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Abstract: This study seeks to explore the ability of unsteady Reynolds-averaged Navier-Stolkes (URANS)
simulation approach for resolving two-dimensional (2D) gravity currents on fine computational meshes. A 2D
URANS equations closed by a buoyancy-modified k-£ turbulence model are integrated mn time with a second-
order fractional step approach coupled with a direct implicit method and discretized in space on a staggered
mesh using a second-order accurate finite volume approach incorporating a high resolution semi-Lagrangian
technique for the convective terms. A series of 2D simulations are carried out for gravity currents from both
discontinuous and continuous sources. Comparisons with experimental measurements show that 2D URANS
simulations in conjunction with sufficiently high grid reselution can capture overall features of the gravity
currents including the evolution of the Kelvin-Helmholtz interfacial vortices and the propagation of the energy

conserving current head with reasonable accuracy.
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INTRODUCTION

A gravity current 1s the flow of one fluid within
another driven by the density difference between the
fluids. The difference in specific weight that provides the
driving force may be due to dissolved or suspended
material or to temperature differences. Gravity currents
could be continuous or discontimuous, depending on
whether or not there is constant supply of heavier material
from the source. A comprehensive description of gravity
currents and their numerous applications 1s given in
Simpson (1997).

Several laboratory experiments have been performed
to study gravity currents (e.g., Huppert and Simpson,
1980; Rottman and Sunpson, 1983; Parker et al., 1987,
Garcia, 1993; Hallworth et ai., 1996, Parsons and Garcia,
1989; Lowe et al., 2002; Ross et al., 2002; Marino et ai.,
2005). Tt is difficult to make quantitative measurements
during the early stage of the current development. Most
experimental measurements are therefore, collected when
a current has reached a quasi-equilibrium state.

Numerical modeling has the advantage of capturing
the evolution history of a developing current. A nmumber
of two-dimensional (2D) and/or three-dimensional (3D)
direct numerical simulations (DNS) of gravity currents
have been reported in the literature (Hértel et al., 2000,

Necker et al, 2002, 2005, Birman et al, 2005;
Cantero et al., 2006), which have highlighted the role of
large-scale, interfacial mstabilittes m transporting,
entraming and mixing the heavier fluid with the ambient
flow. Comparisons of the relative performance of 2D vs.
3D DNS results have led to the following conclusions. 2D
DNS of lock-release gravity cumrents can accurately
capture some important features of gravity current flows,
including the propagation and the evolution of the current
head and the dynamics of the interfacial, Kelvin-Helmholtz
vortical structures m the slumping phase. 2D simulations,
however, are mmnately unable to reproduce important
three-dimensional instabilities of such flows, including the
formation of the lobe-and-cleft structure at the current
head and the breakdown of mterfacial billows to small
structures. DNS 15 a powerful turbulence simulation tool
but due to the strong dependence of the required spatial
and temporal resolution to the Reynolds number is
inherently restricted to low Reynolds numbers and 1s not
feasible for field-scale simulations. Patterson et al. (2005,
2006) carried out 2D and 3D simulations of 2D and
axisymmetric gravity cwrrent using an alternative LES
approach. Large Eddy Smmulation (LES) does relax
somewhat the required numerical resolution and permits
simulations at somewhat higher Reynolds numbers than
possible with DNS, but fully near-wall resolved LES of
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gravity currents at practical Reynolds numbers is not
within the reach of fairly affordable computational
resources. For example, in the recent LES study by
Oot et al. (2006) computational grids with approximately
35 million grid nodes were employed to resolve the
dynamics of a discontinuous lock-release gravity current
1n a rectangular domain.

To the best of our knowledge and based on the
above review of previous literature, computational
approaches that have shown promise as practical
engineering simulation tools capable of predicting the rich
dynamics of real-life gravity current flows-1.e. n complex
geophysical geometries and at full-scale Reynolds
numbers-do not exist today. Unsteady Reynolds-
Averaged Navier-Stokes (URANS) approach with the
statistical turbulence model provides a viable alternative
for engineering computations of gravity currents at
Practical Reynolds numbers and several such models
have been proposed m the literattrte. The k- two-
equation model has been widely adopted by researchers
to simulate 2D conservative gravity currents (Farrel and
Stefan, 1988; Fidsvik and Brors, 1989; Sha et af., 1991,
Hurzeler et al., 1995, Bournet et al., 1999, Chot and Garcia,
2002, Imran ef al, 2004, Kassem and Imran, 2004,
Huang et al., 2005). These studies have yielded results
that are in good agreement with the measurements of
basic flow properties of the gravity currents (eg.,
spreading rate and propagation speed of the front) but
tend to produce rather diffused flow patterns at the
interface without capturing the interfacial vortex dynamics
revealed by experiments and higher level numerical
simulations such as LES and DNS.

