Journal of
Applied Sciences

ISSN 1812-5654

science ANSI@??
alert http://ansinet.com

Tournal of Applied Sciences 8 (16): 2825-2833, 2008
ISSN 1812-5654
© 2008 Asian Network for Scientific Information

A Hybrid Method of Neural Networks and Genetic Algorithm in
Econometric Modeling and Analysis

Hamed Hasheminia and Seyed Taghi Akhavan Niaki
Department of Industrial Engineering, Sharif University of Technology,
P.O. Box 11155-9414, Azadi Ave., Tehran, Iran

Abstract: In this study a hybrid method of neural networks-genetic algorithms is proposed and applied m an
economical case study. The results of this study show that the proposed hybrid algorithm is a more efficient

modeling approach compared to either a single neural network method or a single genetic algorithm approach.
Since modeling based on the observed data is also employed in other fields of science, the application of the

proposed method 1s not restricted only to economics.

Key words: Neural networks, genetic algorithms, econometrics modeling and analysis

INTRODUCTION

Discovering the relationship among different
observed phenomena is one of the most important goals
of any field of science. Particularly, finding the economical
relations among economical phenomena 1s a very
important task for economists, as different econometrical
and statistical approaches and concepts have been
developed to ease the application of appropriate methods
for estimating, modeling and statistical analysis of any
experiment. In this regard, various methods such as the
maximum likelihood, the method of moments, the least
square method and different statistical approaches like
hypothesis testing for prevailing classical econometrical
and statistical approaches have been proposed in the
literature (Greene, 2000, Neter ef al., 1996).

Inrecent decades, the increasing power of computers
and data acquisition systems have directed researchers to
develop new computational and heuristic methods to
solve estimation and modeling problems (Winker and
Gilli 2004). Artificial neural networks (Etheridge et al,
2000; Lippmamn, 1987), genetic algorithms (Holland,
1975, Baragona et al., 2001), simulating annealing
(Angelis et al., 2001, Ahmed and Alkhamis, 2002) and
threshold accepting approach (Lee ef al, 2004
Fitzenberger and Winker, 1998) are the most prevalent of
these methods. These algorithms and methods usually
lead to better and more efficient solutions. However,
sometimes thewr use 13 limited and their reliability is
skeptical. Although, different methods, such as making
confidence intervals for the response (Kilmer et af., 1999;
Ricals and Personnaz, 2000) and some other statistical

approaches based on these algorithms have been
developed (Baffi et al., 2002), using these methods still
have some limitations. For example, should anyone use a
wrong set of predictive variables, which does not have
any relation to the output (response variable), as an input
to a neural network, the normal artificial neural network
may not show any sensitivity.

In this study, based on the genetic algorithm and the
neural network modeling, a hybrid method 18 introduced
where the output vector of a genetic algorithm 1s the mnput
vector of a neural network. The genetic algorithm is
responsible to find the best combination of independent
variables in a regression/econometric model such that the
accuracy of the mputs to the neural network model 1s
guaranteed. The neural network part of the proposed
method 13 in charge of the learming process. Then, an
economical case study is considered using the proposed
methodology, whose result 15 compared with the cases
where either the neural network or the genetic algorithm
is used solely.

ARTIFICIAL NEURAL NETWORKS

One of the most effective methods for pattern
classification and function mapping is the Artificial Neural
Networks (ANN). An ANN 1s a machine that 15 designed
to model the way the brain performs. A particular task or
function of interest is usually implemented using
electronic components or simulated in software on digital
computers.

The performance of the biological neurons such as
data/information storage is hidden in the shell of neural

Corresponding Author: Seved Taghi Akhavan Niaki, Department of Industrial Engineering, Sharif University of Technology,
P.O. Box 11155-9414, Azadi Ave., Tehran, Tran Tel: (+9821) 66165740
2825

J. Applied Sci., 8(16): 2825-2833, 2008

comnections, whose function is to modify the synaptic
weights of the network in an orderly fashion to reach a
desired objective. The procedure used to perform the
learning process is called learning algorithm.

