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C-Fusion Frame
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Abstract: In this study, we shall generalized the concept of fusion frame, namely, c-fusion frames, which is

continuous version of the fusion frames. We give characterization of c-fusion frames and show that many basic

properties can be derived within this general context.
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INTRODUCTION

Throughout this study H will be a Hilbert space and
H will be the collection of all closed subspace of II,
respectively. Also, (3, p) will be a measure space and
v:X-[0, =) a measurable mapping such thatv # 0 a.e. We
shall denote the umit closed ball of H by H,.

Frames was first introduced at (Duffin and Schaeffer,
1952) in the context of nonharmonik Fourier series.
Outside of signal processing, frames did not seem to
generate much interest until the ground breaking work of
Daubechies et al. (1986). Since then the theory of frames
began to be more widely studied. During the last 20 years

the theory of frames has been growing rapidly, several

new applications have been developed For example,
besides traditional application as signal processing, image
processing, data compression and sampling theory,
frames are now used to mitigate the effect of losses in
pocket- based communication systems and hence to
improve the robustness of data transmission (Casazza and
Kovacevic, 2003) and to design high-rate constellation
with full diversity in multiple-antenna code design
(Hassibi ef al., 2001). In Boleskel et al. (1998),
Benedetto et al. (2004) and Candes and Donoho (2004)
some applications have been developed.

The fusion frames were considered by Casazza ef al.
(2000) in connection with distributed processing and are
related to the construction of global frames. The fusion
frame theory is in fact more delicate due to complicated
relations between the structure of the sequence of
in the

subspaces and due to the extreme sensitivity with respect

welghted subspaces and the local frames
to changes of the weights.

In this study, we shall extend the fusion frames to
their continuous versions i measure spaces.

PRELIMINARITES AND METHODS
This topies can be found by Christensen (2002).

Definition 1: Let {f},_ be sequence of members of H. We
say that {f},. 1s a frame for H if there exist 0 <A < B <o
such that for allh £ H,

Allh|P< Yl<t.h> <B|h|?

iel

The constants A and B are called frame bounds. If
A, B can be chosen so that A = B, we call this frame an
A-tight frame and if A=B =1 it is called a parseval frame.
If we only have the upper bound, we call {f},. a Bessel
sequence. If {£}, 13 a Bessel sequence then the following
operators are bounded,

T: Q) —H, Te)= ¢t
il

(synthesis operator)
T :H >0, TT={<f.f >},

iel 7
(analysis operator)
S:H—H,

ST=TTT="«lf >

iel

{frame operator)

Definition 2: For a countable index set I, let {W3i _bea
family of closed subspace in H and let {v,},.; be a family of
weights, 1.e., v>0 for all 1 € I. Then {(W_v,)},, 1s a fusion
frame for H if there existQ < C < D <o guch that for all
heH:

CIFIPe v} 7y I < DIFIP,

iel

where, m, is the orthogonal projection onto the
subspace W, We call C and D the fusion frame bounds.
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The family {{W,¥)}., is called a C—tight fusion frame, if in
above mequality the constants C and D can be chosen so
that C = D, a parseval fusion frame provided C=D =1 and
an orthonormal fusion basis if H = &, W, If {(W_ v},
possesses an upper fusion frame bound, but not
necessarily a lower bound, we call it is a Bessel fusion
sequence with Bessel fusion bound D.

The theory of frames has a continuous version as
follows: Let (¥, p) be a measure space. Let {2 X-H be
weakly measurable (1e, for all he H, the mappmng
X - < f(x), h> is measurable). Then f is called a continuous
frame for H if there exist 0 <A < B < « such that, for all
hcH,

All h|\2£IXI< féLh sPdu <B kP

The following lemmas can be found mn operator
theory text books (Pedersen and Gert, 1989, Rudimn, 1973,
1986; Sakai, 1998) which we shall use then in the text.