In this study we seek to demonstrate that URANS
employing a buoyancy-extended statistical
turbulence model can indeed capture the rich dynamics of
large scale interfacial vortical structures i 2D gravity
currents provided that the numerical resolution-both in
the sense of the accuracy of the numerical method and the
temporal and spatial resolution of the simulation-is
sufficiently fine. We develop and apply a robust and
second-order-accurate 2D numerical model to reproduce

model

the propagation of gravity currents accompanying the
evolution of the interfacial billows. The model employs
the Boussmesq form of the URANS equations in
conjunction with a buoyancy-extended k-e closure for the
turbulence (Rodi, 1993). We carry out numerical
simulations of various continuous and discontinuous
gravity currents and compare the results with the
experimental visualizations and the measurements
published in Huppert and Simpson (1980), Patterson et al.
(2005) and Garcia (1993). The grid sensitivity of the
numerical solutions 1s also analyzed for all cases.

Governing Equations: Tn this study we focus on flows
with relatively small density differences for which the
usual Boussinesq approximation can be assumed to be
valid-i.e., all variations in density can be neglected except
for the buoyancy term. Incorporating the Boussinesq
hypothesis to relate the Reynolds stresses with the mean
rate of strain tensor via an eddy viscosity, 2D URANS
equations for incompressible, stratified flow read as:
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where, u and w are the Reynolds-averaged velocity
components in x and z directions, respectively; p, is the
density of the ambient fluid; g is the acceleration due to
gravity;, v and v, are the molecular and eddy viscosity,
respectively; p is the local mixture density and t is time.
P* =P-p,gh is the modified pressure including the gravity
terms where P* 15 total pressure and h 1s distance from the
reference in z direction.

The eddy viscosity is modeled by the buoyancy-
meodified k-g turbulence model (Rodi, 1993) as:

v—c X (4)

b e

where, k is the turbulent kinetic energy, € is its dissipation

rate and C, is a model constant. Quantities of k and € are
obtained from the solution of the transport equations:
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In the Eq. 5-6, D/Dt denotes the material derivative,
P, and B are production terms of turbulent kinetic energy
due to the mean velocity gradient and the buoyancy and
are estimated, respectively, as:

PR O
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p_ V8% (8)
p.c, &

In Eq. 7-8, 0,, 0,, and o, = turbulent Prandtl number
for k, € and the source of gravity current (in this study,
salinity S), respectively. C,,, C, and C, are turbulence
model constants. The following standard values are
specified for the turbulence model constants:

C,=009, C,=144, C,=192 0,=10, 0,=13 (9)

The turbulent Prandtl number o, the ratio of the
turbulent viscosity and the turbulent diffusivity is set
equal to 0.85 which is acceptable in general buoyant shear
flow (Rodi, 1987; Farrel and Stefan, 1988).

The empirical coefficient C,; 1s directly related to the
buoyancy effect and its optimal value does not have a
firm basis, unlike other model coefficients. Rodi (1993)
suggested that the coefficient should vary between O for
buoyant horizontal shear flows and 1 for buoyant vertical
shear flow. That is, the optimal value of C,; is dependent
upon the flow conditions and its choice is controversial.
Hossain and Rodi (1982), Rodi (1987), Fukushima and
Hayakawa (1990), Fukushima and Watanabe (1990) and
Choi and Garcia (2002) suggested C,; values ranging from
0 to 0.4 to give a good agreement with experimental results
on gravity currents. Since the gravity currents considered
1n this study are close to the horizontal shear flow, except
during the early stage, the choice of a small constant
value of C_ close to 0 is reasonable based on the
recommendation of Rodi (1993). In this study we use a
constant value of C,=0.2.

The URANS and turbulence closure equations are
solved simultanecusly with the following transport
equations for the salimity S, which is used to determine
scalar transport and the variation of the fluid density:

%ZE[(\H,L)@]JrE[(W_L)@] (10)
Dt & o, &) oz . &

Density is assumed to be linearly related to the mean
volumetric concentration through the equation of state as
p=p, (1.04mS) where m is a constant.