Multilayer Preceptron Neural Networks (PNN) is
perhaps the most popular network architecture in use
today and is discussed at length in most neural network
textbooks (e.g., Bishop, 1993). In this type of network, we
arrange the units in a layered feed forward topology,
where the units each perform a biased weighted sum of
their inputs and pass this activation level through a
trans fer function to produce their output. In other words,
the inputs, I, to each node are multiplied by the strength
(Weight of the corresponding connections to the node,
W) and then summed by a bias as:

Net=73" 1W, + bias 1)

The Net input is then sent through an activation
function (or transfer function) that generates the output
value for the node.

Out =f (Net) (2)

The activation functions can be in the form of linear
or non-linear and is chosen based on the need of the
problem at hand. In this article, the sigmoid activation
function is used whichis formulized in Eq. 3.

ot = f(Net) = T >0 3

e
l+e I

The amount of T (temperature rate) in the sigmoid
activation function adjusts the linear part of the
sigmoeid function. The lesser the value of T, the more the
linear part of the sigmoid activation function becomes
(Bishop, 1993).

The network thus has a simple interpretation as a
form of input-output model, with the weichts and
thresholds (biases) as the free parameters of the model.
Figure 1 shows the topology of PNN with one hidden
laver. Such networks can model functions of almost
arbitrary complexity, with the number of layers and
number of units in each, determining the function’s
complexity. Important issues in Multilayer Perceptrons
(MLP) design include specification of the number of
hidden lavers and number of units in them (Bishop, 1995;
Haykin, 1994).

The number of input and cutput units is defined by
the problem and the number of hidden units to use is far
from clear. A good starting point is to use one hidden
layer and trade the number of units in the hidden layer.

«
k ¢
k <
- _ ¢
L ¢
. [
K ¢ ©
L @
L «
L~
C
Input layer Hidden layer Output layer

Fig. 1: The topology of PNN with a hidden layer

Once we select the number of layers and the number
of units in each layer, the network's weights and
thresholds must be set to minimize the prediction error
made by the network.

This is the role of training al gorithms. This process is
equivalent to fitting the model represented by the network
to the training data available. The error of a particular
configuration of the network can be determined by
running all the training cases through the network and
comparing the actual output generated with the desired
(target) outputs. Then, by an error function, we combine
the differences to get the network error. The most
common error function used in the literature is the Sum of
Squared Error (SSE), in which we square and sum together
the individual errors of output units in ecach case.

The best-known example of a neural network-training
algorithm is the back propagation algorithm (Haykin, 1994;
Patterson, 1996; Steil, 2006). In this algorithm, the learning
process is done by introducing the patterns to the
network forwardly and adjusting the weights and biases
backwardly. Thus, these networks are referred as back
propag ation networks.

Although modern second-order algorithms such as
conjugate eradient descent and Levenberg-Marquardt are
substantially faster for many problems, back propagation
still has advantages in some circumstances and is the
easiest to understand (Bishop, 1993). There are also
heuristic modifications of back propagation, which work
well for some problem domains.

In back propagation, the gradient vector of the error
surface is calculated. This vector points along the line of
steepest descent from the current point, so we know that
if we move along it a short distance, we will decrease the
error. A sequence of such moves, slowing as we near the

2826

J. Applied Sci., 8 (16): 2825-2833, 2008

bottom, will eventually find a minimum of some sort. The
difficult part 18 to decide how large the steps should be.
Large steps may converge more quickly, but may also
overstep the solution or go off in the wrong direction (if
the error surface 1s very eccentric). A classic example of
this in neural networl training is where the algorithm
progresses very slowly along a steep, narrow, valley,
bouncing from one side across to the other. In contrast,
although very small steps may go in the correct direction,
they also require a large number of iterations. In practice,
the step size is proportional to the slope (so that the
algorithms settle down in a minimum) and to a special
constant: the learning rate. The correct setting for the
learning rate is application-dependent and is typically
chosen by experiment; it may also be time varying, getting
smaller as the algorithm progresses.

The algorithm therefore progresses iteratively,
through a number of epochs. Tn each epoch, we submit
the training cases in turn to the network and target actual
outputs; then, compare and calculate the error. This error,
together with the error surface gradient, is used to adjust
the weights and then the process repeats. The initial
network configuration is random and training stops when
a given number of epochs elapse, when the error reaches
an acceptable level, or when the error stops improving
(Bishop, 1995; Haykin, 1994).