Lemma 1: Let u: H-K be a bounded operator. Then:

o ol = flu* and [ = [l

* R, 1sclosed, ifand only if, R 1s closed.

*  uis subjective, if and only if, there exists ¢ > 0 such
that for each h € H

clfhi] <[ (hl|
Lemma 2: Let u be a self-adjoint bounded operator on H.
Let
m, =inf <uhh >
heHy
and

M, =sup<uhh>

heH,

Then, m,, M, £ o(u).

Theorem 1: T.et w K-H be a bounded operator with
closed range R, Then there exists a bounded operator
u': H-K for whichuu'f=f, FeR,

Also, u*: H ~ K has closed range and (u™)' = (u"*.
The operator u' is called the pseudoe-inverse of u.

Theorem 2: Let w K-H be a bounded surjective operator.
Given y € H, the equation ux = y has a umque solution of
minimal norm, namely, x =u'y.

Now we mtroduce the concept of ¢-fusion frame and
shall show some its properties.

Definition 3: Let F: X-IT be such that for each h € H, the
mapping X a Tex(h) 13 measurable (ie., I is weakly
measurable). We say that (F, v) 1s a c-fusion frame for H if
there exist 0 < A < B <« suchthat forallh e H,

Allh IIESL(VZ(X) l| T () |Pdp =B B |P

(F, v) is called a tight c-fusion frame for H if A, B can be
chosen so that A =B and parseval if A =B = 1. If just the
right hand mequality satisfies then we say that (F, v) s a
Bessel c-fusion mapping for H.

Definition 4: Let F: X~ Let LAX, H, F) be the class of all
measurable mapping {: X-H. such that for each x £ X and
f(x) £ F(x) and jxu £(x0) [P du < o0,

It can be verified that L(X, H, F) is a Hilbert space
with inner product defined by:

<f,g>=| <f(x).g00 > du, f,g e (X, HF)

Remark 1: For brevity, we shall denote L*(X, H, F) by
L*(X, F). Let (F, v) be a Bessel c-fusion mapping, £ € L*(X,
Fyandh e H. Then:

| jxv(x) < F(x),h > du |
= | [, 0 < 7y (FG0), b dp |
= | ] V00 < £, 7oy (1) 0|
< [ VOO N PO - gy, )
<(fIEG0 I dp)t
< ([ VO e () P
B I£C0 ) duy’

So we may define:

Definition 5: Let (F, v) be a Bessel c-fusion mapping for
H. We define the c-fusion pre-frame operator Tp: LHX, F)
by

< Tz (f),h >
= jxv(x) < f(x),h > du,
fel’(X,F),heH.

By the remark (5),

Ts LA(X, F)-H
is a bounded linear mapping. Its adjoint T;*: H-LY¥X, F)
will be called c-fusion analysis operator and S; = Tp oT:*
will be called c-fusion frame operator.
Remark 2: Let (F, v) be a Bessel c-fusion mapping for H.
Then T LAX, F)-H is indeed a vector-valued imntegral,
which we shall denote by:

T, (f) = jx vidp, f = 17 (X, F)
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Where:

< _[vadp,h =

= LV(X)< F(x),h = dy,

Foreachh ¢ Hand f ¢ LXX, F) we have:

< T, (h),f >=<h,T,(f) >
= jxv(x) < h,fx) = du
= L V() < Tz ()£ () > dt

=<vng(h)f>.

Hence for each h € H, T, *(h) = vip(h).
So T* = v,

Therefore, S H - H 1s also a vector-valued integral
which for each h € H, we have

SF (h) = TFTFM(h)
=T, (vm, (h)) = J‘X vir, (hydu.

Definition 6: Let (F, v) and (G, v) are Bessel c-fusion
mapping for H. We say (F, v) and (G, v) are weakly equal
if Te* = TG*, which is equivalent with

viie (h) =vnG (h), ae.

forallh £ H Since, v# O a.e,. (F, v) and (G, v) are weakly
equal if

e (hy =17, (h), a.e.
forallhec H.

