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Abstract: A biosensor is developed for the determination of hypoxanthine (Hx) by entrapment of XOD and a
mediator, ferrocene or potassium ferrocyanide, (K,Fe(CN),, into a PPy film during galvanostatic film formation.
The optimum conditions for the formation of PPy-XOD-Fe(CN),*~ film include 0.4 M pyrrole, 6.2 Uml ™' XOD,

40 mM K,Fe(CN);, polymerisation period of 200 sec and an applied current density of 0.5 mA cm™.

2

Potentiometric modes of detection, was investigated. The potential for the potentiometric biosensing of Hx was
0.0 mV vs. Ag/AgCl (3 M KCI) in 0.05 M phosphate buffer. Tt is revealed that potentiometric detection was
sensitive and gave a wider linear concentration range. The PPy-XOD potentiometric biosensor was successfully

used for the determination of fish freshness.
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INTRODUCTION

Hypoxanthine (Hx) is the main metabolite of adenine
nucleotide degradation in biological materials and can
therefore accumulate in bicological tissue (International
Conference on Microbiological Safety in Food, 1988).
Consequently, the amount of Hx present is often used as
an index of freshness of meat in the food industries and
the pathology of some processes in the human body
(Van Raemdonck et al., 1996). For example, when a fish is
caught and killed it losses freshness during autolysis. In
the early stages, the breakdown of adenosine-5-
triphosphate (ATP) in fish muscle results in the release

of adenosine-5-diphosphate (ADP) and further
disintegration  product, such as  adenosine-5-
monophosphate  (AMP),  ionosine-3-monophosphate

(TMP), inosine (HxR), Hx, xanthine (X) and uric acid
(Zen et al., 2002), IMP is known to contribute to the
pleasant flavour of fresh fish, however its degradation to
HxR and Hx is responsible for the progressive loss of
good flavour and the development of a most unpleasant
fishy smell (Oluma et al., 1991, Carsol et al, 1997,
Luong et al., 1989; Mulchandani et al., 1989). The
conversion of Hx to xanthine through the catalytic effect
of xanthine oxidase (XOD) together with the production
of H,O, and reaction of O, was found to be the rate
determining step in the overall reaction sequence in fish
muscle (Mulchandani et al., 1989, Veciana-Nogues et al.,
1973; Zen et al., 2002; Volpe and Mascini, 1997; Huetal.,
2000).

Hypoxanthine has been found to accumulate in fish
and beef, as well as n human organs, such as heart,

kidney and skeletal muscle (van Raemdonck et al., 1996;
Mulchandam et al., 1989, Veciana-Nogues et al., 1973;
Yano et al, 1995a, b, Manthei et al, 1995). Therefore,
the determination of hypoxanthine (Hx) has considerable
importance for quality control of fish and other fish
products m the food mdustry. Thus, from monitoring
the concentration of Hx in dead fish or animals, it is
possible to predict the time of death and the accumulation
of HxR and Hx over time can be used to assess freshness
of fish.

Various methods (Nguyen et al., 1990; Jones et al.,
1964, Tarr, 1966) such as spectrophotometry (Jones ef af.,
1964), chromatography and electrophoresis
(Nguyen et al, 1990) have been used for the
determination of hypoxanthine; however some of these
methods require pre-treatment and complicated and time-
consuming procedures. In response to the limitation of
these methods, electrochemical biosensors have been
developed to enable a simpler and more rapid
determimation of Hx (Luong ef af., 1989, Huand L, 1997,
Volpe and Mascim, 1997, Chemnitius et al., 1982;
Ibralum et ai., 1996; Hu et ai., 2000).

Various enzyme immobilisation methods that have
been considered for this purpose include immobilisation
of XOD in graphite, carbon paste, nylon mesh with
glutaraldehyde (GLA) and covalent attachment to
cellulose acetate membrane (Watanabe ef al., 1983, 1984
and nylon mesh (Moody et al., 1987, Mao et al., 1999) on
platinum and carbon paste electrodes (Yao, 1993). Cross-
lnking with bovine serum albumin (BSA) and GLA 1s the
most commonly used method for the development of an
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amperometric Hx biosensor because of its ability to
umprove the stability of immobilization (Okuma et al., 1991,
Moody et al, 1987; Mao et al, 1999, Yao, 1993,
Watanabe ef al., 1987, Kiline et al., 1998) of any mediator.
Mediators such as methylviologen (Sampath and
Lev, 1996), acyanoferrate, hydroxylmethylferrocene
(Kiline et af., 1998) and colbaltphalcyamine (Hu and L,
1997) were co-immobilised or added to the test solution to
enhance sensitivity and selectivity of the detection of
Hx. Recently, amperometric-mediated biosensors have
often been successfully used for the detection of
hypoxanthine and xanthine (Mulchandani et al., 1989,
Nguyen et al., 1991, Amine ef al., 1993, Gonzalez et al.,
1991, Rehak et al., 1994; Foulds and Lowe, 1986;
Watanabe et al., 2005; Agui et al., 2006).