Leave-one-out processing: In order to estimate the error of
a neural network, especially m cases where we have a
small number of patterns, a very reliable method is the
Leave-One-Out method. Since using all the patterns in the
traiming process may lead to memorizing the patterns
instead of learning them, this method is considered a very
effective way of recognizing the true error of the network.
In this method, if we have n patterns, the system is
repeatedly trained with (n-1) cases and then is tested with
the one remaining case. This process is repeated with
each case being left out of the training set once and the
average or the sum of the squared errors (Leave-One-out
index) is used to evaluate the performance of the network.
Although the Leave-One-Out process generates a
good estimate of the true error, it is computationally
expensive. Nevertheless, since the patterns in the case
study of this article 1s very small (16 patterns), the authors
applied this method to evaluate the true error of the
netwark (Cawley et al., 2003; Ancona et al., 2006).

GENETIC ALGORITHMS

The fundamental information of living orgamsms 1s
gene, which is generally a part of a chromosome
determining specific characteristics of an organism. Using
this fact, was lead to developing a new type of heuristic
algorithms named Genetic Algorithms (GA). Since Holland

(1975) introduced the principals of genetic algorithms, it
has been used 1n several applications in different fields of
science.

Typical genetic algorithms: Essentially, GA 1s a method
of breeding computer programs and solutions to
optimization or search problems by means of simulated
evolution. Processes based on natural selection,
crossover and mutation are repeatedly applied to a
population of binary strings which represent potential
solutions. Over tume, the number of above-average
individuals increases and better-fit individuals are created
until a good solution to the problem at hand is found. A
pseudo-code for a typical genetic algorithm follows:

1. Generate initial population P of solutions

2. While stopping criteria not met, do:

3 Select P'<P" (mating pool), initialize P" = 0 (set
of children)

4. Fori1=1 ton do:

5. Select individuals x*and x" at random from P!
6. Apply crossover to x* and x* to preduce x™"
7. Randomly mutate proeduced child x™

g P'=P"UY Xchilcl

9. End for

10. P = Survive (P', P'")
11. End while

The survivors can be formed either by the last
generated individuals P', P" Y {fittest from P'}, only the
fittest from P" or the fittest from P' Y P", where P 1s the
mating pool, P" is the set of children, x* and x* are
individuals and x™* is the randomly produced child of x
and x* (Kim and Han, 2000; Man et af., 1997; Goldberg,

1989).

a

Genetic algorithm for econometric models: In order to
find the best regression/econometric model among the
candidates, we employ the algorithm proposed by
Hasheminia and Niaki (2006). In this algorithm if we
denote the dependent variable by Y and the independent
variables by Xi;1=1,2, ..., n, then a linear regression model
may have a form in Eq. 4.

Y = oF, (X)) + BE, (X,) + ..+ (X,)+ 2 4

where, F,(X)),..., F(X) are different functional forms of
the independent variables and the coefficients «, B,..., &
can be easily estimated by the least square method.

The goal of the genetic algorithm 1s to find models
which are better in terms of the sum of squared error and
by minimization of the following model, this goal is
reached.

2827

J. Applied Sci., 8 (16): 2825-2833, 2008

Mutaie on functions to find
gome best fitted models
(with minimum SSE)

Apply crossover to
breed new generations

Save best generations

No@
I satisfactory?

Produce new genetic
forms from incomplete
dominace/co-dominace] Yes

state

| I

Save the best found
regression/econometric model

D

Fig. 2: Summarized flowchart of the genetic algorithm in
econometric models

L. . m n o 2
Minimize SSE =3 > > [Cya, F (X3 - Y]

=1 j=l k=l

Subject to:

[
0
3
I
—_

P
-
7

where, X, is the jth independent variable, Y, 1s the jth
observation of the dependent variable, F, 1s the kth
function of ith independent wvariable, a, is the
corresponding coefficient of Fy, and Cj are dummy
variables which assure us not to use more than one
function of one observed vector 13 a single model.

The genetic algorithm of Hasheminia and Niaki (2006)
finds appropriate functions (Fy,) and their corresponding
coefficients which result in better model fitting. Figure 2
shows the flowchart of this algorithm.