NUMERICAL METHOD

A fractional step (Yanenko, 1971) method is
employed to mtegrate the governing equations in time
coupled with a projection method for satisfying the
continuity  equation (Namin, 2003).
bathymetry of the computational domains is handled
by the sigma-type body-fitted grids which fit the vertical

Non-uniform

direction of the physical domain. The finite-volume
integration method 15 used for different terms m the
govering equations. To facilitate the presentation of the
algorithm, we present an overview of the entire temporal
integration scheme and then the spatial discretization of
the various terms and the iterative solution of the
resulting discrete equations.

Temporal integration scheme: The fractional step
algorithm: The governing equations are discretized in
time by fractional-step, or operator splitting, method in
which the time advancement is decomposed into a
sequence of steps: the advection, the diffusion and the
projection. This method allow us deploy the most efficient
numerical technique for each of the individual process.
Dimensional splitting 1s also used to reduce the multi-
dimensional problem to a series of one-dimensional
problems. The wvarious steps are summarized below
where the following notation 1s used for the sake of
brevity: U =u w for i =1 and 2, respectively.

Advection step (1=1,2)

Ufl} -uy _ {—E(HU )T (11
At x

vi-ul [,E(wui)}m (12)
a\ oz

Diffusion step (i=1,2)

L )

(13)
R ] R
(14
u ;tUP] - [i[(v+v()[6;2 ]D“ and A ;th} = [%{(\H v.)[?}Dn
(15)

where, aandb are constant coefficients. If 1=1 then
a=2.,b=landif1=2thena=1,b=2.

Continuity (or projection) step:
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Equation 16 and 17 are combined by applying the
divergence operator to Eq. 17 and enforcing Eq. 16 to
derive the following Poisson equation for the pressure
field:

n+l n+l "
apr ) (@ =&(%+%J (18)
ox? oz’ Atl 8x &
where
d,=Uf*—Mg52, (i=1,2) (19)

Following the solution of the pressure equation, the
velocity field at the new time step is calculated as follows:

w0t
U = At[—i[ap J ] +d, (20)

p.\ X

1

These fractional step and dimensional splitting
approaches save considerable amounts of computational
time and preserve overall accuracy of the temporal and
spatial discretization schemes (Namin, 2003).

The fractional step approach outlined above for
solving the momentum equations is also employed to
integrate the transport equations for the turbulence
quantities and the salmity. For the later equation only the
advection and diffusion steps are required. For the former
equations, however, the diffusion step is followed by a
step in which the source terms are taken into account
explicitly.

Spatial discretization scheme: The discretization of the
advection terms i the above iterative scheme 1s critical
for spatial accuracy of the numerical method. We employ
the semi-Lagrangian method (Namin, 2003) based on the
Fromm scheme (1968) for discretization of the advection
terms of the one-dimensional form isolated by the
dimensional splitting approach.

The ULTIMATE conservative difference scheme of
Leonard (1991) is employed to ensure to maintain
monotonicity while preserving spatial accuracy. Using a
monotone scheme 18 essential for numerical stability and
the smoothness of the computed solutions in the
discontinuities where sharp scalar gradients are present
and dominate the dynamics of the flow.

In the second step, the diffusion terms are solved by
the semi-implicit second-order Crank-Nicolson scheme to

obtain the second intermediate velocity components 1, **
as in BEq. 13-15.

Solution of the discrete equations: During the advection
step of the fractional step procedure, the discrete
equations are integrated mn time explicitly. In the diffusion
step the Thomas tri-diagonal matrix algorithm is used to
solve the discrete equations implicitly. The pressure-
Poisson equation is solved using a block tri-diagonal
algorithm, which can be formulated by writing the discrete
Poisson equation for all the cells.

After calculating the velocity components and
pressure field in new time step, the transport equations for
the turbulence kinetic energy, energy dissipation rate and
the salinity are solved using the same fractional step
algorithm used to mtegrate the momentum equations.
Finally the density is calculated using state equation.
Boundary conditions: The boundaries of the
computational domain are mlet, outlet, free-surface and
solid walls. In the absence of wind shear the net fluxes of
horizontal mementum and turbulent kinetic energy are set
equal to zero at the free surface. Flat, slip boundary
condition of zero velocity gradient normal to the surface
is applied and the pressure is set equal to the atmospheric
value at the surface. The dissipation rate € 1s calculated
from the relation given by Rodi (1993):

s=k¥/(043D) a z-z, (21)

where, D 1s the local water depth and z 1s the coordinate
of free surface.