The constructions of these biosensors are commonly
based on electrochemical oxidation of H,O, produced by
the enzymatic reaction as follows:

Hx + 0, —€ Xanthine + H,0, (1)
XKanthine + O, —=£— Uric acid + H,0, (2)

Another approach, which has not been fully explored
for the immobilisation of XOD, 1s the
electrochemical entrapment in polypyrrole. This approach
has been considered for the immobilisation of XOD but
was not used to determine fish freshness (L et al., 2004,
Liang and Shoubin, 2004). However, electrochemical

direct

entrapment has been successfully used for the
immobilisation of various enzymes, such as GOx (Adeloju
and Moline, 2001), penicillinase (Nishizawa, 1992), urease
(Adeloju et al, 1996), cholesterol oxidase (Govender,
2001) formate dehydrogenase (Yuan, 1989) and sulphite
oxidase (Adeloju et al, 1994). XOD and purine
nucleosides phosphorylase (Adeloju and Lawal, 2005),
ATP (Kueng and Kranz, 2004) and alcohol oxidase
(Barsan and Bratt, 2008).

In this research, the electrochemical entrapment of
XOD in polypyrrole film will be explored for the fabrication
of a stable, sensitive and selective Hx biosensor for
rapid and reproducible measurement of fish freshness.
Important considerations in the development of the Hx

have

aspects: (a) film formation and electrochemical entrapment

biosensor been focused on two significant
conditions, such as current density, polymerisation
time, effect of XOD and pyrrole concentration and (b)
analytical utilisation conditions, such as applied potential,
and  buffer

mfluence of electton mediator, pH

concentration.

MATERIALS AND METHODS

Reagents and standard solutions: Xanthine oxidase
(XOD) (EC1.1.3.22 Grade 1) from buttermillk, ferrocene
carboxylic acid (Fc¢), potassium ferrocyanide, pyrrole and
hypoxanthine were obtained from Sigma Aldrich Chemical
Pty Ltd (NSW). Other chemicals used were reagent grade
and all reagents used in this work were prepared without
further purification. XOD was stored in the refrigerator at
5°C until required. The pyrrole was distilled under vacuum
at 130°C prior to use and this was stored in a closed
bottle wrapped with aluminium foil in the freezer to
prevent UV degradation until required for use. A stock
solution of 0.25 M K,Fe(CN), salt was prepared by
dissolving 1.0060 g of the salt m Milli-Q water. The
volume was then adjusted to 10 mlI.. The volumetric flask
was then placed in an ultrasonic bath, until the salt
dissolved and a clear solution obtamed. The solution
was stored until required. Stock phosphate buffer solution
(0.5 M, pH 7.0) was prepared by neutralising
othophosphoric acid solution with sodium hydroxide.
This was stored m the refrigerator and diluted when
needed. A stock solution of 0.1 M solution of ferrocene
carboxylic acid was prepared by dissolving 0.36 g of the
salt in 100 mT. 0.01 M KOH.

Instrumentation: Electrochemical measurements were
performed with a potentiostat/galvanocstat designed and
constructed in our laboratories. This instrument was used
in the galvanostatic moede for the electropolymerisation.
A three-electrode system, which consists of a platinum
working electrode, a platinum wire counter electrode and
a saturated calomel reference electrode (SCE), was
employed for electropolymerisation, while a two-electrode
system, consisting of platinum working and a reference
electrode, was used for potentiometric detection of Hx.
The potentiostat was connected to a computer controller
(AMD-K6-400 mHz Celeron processors, 32 MB RAM, &
Gigabyte HD, Hansonl Monitor and Wmdows 98
keyboard and mouse) and a Brother HI.-12707 network
laser printer. The solution was stirred when necessary
with a Sybron Thermolyne (model 5-17410) stirrer.

Glassware: Glassware and polyethylene cells that were
used for solution preparation and measurements were
soaked in an acid bath (1% HCI: 1% HNO,) for one week.
These were washed with detergent and then soaked n an
acid bath (1% HCI: 1% HNO;) overnight after use. Before
being used, each item was rinsed several times with fresh
Milli-Q) water drained and dried in an air-circulating oven
at 80°C.
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Preparation of XOD electrode

Electrode preparation: A 320 um aluminium oxide powder
was used to polish the platinum working electrode with a
soft polishing pad, to remove any previous film and then
finally polished with 5 pm aluminum oxide. The platinum
electrode surface was washed thoroughly with Milli-Q
water, rinsed under a stream of acetone and finally rinsed
thoroughly with Milli-Q water to remove any of the
remaining aluminum oxide. The electrode was dried with
fibre-free tissue paper prior to use.