THE HYBRID NEURAL NETWORK-GENETIC
ALGORITHM METHOD

In the proposed hybrid algorithm, first different
observation vectors and different
introduced to the model. By applymmg the genetic
algorithm the best combination of functions along with
their corresponding coefficients are estimated. Then,
appropriate statistical tests of hypothesis are used to find
whether the estimated model is statistically reliable, which
means that the estimated model based on the functions of

functions are

the observed vectors rather than the observation vectors
themselves, 1s statistically meamngful. In other words,
selected functions of the observed vectors are proved to
affect the dependent variable which means this state of
functions of observed vectors does not contain extra
independent variables. After finding the functions of
observation vectors, input vectors based on the selected
functions from genetic algorithm are used as the nput
vector of the neural network.

Application of the proposed hybrid algorithm will
assure the reliability of the trained network in case it is
properly trained. Since by using the genetic algorithm and
its corresponding statistical hypothesis testing, one can
conclude that the input vector affect on the output layer,
the neural network will be more reliable than when we use
input vectors just based on our conjectures on the nput
vectors. Figure 3 shows a general framework of the
proposed methodology.

A CASE STUDY

Here, we utilize the data from a case study by
Hashemima and Niaki (2006) to ease comparing the
effectiveness of the genetic algorithm and the proposed
hybrid algorithm.

The case study was devoted to finding the demand
functions of loans in terms of the amount and the number
of demands 1n one of the Iranian developing banks. The
first step in selecting the appropriate econometric models
was to find a possible set of mdependent variables. This
set contained the Net Gross Domestic Production (NGDP)
(Vera, 2002), net capital of the bank (NCAP), binary
variable of advertisement (ADV), binary variable of
economical crisis (EC), Unemployment Rate (UR) (Ashley,
2002), interest rate (INT) (Escandon and Diaz-Bautista,
2000), inflation (INF) (Evans, 1997) and a constant (A). ITn
addition, two different dependent variables, the net total
amount of loans (NTA) and the total number of demands
for loans (TND), were studied. The corresponding data for
these variables in 16 different years are shown in Table 1.

2828

J. Applied Sci., 8 (16): 2825-2833, 2008

X % alAppt:ﬂlg ﬂi;:d the :
gorithm to est i
bconometric/regression model| The best econometrie/ ,ﬁtuwingmmml
among all combinations of | Iegression model found i statistioal rellable
functions on observation
vectors

éﬂmvﬁm]ﬂ(obmﬁmvm) if the model was fhiled in the hypothesis testing

Calculate new vectors
based on the functiona
which was obtained

them as input vectors for
training the neural networls

from the genetic Usﬂ thismmw vech;rrs for
: algorithm Fi (Xn)* and use

Fig. 3: The frameworlk of the proposed hybrid neural network-genetic algorithm method

Table 1: The gathered data for estimating the demand function of loans

Year INF NCAP ™ NTA INT NGDP UR EC ADV
1989 17.4 68.790 437 57.910 10.9 21.946 12.0 0 0
1990 9.0 63.110 314 134.826 13.7 27.597 11.8 0 0
1991 20.7 172.500 316 145.758 12.7 32.223 11.1 0 0
1992 24.4 803.000 146 64.372 134 34.586 131 0 0
1993 229 542.040 39 38153 lo.4 42.367 11.7 1 0
1994 352 400.921 62 16.822 164 40.895 12.5 1 0
1995 49.4 268354 153 51.501 16.7 38.980 10.2 0 0
1996 232 217.820 239 153.185 17.6 42.262 9.1 0 0
1997 17.3 185.694 168 16.176 17.2 42.460 121 0 0
1998 18.1 157.235 153 21.079 17.5 40.431 131 0 0
1999 20.1 130.920 412 106.843 17.1 44.659 13.5 0 0
2000 12.8 146.289 1096 182.257 17.8 52.634 14.3 0 1
2001 11.4 133.279 933 210.294 17.4 54.676 14.2 0 1
2002 15.8 115.094 1081 323124 16.9 65.082 12.8 0 1
2003 15.6 99.563 906 838.617 le.5 67.354 11.0 0 1
2004 15.2 263.909 2080 262.439 16.2 70.129 14.6 0 1

In the next step of the proposed methodology, we
apply the genetic Algorithm to find the best combmation
of the functions of the independent variables for NTA in
which all coefficients are significant. This algorithm
results in a model given by Eq. 5 in which SSE = 136234.9,
the coefficient of multiple determination of R* = 0.78 and
p-value = 0.0013R.