Remark 3: Let T, = 0. Now, Let O: X~H be defined by:
Ox) = {0},

for almost all x € X. Then (O, v) 1s a Bessel c¢-fusion
mapping and T, = 0. Let h ¢ H. Since, v (h)cL X, F),
50

[ V00 < i (), () > e

= L V() < V()T (), h > dp
=< T, (vr, (h)),h == 0.
Thus,
T (W) =0, ae.
Therefore,

e (h) = 7, (h), ae.

Hence, (F, v) and (G, v) are weakly equal.

RESULTS AND DISCUSSION

Definition 7: For each Bessel c-fusion mapping F for H,
we shall denote

Ap, = rl.glg | vmg (h) IF,

B, = sup || v () [P =]l v |
heH,

Remark 4: Let F 13 a Bessel c-fusion mapping for H.
Since, for eachh € H.

<T Ty*h), h> = v (h)|f,
A, and By, are optimal scalars which satisfy
A <TT*h)< By,
So (F, v) is a c-fusion frame for H if and only if A, ~0.

Lemma 3: Let (F, v) is a Bessel c-fusion mapping for H.
Then F 15 c-fusion frame for H if and only if Ty 1s
surjective.

Proof: Let A; >0 Since, for eachh e I

<T.T. (h,h>

= [ ¥ OO g, () d

=l vre (P2 Ap, [ BIF
Therefore,

Ts: LA, F)-H

1s surjective.
Now let T be surjective. Let

Tet: H - LA(X, F)
be its pseudo-inverse. Since, foreachh e H

IRl =1 G T < T (T (|
= I Tl vre (),

50

Ar 2 T 0.

Theorem 3: Let (F, v) be a Bessel c-fusion mapping for H,
and K be a Hilbert space. Let w H - K be a bounded
bijective operator and (u oF, v) is a Bessel c-fusion
mapping for K. Then:
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(1) uwol’({HF)=L"XK,uoF).

(i) Foreach f=I*(X.F)
u OIX vidp = _L( vu ofdp

(111) F 15 a c-fusion frame for H if and only if (u oF, v) s a
c-fusion frame for K.

Proot:
(1) Itis straightforward.
(i1) Foreachk ¢ K, we have

<u(f, vidu) k >
=< T{f),u"(k) >
= [ V00 < £, (k) >dp
= J‘X v < u(f ),k > do
= jxw ofdp k>

Hence
ujx vidp = IX v ot

(111) It is clear from (11) and Lemma 3.

Lemma 4: Let (F, v) be a Bessel c-fusion mapping for H.
Then the frame operator S; = T;T* is invertible if and
orly if F 1s a c-fusion frame for H.

Proof: Let S; = T, T;* be invertible. We have

Ag, =<inf | Ty [P= inf < TTy (h),h > o(T Ty ),
: heH) heH;

50, Ap, >0 Now let A 0. So, by the Lemma 3, T s
surjective. Then there exist A>0 such that

Al T he H.

Hence
Ap,zAM>0,

Theorem 4: Let {H},, be a collection of Hilbert space and
H = ¢H;. Let (F, v) be a Bessel c-fusion mapping for H
such that for each 1 € I there exist at most one x € X such
that F(x)cH.. Let each finite subset of X be measurable.
Then, foreachhc H

h=3%" T ().

xeX

Proof: Let
K= {h eH:h=3%" ﬁF(x)(h)}.

neX

Let {f,} be a sequence of members of K which tends
to f € H. Given >0, we can find N>0 such that ||f,,—f]|<e
There exists a finite Z<X such that for each finite Z<YCY,

(£} — Z 7'51=(x)fN [l< =

el

We have
If- Z TEF(x)f I
xe¥
L|IF =Ty ll+ 1 fy = ZWF(x)(fN)H
1eT
+ Z Tr(x) - Z nF(x)(fN) Il
koY Fet

But

L DI ST I ]
xe¥ x=¥
= Ap | 2 o (B — 1)
ze¥
< [ VO Ty 3 Tags - £ F
ze¥
2
[ VO mag X~ D
=[O mr X s - DIF e

= [,V @ m (B —D)IF du
< B, |Ify £

So, K is a closed subspace of H. Now, let h € K- Since, for
eacht e X

Ty () = 2 Ty Ty (),
xei

Ty (e K. Since
and Ag,~0. H = 0.