The wall function approach i1s used to specify
boundary conditions at the bottom of the channel in order
to avoid the resolution of viscous sublayer. The first grid
point off the wall (center of the control volume adjacent to
the wall) 15 placed nside the logarithmic layer based on
the buoyancy velocity U,. In the wall-function approach,
the resultant wall shear stress vector T, 1s related to the
velocity vector at the first grid point V, by the standard,
smooth-wall, log law (Wu ef al., 2000):

1, =-h,V, with A = pci{“kgzk/ln(Ezg) and z=uz/v (22)

where, the subscript 2 refers to the point at the first
control volume center at the wall, 2 is the normal
distance to the wall; u, =4z, /p is the bed shear velocity,
¥ 18 von Karman constant (= 0.41) and E 1s an integration
constant that for smooth beds is equal to 8.43. Here, we
employ an algonthm for computing u. in Eq. 26. The near-
wall values of turbulent kinetic energy k and dissipation
rate € are given as:
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k=ul/C¥ and e=ul/(xz}) (23)

On the other hand, if the first grid node from the wall
locates within the viscous layer (zf<11.6) due to the
evolution of complex vortical structures, these near-wall
values are approximated as:

z 2vk
k-[Z]k and e-2K 24
[z“j = T @4

In case of the continuous gravity current, known
quantities are specified at the mlet for the inflow velocity,
the concentration of the gravity current source and the
current thickness while turbulent kinetic energy and

dissipation rate at the inlet are estimated as follows
(Fukushima and Watanabe (1990)):

k, = (0.1u, ) and &, = LOK*CY* /(xh, ) (25)

where, u,, k, and h  are the averaged velocity, the
turbulent kinetic energy and the thickness of the gravity
current at the inlet. At the outlet the normal gradients of
all dependent variables are set equal to zero.

In case of lock-release gravity currents, the dense
and ambient fluids are completely divided atx =x,
(Fig. 1) at t = 0. With the start of the simulation, a dense
fluid propagates rightward along the bottom boundary
while the ambient fluid moves leftward along the surface
boundary naturally due to the density difference.

RESULTS AND DISCUSSION

Here, we report numerical results for 2D gravity
currents from continuous and discontinuous sources
along with comparisons with experimental measurements
available in the literature. After a brief description of
computational details for each case, we first present the
comparison of the 2D numerical solutions and available
experimental measurements. Subsequently, we discuss the
details of the simulated flows and highlight some 1ssues
pertaining to the numerical simulation of gravity currents
with the 2D TURANS model. We have extensively tested
the grid sensitivity
discontinuous source case considered in this study.
Numerical solutions computed on a coarse, a fine and
three intermediate meshes are presented only for the first
test case of discontinuous source case to elucidate the
sensitivity of the numerical solution to grid refinement
while for other test case a coarse mesh and two
essentially grid-converged solutions are included. For
continuous source case, only a coarse mesh and a grid-

of numerical solutions for

X,

F 3

<

3

h, Ambient fluid

Solid wall

A
Solid wall

g

Fig. 1: Formation of the lock release gravity current at the
mitial state and related definitions

converged - Le., the effect of further grid refinement on
the solution 1s not significant - fine mesh solutions are
included in this paper due to the space lumitation.

To facilitate the discussion of the results we adopt a
convention similar to that mtroduced by Lowe et al.
(2002) regarding the various regimes of the flow. Namely,
we divide the flow m three regumes: 1) the energy
conserving head region m which the velocity 1s roughly
uniform with speed same to the head speed; 2) the wake
region where the large-scale interfacial vortices dominate
the flow and 3) the tail region where interfacial vortices
break down mto smaller structures and/or blobs of dense
fluid are entrained by vortical structures inte the lighter
fluid. These defimtions are slightly different from those in
Lowe et al. (2002) but are reasonable to explain the gravity
and discontinuous

currents from both contimuous

SOQUrces.

Discontinuous gravity currents: A common procedure
for generating gravity current in the laboratory is the
sudden removal of a vertical gate separating two bodies
of dense fluid and less dense ambient fluid on a flat bed
i uniform environment, as shown in Fig. 1. The resulting
current 1s referred to as a lock release gravity current
underlying large-scale dynamics is two-
dimensional. We simulate two different experimental
configurations investigated by Huppert and Simpson
(1980) and Patterson et al. (2005), respectively. For both
cases the evolution of the discontinuous gravity current
takes place on a flat, horizontal bed.