NTA=429.54+9.03NDDP-2.834UR*-230.78ADV-1.96INT*
(5)

Figure 4 shows both the observed and the estimated
NTA values in different years. Series 1 and 2 in Fig. 4
show the observed and the estimated values of NTA,
respectively.

In addition, the best combination of the functions of
the independent variables for TND m which all
coefficients are significant with SSE of 455612.3, R* = 0.90
and a p-value of 0.00002 was:

TND = 79344 NCAP + 931.02ADV — 895 65EC + 4.26UR” — 85.2INT
(6)

Figure 5 shows the observed and the estimated
values of TND, mn a similar manner as in Fig. 4.

The next step in the proposed methodology 15 to
employ the result of the GA in the designed neural
network. Thus, the input vector of the neural network
used for NTA contains A, NGDP, UR?, ADV and INT®
variables and JNCAP ADV, EC, UR? and INT for TND.

2820

J. Applied Sci., 8 (16): 2825-2833, 2008

(] ™ Observed
| = Eatimated

T
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Fig. 4: Observed and estimated NTA in different vears from the Genetic Algorithm model

W Observed
B Estimated

T T
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 20

Fig. 5. Observed and estimated TND in different years (The red diagram shows observed TND and the blue one shows

estimated TND from Genetic Algorithm model)

These mput vectors were then transferred by a simple
linear function to [0, 1] interval to ease the learning
process of the two networks; one for NTA and the other
for TND.

In the learming process of the network for NTA, we
applied the leave-one-out method and found that the
best results were obtained by using a BPN with one
hidden layer of five nodes which was trained in 1250
epochs with temperature rate of 0.15 and the learnming rate
of 0.15. The corresponding SSE of the trained neural
network obtained as 128651.3, which was 5.57% less than
the corresponding SSE of the model in which the Genetic
Algorithm was applied alone. Figure 6 shows the
observed and the estimated net total amount of loans in
different years.

In order to compare the performance of the hybrid
algorithm with a sumple neural network model, we assume
that the input vector contains a simple function of the
independent variables as A and NGDP, UR, ADV and
INT. The designed neural networle, which we call simple,
was trained by the same conditions as of the hybrid

b=
(=3
<

T T
T
—-Obsereved NTA
== Estimated NTA /

-]
=
(=1

700

23

=

=
e

'S

<

&
P,
—

/)

w
(=3
(=3

[=]
=
=

Net total amount of the demands
2
=
w
|

A I -

10044

TN N

I P P (PP 0 T P S i P o
Year

Fig. 6: Observed and estimated NTA in different years
(from the introduced hybrid method)

method. We trained both networks (simple and hybrid)
with different number of epochs and calculated their
corresponding sum of squared errors.

2830

J. Applied Sci., 8 (16): 2825-2833, 2008

Table 2: $8Es of the simple and the hybrid neural network for different epochs in NTA case

No. of epochs 1250 1000 800 700 600 500
Hybrid algorithm’s SSE 128651.3 130383.8 133832.1 135712.9 141683.6 151802.3
Simple Neural Network’s SSE 131032.5 1328323 136063.8 138913.7 1465721 156274.4
Difference 2381.2 2448.5 2231.7 32008 48885 #4721
; 2500
16022
h,
155 \ 2000
E
1.50 \\\ g //
1500
145 \ 3
2 \ \ g RN
17} [}
140 \V Ewm S ™
\ E
135 T /
\\‘-1».________ 500 Iy
\1 [t—a /
1.30 e \\ ><
— s
0 ™
125
500 600 700 800 900 1000 1100 1200 1300 §§§§§§'§§§§§§§§§§
bt B B o B B B B 4 - N F]
Epaochs x1¢* Year

Fig. 7. SSE of the simple (blue diagram) and the hybrid
algorithm (red diagram) for different epochs in
NTA case

Tt should be mentioned that since the initial weight
matrix in the neural networks is random, for any specific
number of epochs, several networks were tramned and the
average result of each part was used. For example, in order
to obtain the results in Table 2, for each number of
epochs, we trained the network 100 times and the average
SSE was entered in the Table 2.