Theorem 5: Let (X, ) and (Y, A) be two o-finite measure
space and let £ XxY-H, F: X~ be weakly measurable
mappings. Let for each x € X, f(x,..): Y-F(x) be measurable
and for every x € F(x), {{x,.) 13 a continuous frame for H.
Let

0< A(X)

= inf jyl<f(x,y),h S da

xeF(x)

< sp [ [<f(xy)hsf di

xeF(x),

=BX)<w
and let

0< A=inf A(x)
<supBE)=B<x

Then, (F, v) 1s a c-fusion frame for H 1f and only if
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vi:XxY 1,
xy) = vef(x,y)

1s a continuous frame for H.

Proof: For eachh ¢ H we have

Allva ()
= A V0 g () [P
< J AGOV O | gy () [Pl
< [ [ I v00m g . B, ) of dhds
=, [ J<hveofey) >f dadu
= [, < VOOEG P S dGuoc )
T I e 0¥ 0O G, 5 dd
< | BOOV 0| 7, () [Pl
< B[ 00| 7y () P,

and the theorem 1s proved.

Theorem 6: Let (X, p) be a o—finite measure space and
K be a Hilbert space. Let w H - K be a bijective
linear operator. Let F: X~H and uoF: X->K be weakly
measurable. Then, (F, v) is a c-fusion frame for H if and
only if (u oF, v) is a c-fusion frame for K.

Proof: Let F be a c-fusion frame for H. Let(Y, A)bea
o-finite measure space and let

fXxY-H
be such that for each
xe X f(x)Y - Fx)
with

0< A(X)
= inf)lj <Py b dn

xeF(x

< sup [ _|<f0Ly)hsf di

xeF(x),

=B(x) < =,

measurable and 0<A=infAG) <supB(x)=B <. Choosing
such mapping is always possible, because let {e/} ~bean

orthonormal basis for F(x). We can suppose that {I,} _, is

pairwise disjoint (we can consider {x}=I). Let v=[] T,

and A be the counting measure on Y. Then we can define
f: XxY -~ Hby

f(x,)=¢ ificl,
and
f(x, 1) = 0 otherwise
Then, for each x ¢ X
Ax)=B((x) =1
By the Theorem 3

0<
inf f, J<VEORGR b S ducn)
<sup| [« vOf G, y)h = duxh)
eH, VAT

< o0

Then, 1 0F:XxY =K and for each x £ X,
uef(x,):Y = u(Fx)
Since, u is surjective, there is C > 0 such that

(C*[Ihf)
([ Sty u /'@ dry
<(f JEEE W/l W) d2)

x(lu' ) )
:j < ulf(x,y).hof dh

<(lulFin )
<ty my/u'm - F dr

So

)

CIA(X)
H 2
< 11?51[ J<uE Gy b
<sup| < udf(x,ynh{* di
heH,” ¥

<ulf B(x)

Similarly, we have

2 2
CHinf f, < vOOFx,y). b= diuxa)
H 2
<inf [ VOOuEee, b > duy
< supj |< v G, v, h >F dux A
heH, VXY

= (lul

Therefore by the Theorem 3 be a c-fusion frame for
(u oF, v). The proof of the converse is similar.