Electropolymerisation of PPy-XOD film: Three-electrode
voltammetric cell  was used to  perform
electropolymerisation of the PPy film. Platinum wire and
Ag/AgCl (3 M KCl) were used as the auxiliary and
reference electrodes respectively while the working
electrode was a platinum electrode (0.17 cm?).

Xanthine oxidase (6.2 unit mL™") and ferrocene or

ferrocyanide were immobilised into the polypyrrole film by
electropolymerisation of pyrrole mn a solution which
contained 0.1-0.5 M of the monomer and 40 mM ferocene
carboxylic acid or 20 mM potassium ferrocyanide at
various current densities and a polymerisation time of
200 sec. After the galvanostatic film formation, the
polymer electrode was washed several times under a
stream of Milli-Q water to remove any weakly bound XOD
or K,Fe(CN); molecules prior to use.
Potentiometric measurements: Potentiometric
measurements were performed with a conventional two-
electrode system, respectively. The measuring cells
contained 20 mL of phosphate buffer, which was stirred in
the two methods of measurement. The potentiometric
responses were measured after each addition of the
standard hypoxanthine solution to the cell under different
conditions.

Determination of Hx: Tn the past, the quantitative Hx
assay was performed by measuring the O, consumed
(Suzuki et al., 1989) or the H,O, formed from the XOD
catalysed reaction (Cayela e al., 1989; Adeloju and Lawal,
2005), as previously illustrated by Eq. 1 and 2. The
hydrogen peroxide 1s detected by potentiometric
measwrement during oxidation of H,0, at the enzyme
electrode as follows:

H,0, — 0, +2H" +2¢ (3)

In this study, the potentiometric measurement was
performed 1 50 mL cell, which contamned 20mL of 0.05M
phosphate buffer (pH 7.0). The enzyme and reference
electrodes were immersed into the buffer solution. A

zero current was applied and, after potential stabilisation
(3 min), a standard analyte solution, or sample, was added
to the gently stured buffer and the potential-time
response curves were recorded. The magmtude of the
change in potential was correlated to concentration of
analyte in the cell.

Hx determination in fish: Several extraction solutions,
including perchloric acid (Tones et al, 1964), water
(Watanabe et «l., 1987) and trichloroacetic acid (TCA)
(Pearson, 1975), have been used to prepare fish samples
for Hx analysis. Distilled water was used in this study.
Many researchers realised that the tedious procedure of
acid digestion was not necessary for measurement of
hypoxanthine (Watanabe ef al., 1987). Five grams of fish
meat from Blue Grenadier fish fillet was homogerused in
20 ml, water at room temperature and filtered through
0.2 pm filter membrane to obtain the fish extract in the
filtrate. This was adapted for potentiometric biosensing of
Hx. A mixture contaiming equal volumes of the fish extract
and 0.1 M phosphate buffer was subjected to Hx analysis.
The Blue Grenadier was analysed after storage under
different conditions with the Hx biosensor. The same
procedure was used for Lake Entrance Flathead and
Sword shark.

RESULTS AND DISCUSSION

Response to Hx: The XOD-catalysed reactions taking
place at the Hx biosensor have been illustrated in Eq. 1-3.
In the presence of molecular oxygen XOD catalysed the
oxidation of Hx and produced hydrogen peroxide,
which can be detected by the PPy-XOD-F¢ or PPy-XOD-
Fe(CN);~ electrode. The potentiometric response
decreased with increasing Hx concentration. However, the
magnitude of the resulting response was nfluenced by
several factors, such as applied potential, type and
concentration of mediator, galvanostatic polymerisation
conditions, pH and buffer concentration, XOD
concentration and applied potential

Potentiometric detection: Figure 1 shows a typical
potentiometric response for the PPy-XOD-Fe(CN),*~
biosensor. The potentiogram shows that the baseline for
the response is distinct. Figure 2 show the potentiometric
Hx biosensor has a linear range from 5-25 uM. The
minimum detectable concentration of Hx with of PPy-
XOD-Fe(CN),*~ electrede by potentiometric detection was
4.9 uM. Table 1 clearly shows the established optimum
conditions for potentiometric detection of Hx with PPy-
XOD-Fe(CN),'~ electrode and enabled the detection of
lower concentrations of Hx. From the above results,
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Fig. 1: Typical potentiometric (potential-time) response of
PPy-XOD-Fe(CN),~ biosensor to Hx. (a) 10, (b) 20,
(¢) 40 and (d) 60 mM Hx. The monomer solution
contained 0.4 M pyrrole, 6.2 U mL™" of XOD,
current density: 0.5 mA/cm® and polymerisation
period: 200 sec

Table 1: Established optimum conditions for potentiometric detection of Hx
with PPy-XOD-Fe(CN)s*~ electrode
Optimum condition

Potentiometric mode

[Pyrrole] 0.5
[K,Fe(CN),] 50 mM
[XOD] 62 UmL™?
Film formation condition polymerisation time 200

Current density 0.75 mA cm ™
Measurement condition applied potential 0

Minimum detectable amount [Hx] uM 4.5

Linear range 1 5-25 uM.

sensitive quantification of Hx can therefore be achieved
with potentiometric mode of detection.