In the experiments of Huppert and Simpson (1980), a
plexiglass channel was filled with fresh water of the depth
h, and divided mto two regions by a wooden gate located
at a distance x; from the left end (Fig. 1). Common salt
(NaCl) was added to the water behind the gate until a
given uiform density p, was obtained. The gate was then
removed suddenly. Numerical simulations are carried out
for two experimental configurations: 1) Case DH1 where
hy=14.9 cm,x, =39 cm and p,= 1009.3kg m " and 2) Case
DH2 where hy = 10 cm, x;= 30 cm and p, = 1011.4 kg m .
The gravity cwrent scenario studied experimentally
and numerically by Patterson ef al. (2005) mvolves a

whose
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Table 1: Configurations for numerical simulations of the discontinuous gravity currents on flat bed experimentally investigated by Huppert and Simpson

(1980) and Patterson et al. (2005)

Experiment Numerical cases Channel length (m) Grid dimensions Ax (m) Az (m) At (sec) T (sec)
DH1 DHI cg 8.0 500=40 0.016 0.0037 0.025 160
DH2 DH2 cg 1.2 60=20 0.02 0.005 0.02 17.5
DH2 DH2 fgll 1.2 350=75 0.0034 0.0012 0.004 17.5
DH2 DH2 fgl12 1.2 350=150 0.0034 0.0006 0.0025 17.5
DH2 DH2 fg21 1.2 TO0=TS 0.0017 0.0012 0.0025 17.5
DH2 DH2 fg22 1.2 T00=150 0.0017 0.0006 0.0025 17.5
DP DP cg 2.3 270x60 0.0085 0.00455 0.01 15.45
DP DP_mg 2.3 405=90 0.0056 0.00303 0.007 1545
DP DP fg 2.3 540=120 0.0042 0.00227 0.005 15.45

In the case names, D: Discontinuous gravity current; H: Huppert and Simpson (1980); P: Patterson et of. (2005); 1,2 = Serial number of test cases; cg, mg

and fg: Coarse, Medium- and Fine-grid solutions

configuration similar to that in Huppert and Simpson
(1980) but with the following parameters: h, = 28.8 cm,
X, = 120 em and the reduced gravity g = 4.7 cm
s (g = g (p-poVpu). We refer to this case as Case DP.
Computational details for the numerical sinulation of
these cases are summarized in Table 1 which mcludes
total number of grid nodes (NTXNK), uniform grid spacing
Ax and Az in the horizontal and vertical directions,
computational time step At and total simulation time T.

Since wall functions are used in all computations
reported in this section and in order to facilitate
meaningful comparisons between solutions computed on
successively refined meshes, the first grid node off the
solid wall 1s placed for all grids at the same distance from
the wall. By doing so we ensure that for a given test case
wall functions are always applied at the same location
within the logarithmic layer and the grid in the wall normal
direction 18 refined only above that location.

To evaluate our numerical solution, the location of
the gravity current head computed on the relatively
coarse mesh for DH1 cg (Table 1) 1s compared with the
measurement of Huppert and Simpson (1980) m Fig. 2. The
result confirms that the 2D simulation can reproduce the
head propagation of the gravity cwrent from a fixed
volume on a flat bed with good accuracy. These results
suggest that the head propagation speed of at least this
gravity current essentially does not depend on 3D effects.
This conclusion is consistent with and further supported
by the previous study of Huppert and Sunpson (1980).
They showed that the front speed of gravity currents can
be predicted with reasonable accuracy using a simple
empirical model that expresses
propegation speed as a function of the imtial amount of
dense fluid, the reduced gravity, the channel depth and
time (Huppert and Simpson, 1980).

Among a series of experiments reported by Huppert
and Simpson (1980), we selected case DH2, for which flow
visualizations were reported, to test the ability of our
numerical model to capture complex vortical structures
and evaluate the sensitivity of the computed solution
to mesh refinement. Numerical solutions obtamed on a

the current head

E Y - R |
Fi L L L ]
<)

Position of the nose (m)
Now

—_
i

=

0 20 40 60 80 100 120 140 160
Time {sec)

Fig. 2: Comparison of the front position of the computed

gravity current (solid line) with the experimental

measurements (symbols) of Huppert and Simpson

(1980)

coarse, a fine and three intermediate meshes, denoted by
DH2 cg, DH2 fg22, DH fgl1, DH fgl2 and DH fg21
(Table 1), are visualized by the density distribution and
compared with the experimental visualizations of Huppert
and Simpson (1980) n Fig. 3. This Fig. 3 shows snapshots
at 4.4, 6.8, 9.7 and 17.5 seconds after the release of dense
fluid.

