ(CLJ + oy )%,

=1
subject to Z a,X, zby, Vi,
j=1

n

by +bg = > (8, +ag)x,

j=1

<alby —by)+a> (ay, —a, )%,

=1

x,20, V]

It 18 only when there exists the possibility of multiple
solutions, that comparative widths are required to be
calculated and then m favour of a mimmum available
width, we get the solution.

COMPUTATIONAL EXPERIMENTS

The efficiency of the proposed algorithms is verified
by choosing 220 random instances with the following
characteristics:

» Dimensions of the problems are between
(N.M.K) = (25%5%3) and (N.M.K) = (100x20x12)

»  Set-up times for each job at each stage are chosen
interval numbers (1, 15) and crisp numbers (5, 10).

*  Holding (earliness) and shortage (tardiness) costs for
each job at each stage are chosen interval numbers
(1, 15) and crisp numbers (5, 10).

s Operation processing time for each job at each stage
is chosen fuzzy numbers (10, 40) and crisp numbers
(20, 30).

¢+ Due date for each job at each final stage is
chosen mterval numbers (150, 450) and crisp
numbers (250, 350).

Accordingly, two categories of problems have been
discussed with exact and mterval numbers. As described
1n section 5, interval number problems are first converted
to an exact model and then are solved using Lingo 7
software. Also, exact number problems directly can be
solved by Lingo 7 software and results are provided in
Table 1. According to the provided results in Table 1,
mean values of the objective functions for interval number
and exact number match. This is shown in Fig. 1.
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Table 1: Comparison of objective fimction mean values for exact and interval number problems

Objective function of value

No. of Crisp No. Tnterval No.
Problem size problems 0 e Ave. interval

N.M.K) solved b a C numbers
20%5%3 5 22.65 15.21 3542 2532
20x8x3 8 2412 16.11 37.18 20.65
20x10%3 10 2615 17.25 3941 28.33
20x12x3 12 31.18 19.41 41.12 30.27
20%15%3 15 3527 21.15 42.15 31.65
30x5x%5 5 3645 2541 48.11 30.76
30x8%5 8 3995 27.11 50.12 38.62
30x10x%5 10 42.84 28.19 61.17 44.68
30x12%5 12 4527 32.18 62.11 47.15
30x15x%5 15 48.44 3541 65.19 50.30
50x5%8 5 51.28 41.15 69.11 5513
S0x8x8 8 5218 42.17 70.15 56.16
50x10%8 10 54.29 46.11 71.12 58.62
50x12x8 12 56.44 52.15 74.19 03.17
50x15%8 15 5899 56.11 75.11 45.61
80x5x10 5 61.85 59.15 76.19 67.67
80x8x10 8 63.24 61.12 76.89 49.00
80x10x10 10 65.41 62.17 77.34 69.76
80x12x10 12 66.81 62.85 79.41 7113
80x15%10 15 68.85 63.11 80.11 71.61
100=10=12 5 69.21 65.15 81.19 7317
100x15=12 8 71.95 67.18 82.25 74.72
100:20=12 10 7245 69.15 85.18 77T

100 solution to a problem with maximizing or minimizing

g 80- o— b objective fumction practically turns to be maximization or

k- - 2 minimization of the central value of the interval-valued

‘g 607 A c objective function. In this regard, a pomt worth

g 07 mentioning is: If the DM is not satisfied with the extent of

8 201 uncertainty (width) mvolved in the optimal objective

value, he can achieve his required level of satisfaction by

0 12 "3 " 4" 5 "6 "7 g§' adjusting allowable width of the optimal objective value

No. of problem and/or by redefining satisfying conditions for generating

Fig. 1. Comparison of objective function. a, ¢: Interval
numbers; b: Crisp numbers

CONCLUSION

Appropriate  scheduling not only reduces
manufacturing costs but also reduces the possibility of
violating due dates. Finding good schedules for given set
of jobs can thus help factory supervisors control job
flows and provide for nearly optimal job sequencing.
Scheduling jobs in flexible flow-lines has long been
known to be an NP complete problem. Smce task
processing times, set-up times, due dates, holding costs
and shortage costs in real applications are usually
uncertain, in this study; we have defined a satisfactory
crisp equivalent system of an inequality constraint with
interval coefficients. The approach defined here has come
out as an application of ¥-index for comparing two
intervals through DM's satisfaction. Once the crisp
equivalent structure of the constramnt set 1s defined,

crisp equivalent set of constraints.
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