The results of either Table 2 or Fig. 7 show that on
average the SSE of the hybrid algorithm is 2.31% less
(better) than the simple neural network modeling.
Moreover, the p-value of a paired t-test for the difference
between the mean SSE of the methods obtained less than
0.0005, indicating the hybrid method statistically performs
better than the simple neural network. Since the SSE of the
hybrid method was 5.57% better than the genetic
algorithm’s SSE in the NTA case, we may conclude that
n this case the proposed hybrid algorithm performs better
than both the genetic algorithm and the neural network
when they are solely used.

We performed a similar study for the TND case mn
which the input vector was obtained by the genetic
algorithm. Hence, the input vector of the neural network
section of the hybrid algorithm in TND case contamns
variables f/NCAP, ADV, EC, UR? and INT.

Once again the mput vector of the network was
transferred by a simple linear function to [0,1] interval to
ease the learmng process of the designed neural network.

Fig. 8 TND in different years (The blue diagram shows
observed TND and the red one shows estimated
TND from the mtroduced hybrid method)

3
5299 —T
51 \ —=—Obgereved NTA
. \\ - Estimated NTA
|
50
A\
4.9 \\
24.8 \ N
4.7 -
M..,__\
45 N
P T —
45 B
\
44
00 02 04 06 08 10 12 14 16 18 20
x10*

Fig. 9: SSE of the hybrid algorithm (red diagram) and the
simple neural network (blue diagram) for different
epochs in TND case

Then, we applied the leave-one-out method to train the
BPN. A network with one hidden layer and four nodes,
which was trained by 20000 epochs with temperature rate
of 0.1 and the learning rate of 0.05, resulted m SSE of
440442.2. Thus value 1s 3.32% better than the SSE of the
genetic algorithm itself (Fig. 8).

For the comparison study, in TND case we did the
same as for the NTA case. The SSEs of both the simple
and the hybrid methods are shown in Table 3 and Fig. 9.

2831

J. Applied Sci., 8 (16): 2825-2833, 2008

Table 3: SSEs of the hybrid and the simple neural network methods in

TND case

No. of Hybrid Simple neural

epochs algorithm’s SSE network’s SSE Ditference
20000 440442.2 450609.6 10167.4
15000 448142.1 458612.9 10470.8
10000 455612.3 465981.1 10368.8
7000 461774.9 468087.2 6312.3
5000 465973.6 471322.6 5349.0
4000 469696.9 478755.1 9058.2
3000 476253.1 482412.7 6159.6
2000 4869927 496432.0 9439.3
1000 506239.5 518402.2 12162.7

The results of Table 3 shows that on average the SSE
from the proposed hybrid method is 1.85% less (ie,
better) than the SSE from the simple neural network
method. In addition, the p-value of a pared t-test 1s almost
zero, indicating that the mean SSE of the hybrid method is
statistically less than the one from the simple network.
Since the SSE of the hybrid method 15 also 3.32% better
than the SSE of the genetic algorithm we may conclude
that using the hybrid method results better than the cases
where the neural network or the genetic algorithm is solely
used.

CONCLUSION

In this study, we proposed a hybrid neural
network-genetic algorithm method for econometrical
modelling and data analysis. In this method, first different
observed vectors and different functional forms of each
vector were introduced as mput to the genetic algorithm
part of the method. The output of the GA 1s the best
linear combination of the functional forms that is
statistically reliable. This combination then was input to
a neural network to get a more precise estimate of the
mean response. The results of the case study show that
when the hybrid algorithm is used, we obtain a more
precise estimate of the mean response compared to those
from the genetic algorithm or the neural network method
solely.

REFERENCES

Ahmed, M.A. and T.M. Alkhamis, 2002. Sunulation-based
optimization using simulated annealing with ranking
and selection. Comput. Operat. Res., 29: 387-402.

Ancona, N., L. Angelini, M. De-Tommaso, D. Marinazzo,
L. Niti, M. Pellicoro and S. Stramaglia, 2006.
Measuring randomness by leave-one-out prediction
error, Analysis of EEG after painful stimulation.
Measuring randomness by leave-one-out prediction
error, Analysis of EEG after pamnful stumulation.
Physica A: Stat. Mech. Appl., 365: 491-498.

Angelis, L., E. Bora-Senta and C. Moyssiadis, 2001.
Optimal exact experimental designs with correlated
errors through a simulated annealing algorithm.
Comput. Stat. Data Anal., 37: 275-296.