Analytical application: A linear relationship was also
observed in Fig. 2 between the potentiometric response
and the Hx concentration. The potentiometric response
was linear from 5-25 puM. The minimum detectable
concentration of Hx is 5 uM. This is approximately 16-fold
lower than that of the oxygen-based biosensor developed
by Watanabe ef al. (1984). These linear ranges are
suitable for the determination of Hx in biological and
clinical samples.

One of the areas where this biosensor can be useful
is in assessing fish and meat freshness. The quality of
fish meat can be estimated from an increase in Hx
concentration and it has been reported that analysis
based on Hx alone is an adequate indicator of
freshness (Tarr, 1966). Figure 3 shows the potentiograms
obtained for the determination of Hx in three fish samples,
namely Flathead, Blue grenadier and Sword shark,
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0 20 40

(Hx) 10°M

Fig. 2: Calibration plot obtained for the potentiometric
biosensing of Hx with the PPy-XOD-Fe(CN)"™

clectrode
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110, A
494 Time (sec) 1250
Fig. 3: Potentiometric detection of Hx in (a) Flathead (b)
Blue Grenadier and (¢) Sword Shark fish samples
with PPy-XOD-Fe(CN)64-electrode. (1) sample

only, (2) +0.2, (3) +0.4, (4) +H0.6 mM Hx

with the PPy-XOD-Fe(CN),"~ electrode based on
potentiometric detection. The differences in the [Hx]
found in Sword shark (8.7+0.7 umol g at about day 7),
Blue grenadier (4.1+0.9 pmol g at about day 5) and
Flathead (2.1£0.3 pmolg™" at about day 1) could be due
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Fig. 4: Stability of the potentiometric response of Hx
obtained with the PPy-XOD-Fe(CN), electrode.
(Hx) was 10 mM

to post-catch handling and the mability to get an accurate
date of catch or death of the fish. But the hypoxanthine
found m the three different fish muscles ranged from
2.1 to 87 pmol g~'. The results are within the range of
values previously reported for common fish fillet by
Zen et al. (2002) (0.5-8.8 umol g™) after day one and
Mulchandani ef af. (1989) (0.4-6 pmol g~') on day one.
Such agreement suggests that the PPy-XOD-Fe(CN),'~
electrode 1s useful for reliable, simple and economical
detection of Hx as an indicator of fish freshness.
Recovery studies were carried out by adding Hx to the
buffer after the fish extract addition and the recoveries
were satisfactory with an average value of 99.5+4.0%.

The inability to get the correct date of catch made all
attempts to look at one fish over the course of 7 days for
different fish difficult. The stability of the PPy-XOD-
Fe(CN),'~ electrode, as shown in Fig. 4, in potetiometric
mode, shows the sensitivity of the response did not start
to decline umtil after 7 days. The loss in sensitivity may be
due to the leaching of XOD and/or Fe(CN),*~ from the
electrode with mcreasing storage time. However, despite
the reduction in sensitivity with time, the biosensor can
still be used for routine determination of fish freshness,
provided this is done by the standard additions method.

Ascorbic Acid (AA) and Uric Acid (UA) are
considered to be major interferents in biological samples
(Mao et al., 1999) have coated nafion on the electrode to
eliminate both AA and UA interferences.

CONCLUSION
Potentiometric biosensors for the determination of Hx

have been fabricated by immobilisation of XOD and Fe or
Fe(CN),"~ into polypyrrole films by galvanostatic

polymerisation. The optimum conditions for the formation
of the PPy-XOD-Fe(CN),"~, as given in Table 1 include
0.4 M pyrrole, 6.2 U mL ™" of XOD, 50 mM K,Fe(CN),, a
polymerisation time of 200 sec and an appled current
density of 0.75 mA cm™ enabled the detection of a wider
linear concentration range of Hx. The biosensor had a
minimum detectable amount of 4.5 pM in the
potentiometric mode. A linear concentration range for the
biosensor in potentiometric mode was 5-25 uM, the
biosensor was applied successfully to the determination
of hypoxanthine in fish muscle. The concentration of
hypoxanthine found in three different fish samples ranged
from 2.1-8.7 umol g~ over a 7-day period. The results
suggest that the biosensor can be reliably used for the
assessment of fish meat freshness.
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