Theorem 7: Let (F, v) be a c-fusion frame forH. Leth £ H
and SF = T;T¢*. Then:
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(i) We have the following retrieval formulas

=T, . (5, v ()

h= TF (VTEF (SF_l (h)))
(i1) Inthe retrieval formula
h = Te(vmg (87 (),

vne(S; ') has least norm among all of the retrieval
formulas.

(i11) For eachh € H,
TFT (h) =V, (SF_l (h))
Proof:

(1) Since (F, v) is a c-fusion frame, S; is an invertible
operator. By the Theorem 4, we have

h = 8¢S (h) = 8,7 T (v ()
=8, [ Vm(hydu
= jx vS: ™ o v (ydp
=Ty (857 o vy ()

Also, we have
h=8,8,"(h) = T, (va, (S, ().
(i) Letfe LA, Fyand

h=T:(f)
Thus, for each k £ H we have

<hk>=<T(f) k>

= jxv(x) < F(xnk > dp,

<h,k =< T, (v, (S, )k =

= jxv(x) < V(RIS (), K > dy.

Therefore

< Tovm (8 () -,k > 0
So

)

T, (va (S, (=0

Hence
vy (S, (h)) —f e ker T,
Since, F 15 a ¢-fusion frame,

v (S, (h)) e ranT,”
But

(X, F) = (ker T;) ® (ranT; "}
So

)

£ 1Pl vag (s () £ |
+ [ v (S I,

and (11) 1s proved.
(iii) Let f ¢ L%, F). Since, T, is the unique solution of
minimal norm of T¢(f) = hso by
(11),
[ —vris @y P dp=o0
Therefore,
f=vm (8;7'(hy) = T (h)

Theorem 8: Let (F, v) and (G, v) be Bessel c-fusion
mapping for H. Then the following assertions are
equivalent:
(1) ForeachheH,

h= jx v, mp (h)dp
(i1) ForeachheH,

h= jx vy, (hdp
(ii1) Foreachh, ke H,

<hk »>= L v? < g (h), ma(k) = du.

(iv) Foreachh € H,

1hiP= ] v < mg (), my(h) > dp

(v) For each orthonormal bases
{ei}1el B.Ild {}L]}je.l

for H we have
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<ELTY; >

= [ 7 <l ma () > d,
ieljel

(1v) For each orthonormal bases {e};,forHandie I,
[V < meledme () > du=1

Proof: (i) » (ii) Leth, k ¢ H. We have

< hk »=< To(vrzm, (h))k >
= jxv< VT, (h), ko du

= jxv <h, vy m (k) > du
=<h, T, {vry (k) =

Hence, k= T;{vrym:(k))
(11) » (111) It 18 evident by the proof of (1) ~ (11).
(111) = (1) For each h. k € H, we have

<hk>= jxxﬂ < g (), 7 (K) = du
=< Ta(vrng (hi)k >

Thus h= TF (VTEFTEG (hy)
(1v) » (1) LetL: H -~ H be defed by

L(h) = T (vmeng ()
It clear that L. is linear. Since

I L) = sup < Lih. e >

=sup| |_v* < mpm (h)k > du |
keH, ¥X

<O [l () dy

A(sup( |l e (37 ™)
keH,

< (sup( | 7 (P du))

keH;
(up(v* [ 1l me () I a1 )
kel

<BBE, IIh,

that, L € B(H). For each h € H, we have

<hh>=[|h|f
= va < (), () > dp
=< T, (vrpm, (h),h =

Hence, for each h € H,

h =T, (v, (h))

(i11) - (iv) is evident.
(v) - (ii1) We have

jxv2 < e (), 7g (K) = dpt
=< vrpth), v, (k) >

=< vr (3 <h e > e)vrg O <ky; > v >
i f
=2 <<hg > vrg(e) <k y, > vag{y) >
L]
=2 <h,e >y, k< v (), vag (y) >
L]

=2 <he >y ke, >
L]

=<hk>
(v1) ~ (v) 1t 1s similar with the proof of (v) - (111).
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