The simulated gravity current is fundamentally in the
so-called slumping phase during which the current head
propagates at an approximately constant velocity after the
current is established in a relatively short period. Figure
3a-b shows mitial transient flows after the release of
dense fluid when the mitial discontinuity disappears
quickly and the height of the gravity current becomes
uniform. Figure 3c-d, on the other hand, depicts the
propagation of the gravity current head of fairly constant
height n the slumping regime. Figure 3 leads to a number
of important conclusions: (1) with only exception the
simulation on the coarsest mesh (DH2 cg), which yields
diffused solutions, all other grids capture the onset of
Kelvin-Helmholtz billows at the interface; (2) the effect of
grid refinement is seen to be far more pronounced in the
wake and tail regions than in the head region and during
the first two mstants; (3) the numerical solutions are more
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Fig. 3: Experimental visualizations (upper) of Huppert and
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Simpson (1980) and mumerical results (lower) visualized

by the density showing the time evolution of the gravity current: (a) t = 4.4 sec, (b) t= 6.8 sec, (¢)t=9.7 sec and

(d)t=17.5 sec after removing the gate

sensitive to the grid refinement in the horizontal direction
rather than in the vertical direction. As shown in Fig. 3,
both DHZ fgll and DHZ fgl2 yield results that are very
similar to each other while DH2 fg21 solutions are similar
to DH2 fg22 solutions; (4) at the two later instants, the
solutions on the finest meshes (fgl 1, fg12, fg21 and fg22)
do not show sigmificant differences from each other, even
though the finer meshes do capture somewhat finer scales
of motion in the tail regions. These results suggest that
the fg22 mesh 15 adequate for obtaining grid insensitive
solutions.

The overall dynamics of the large-scale interfacial
vortical structures reproduced by the fine mesh
simulations over the gravity cwrrent head and in the
turbulent wake region and the resulting longitudinal
variation of the irregular and wnsteady profile of the
gravity current heights are in reasonable agreement
with the experimental visualizations of Huppert and

Simpson (1980). It 18 observed, however, that the
breakdown of the billows reproduced in the rear half
of the wake region and in the tail region is too weak to
cause intense turbulent mixing of dense and ambient
fluids in this region. The billow breakdown is a
phenomenon governed by 3D mechanisms and as
such 1t can mnot be captured by 2D numerical
simulations regardless of grid refinement. This is an
inherent feature of gravity cwrrent flows, which has
already been established m the literature in previous 2D
DNS studies (Hartel et al., 2000; Necker et al., 2002). The
novel finding of present research, however, is that
URANS smnulations on sufficiently refined grids vield
solutions that are comparable with those obtained with 2D
DNS both insofar as the onset of the interfacial billows is
concerned and the mability of the 2D assumption to
capture the rapid brealdown of these intense large-scale
structures.
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Fig. 4: Variation of the propagation velocity of the
computed gravity current nose

The temporal variation of the propagation velocity of
the gravity current nose for case DH2 fg22 (Table 1) is
shown mn Fig. 4 to shows the ability of the URANS model
to capture the different regimes of current propagation.
As shown in this figure, the head propagation velocity
accelerates rapidly to its maximum value during the first
1.5 sec. This is followed by an initially rapid and
subsequently more gradual deceleration phase up to
approximately t = 4 sec in the initial slumping regime. After
the brief acceleration and deceleration periods, the
propagation velocity of the computed gravity current
head remains nearly constant in the slumping phase.
The overall behavior of the current head reproduced
by present 2D URANS is consistent with the results
of 2D DNS carried out by Bumean ef el (2005) and
Blanchette et ol (2005) for different lock-release gravity
currents in the slumping phase.

Numerical simulations of a full-depth gravity current,
which was investigated both experimentally and
numerically by Patterson et al. (20053), are carried out and
the results obtained on a coarse and two fine meshes
(DP_cg, DP_mg and DP fg, respectively) are compared
with the experimental visualizations of Patterson ef al.
(2005) in Fig. 5. This Fig. 5 shows that, even though
smaller scales of the flow in the wake region are captured
only on the finer meshes, the overall sensitivity of the
solution to mesh refinement is not sigmficant. All
numerical solutions reproduce well the variation of the
longitudinal profile of the gravity current height and the
propegation of the current head without any significant
retardation. These results are in better overall agreement
with the measurements than the 2D numerical solutions of
Patterson et al. (2005) who employed an Implicit Targe-
Eddy Simulation (ILES), which appeared to suffer from
significant retardations of the current head m the
slumping phase (Fig. 1 in Patterson ez al., 2005). The