Ashley, D.W., 2002, The demand for consumer credit.
M.Sc. Thesis, Virgima Polytechnic Institute and State
University, Blacksburg, Virgima.

Baffi, G, E. Martin and J. Morris, 2002. Prediction
mntervals for non-linear projection to latent structures
regression models. Chemometr. Int. Tab. Syst.,
61: 151-165.

Baragona, R., F. Battaglia and C. Calzini, 2001. Genetic
algorithms for the identification of additive and
mnovation outliers in time series. Comput. Stat. Data
Anal,, 37:1-12.

Bishop, €., 1995 Neural Networks for Pattern
Recognition. 1st Edn. Oxford Umversity Press, UK.

Cawley, G.C. and N.L.C. Talbot, 2003. Efficient leave-one-
out cross-validation of kemel Fisher discrimmant
classifiers. Pattern Recog., 36: 2585-2592.

Escandon, R.Y. and A. Diaz-Bautista, 2000. A simple
dynamic model of credit and aggregate demand.
Department of Economics, Working Paper Series, El
Colegio de la Frontera Norte.

Etheridge, H.I.., R.S. Sriram and H.Y.K. Hsu, 2000. A
comparison of selected artificial neural networks that
help auditors evaluate client financial viability.
Decision Sci., 31: 531-550.

Evans, G.R., 1997. The Budget Deficit, Department of the
US Government. Academic Press, San Diego, Ca.
Goldberg, D.E., 1989. Genetic Algorithms in Search,
Optimization and Machine TLeaming. 1st Edn.
Addison-Wesley Longman Publishing Co. Inc., MA,

USA., pp: 372.

Greene, W.H., 2000. Econometric Analysis. 4th Edn.
Prentice Hall International Incorporation, Upper
Saddle River, New Jersey.

Hasheminia, H. and ST.A. Niaki, 2006. A genetic
algorithm approach to find the best
regression/econometric model among the candidates.
Applied Math. Comput., 183: 337-349.

Haykin, 3., 1994, Neural Networks, A Comprehensive
Foundation. 1st Edn. MacMillan College Publishing
Company, Inc., USA.

Holland, T.H., 1975. Adoption in Neural and Artificial
Systems. The University of Michigan Press, Ann
Arbor, Michigan.

Kilmer, R.A., AE. Smith and L.J. Shuman, 1999.
Computing confidence stochastic
simulation using neural network meta-models.
Comput. Ind. Eng., 36: 391-407.

intervals for

2832

J. Applied Sci., 8 (16): 2825-2833, 2008

Kim, K.T. and 1. Han, 2000. Genetic algorithms approach to
feature discretization in artificial neural networks for
the prediction of stock price mdex. Exp. Syst.
Applied, 19: 125-132.

Lee, D.S., V.8. Vassiliadis and T M. Park, 2004. A novel
threshold accepting meta-heuristic for the job
shop scheduling problem. Comput. Operat. Res.,
31: 2199-2213.

Lippmann, R.P., 1987. An introduction to computing with
neural networks. TEEE Acoustics, Speech and Signal
Processing Magazine, 4: 5-22.

Man, K.F., K.S. Tang, S. Kwong and W.A. Halang, 1997.
Genetic Algorithms for Control and Signal
Processing. Springer Verlag, TLondon.

Neter, J., MH. Kutner, C.J. Nachtsheim and
W. Wasserman, 1996. Applied Linear Statistical
Models. 4th Edn. McGraw Hill, Boston,
Massachusetts.

Patterson, D., 1996. Artificial Neural Networks. 1st Edn.
Prentice Hall, Singapore.

Ricals, I. and L. Personnaz, 2000. Construction of
confidence intervals for neural networks based on
least squares estimation. Neural Networl, 13: 463-484.

Steil, I.J., 2006, Online stability of backpropagation-
decorrelation recurrent learming. Neurocomputing,
69: 642-650.

Vera, L.V, 2002. The demand for bank loans in Venezuela:
A multivariate co-integration analysis. Investigacion
Econoémica, XLII: 1-28.

Winker, P. and M. Gilly, 2004. Applications of optimization
heuristics to estimation and modeling problems.
Comput. Stat. Data Anal., 47: 211-223.

2833

	JAS.pdf
	Page 1