reason for this is not entirely clear and can not be easily
assessed due to the lack of computational details in the
study of Patterson et al. (2005). However, it is worth to
point out that Patterson ef al. (2005) did not use a
turbulence model, which is customary in the TLES
approach and carried out calculations on a single very
coarse mesh consisting of 256x32 grid nodes, which 1s
significantly coarser than even ow coarsest mesh
(DP_cg) m the vertical direction. Overall our 2D URANS
simulations capture reasonably well the rich dynamics of
Kelvin-Helmholtz vortices and the resulting flow patterns
are comparable with the DNS results of a similar full-depth
gravity current (Hartel et al, 2000). As in the previous
case, however, the complete breakdown of the interfacial
billows to a 3D state can not be resolved by our
simulations due to the inherent 3D nature of the
underlying physical processes.

Continuous gravity current: We report simulation results
of a gravity current from a continuous source along a flat
bed with an abrupt change in slope. The simulation case
15 one of a series of experiments carried out by Garcia
(1993). The geometry of the experimental channel is same
as Fig. 6. The current thickness at the inlet was set equal
to 3 ecm with the help of a sluice gate and the inflow rate
per unit width was set equal to 33 cm® sec™, which gave
a layer-averaged inlet velecity of 11 cm sec™. The
resulting gravity curent reached an equilibrium state
transitiomng from the supercritical flow along the slope
upstream of the breakpoint (x = 5.0 m, Fig. & for the
location) to the subcritical flow along most of the
downstream flat bed after undergoing an internal
hydraulic jump. Numerical simulations are carried out for
one of the experimental configurations (Garcia, 1993),
which involved a conservative saline gravity flow with
excess fractional density equal to 0.013. A 24 m long
computational domain is employed in order to avoid
reflections from the outlet. With reference to Table 2, a
uniform mesh 13 used for the CG cg and CG fg
Computational  details  for
simulations are summarized in Table 2.

simulations. numerical
The experimental measurements of Garcia (1993) were
collected when the current had reached a quasi-
equilibrium state. To compare numerical solutions with the
measurements, we have continued our unsteady
simulations until the solutions in the region of mterest
(0<x<10.0 m) reach a quasi-equilibrium state. The time
evolution of the streamwise velocity residual in the region
of interest shows that both the CG cg and CG fg
solutions approach steady state after nearly t = 300 sec.
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Fig. 5: Experimental visualizations (upper picture) and numerical results (lower pictures) visualized by the
density showing the time evolution of the gravity current: (a) t =3.13 sec, (b) t =5.67 sec, (¢) t =8.14 sec and (d)

t=15.45 sec after removing the gate
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Fig. 6: Schematic side view of the 0.3 m wide channel (Garcia, 1993). All dimensions are in meters

Table 2: Configurations for numerical simulations of the continuous gravity current across a break in slope experimentally investigated by Garcia (1993)

Experiment Numerical cases Channel length (m) Grid dimensions Ax (m) Az (m) At (sec) T (sec)
CG CG cg 24.0 300x40 0.08 0.0095 0.08 300
CcG CG fg 24.0 900x120 0.0266 0.00316 0.04 300

In the case names, C: Continuous gravity current; G: Garcia (1993); cg: Coarse-grid solution and fg: Fine-grid solution

In Fig. 7 and 8 we compare the streamwise velocity
profiles at selected locations and iso-contours of density
distribution, respectively, computed at t = 300 sec on both
meshes with the measurements of Garcia (1993). As
shown in Fig. 7, the fine mesh solution (CG_fg) yields
more reasonable streamwise velocity profiles except in the

vicinity of the jump (4.0 m<x<6.0 m ). The CG_cg solution
underestimates the streamwise velocity especially near
the bottom, in the supercritical flow region along the slope
(roughly x <5.0 m). Both numerical solutions (CG_cg and
CG _fg) yield streamwise velocity profiles which are
significantly more diffused in the vertical direction
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Fig. 7: Comparison of the vertical profiles of the streamwise velocity measured (symbols) by Gareia (1993) and computed

(dashed lines for CG_cg and solid lines for CG_fg

than the measurements in the vicinity of the breakpoint at
x = 5.0 m. The CG_cg solution captures reasonably well
the velocity profile near the wall (for z <0.09 m) but partly
underestimates the streamwise velocity away from the
bottom (for z > 0.09 m), in the subcritical flow region
(roughly x > 6.0 m). The variation of the computed
velocity profiles along the longitudinal distance is

consistent with those observed in the computed
density  distributions. As shown in Fig. 8, both
numerical solutions (CG_cg and CG_fg) reproduce

rather diffused distribution of dense fluid without its
abrupt longitudinal variation at the internal hydraulic
jump region (iso-contour of the density 1002 kg m™
around x = 6.0 m in Fig. 8). This mild variation of dense
fluid in the near wall region is responsible for the
excessively smooth longitudinal variation of the
computed streamwise velocity profiles on the downstream
flat bed.

) at selected locations

0.5
a Experimental (1001)
d o Experimental (1002)
————— CG _cg (1001)
0.4 1 o OG Tog (1002)
CG g (1001)
N T CG ~fg (1002)
0.3
)
N
02
0.1
0.0
0

X (m)

Fig. 8: Comparison of measured

(Garcia,
and computed density contours (1,001
1,002 kg m™) along the longitudinal direction

1993)
and

The CG_fg solution yields improved prediction of
density distribution in the downstream region. However,
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Fig. 9: Sequential snapshots of density distributions computed for the CG_cg (left) and CG_fg (right) cases at selected

time instants

the significant discrepancy between the CG fg
predictions and the measurements of high density
distribution still remains in the vicinity of the breakpoint
(x = 5.0 m). One of possible reasons for this discrepancy
could be the 3D nature of the internal hydraulic jump
induced in the narrow experimental channel of 30 cm
width. For instance, the aspect ratio of the channel width
to the gravity current height in the experiments of Garcia
(1993) ranges roughly from 1.5 to 3 in the breakpoint
region (4.0 m <x = 6.0 m). In this case, the streamwise
mean velocity profile is no longer uniform in the lateral
direction (Kirkgéz and Ardighoglu, 1997). Furthermore, the
hydraulic jump is relatively weak (Froude number = 1.75),
as pointed out by Garcia (1993), which is sufficient
to provoke the formation of breaking undular jump
(Ohtsu et al., 2003) in the channel flow.

Let us now we turn our attention to the simulated
temporal evolution of the continuous gravity current.
Figure 9 shows the flow evolution of the gravity current
computed on both computational meshes at several
instants in time. Density distributions computed at t = 300
sec are also included to depict the predicted gravity
current at the quasi-equilibrium state. The CG_fg predicts

more energetic vortical structures than CG cg as the
gravity current head travels down the slope and
passes the internal hydraulic jump region. Due to the
roll-up of large scale vortices over the head, ambient
fluid is continuously entrained into the rear part of the
head region causing its continuous thinning (Fig. 9 until
t = 60 sec). On the other hand, the current head is seen to
grow as it travels downstream as dense fluid is pushed by
the vortices from the rear part into the head region.
Figure 9 along with our video animations generated using
instantaneous solutions further show that the gravity
current slightly bounces off the flat bed upon
impingement generating a vertically upward flow and a
wavy-like structure in the streamwise direction as the
gravity current head passes the transient region.

CONCLUSIONS

A series of 2D URANS simulations are carried out to

resolve discontinuous and continuous 2D gravity
currents. Comparison of the numerical solutions with
available experimental measurements leads to the

conclusion that high-resolution, 2D URANS simulations
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using a buoyancy-extended k-e turbulence model can
resolve the rich dymamics of the interfacial vortical
structures as well as essential 2D flow features of the
gravity currents in the slumping phase. The propagation
and the development of the energy-conserving gravity
current head are reproduced with good accuracy even on
relatively coarse meshes. This result is reasonable
because the behavior of the gravity current head in
uniform environment is independent of three-dimensional
effects in the slumping phase. The fine mesh simulations
appear to reproduce reasonably well unsteady flow
features in the slumping phase including the formation of
the Kelvin—Helmholtz vortices at the interface of dense
and ambient fluids; the evolution of the boundary layer as
the energy conserving current head travels forward along
the bed and the instantaneous velocity field with the
magnitude larger than that of the current head in the wake
region of the discontinuous gravity current.

Notable discrepancies between 2D simulation results
and the experimental measurements of gravity currents are
observed in the tail region of discontinuous gravity
currents where the 2D large-scale interfacial vortices do
not break down fully into smaller structures and the
intensity of the ensuing mixing is underestimated. For
continuous gravity currents, discrepancies were also
observed in the region of the mternal hydraulic jump
where the 2D simulations underestimate the abrupt
vertical mixing. These discrepancies are to be expected,
however, as they are associated with phenomena that are
inherently three-dimensional and can not be captured by
a 2D model. The discrepancies with the measurements
notwithstanding, however, our 2D simulation results are
significant because they underscore the potential of
URANS methods m simulations of gravity current flows.
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