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Abstract: This study deals with analytical solution of time-dependent partial differential equations. The
analyses are carried out by the means of Homotopy Analysis Method (IIAM), Homotopy Perturbation Method
(HPM) and Variational Tteration Method (VIM). The results have been compared and depicted graphically. Tt
is shown that the presented approaches are very effective, straightforward and capable to the analytical
solutions of the large classes of linear or nonlinear time-dependent partial differential equations while this set

of problems is widely spread n Engineering.
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INTRODUCTION

One of the most frequent problems in the physical
sclences 1s to obtain the time solution of a (linear or
nonlinear) partial differential equation which satisties a
set of boundary conditions on a rectangular boundary.
For mstance, let us consider the following problem
(Garcia-Olivares, 2002a):

au_ &u Fu au

E=§+W—Ru&+f(x,y) (1)
With the followmng boundary conditions defined on a
rectangle (Garcia-Olivares, 2002a):

uxy.t=0=elxy) (2)
ux=0,y,0=f(y.0) (3)
ux=x.y, 0= 5.0 (4
Uy =% b= gxt) &)
uxy =y, =g t) (6)

For instance, if have R =1 and f (x, y) = 0 in Eq. 1
subject to the following initial and boundary conditions
(Garcia-Olivares, 2002a):

e(x, y) = (y12 - y? (%, - %) (7)
yl Xl

fp- Y Y ()

£y =0 ©)

8, (x0-0 a0)

g,(x0 =0 an

This kind of Partial Differential Equations (PDE)
appears frequently coupled with others. For example, in
the incompressible fluid flow problem, the equation above
would be slightly completed to become the first
component of the Navier-Stokes equations which should
be solved in parallel with a poisson equation for the
pressure.

Some methods to obtain an analytical solution of PDE
with boundary conditions by means of power series
have been explored m Garcia-Olivares (2002b) and
Mahmodi et al. (2008). Those works are based on the
Adomian  called,
decomposition method (Adomian, 1998) that uses analytic
functions to approximate the problem solution.

In order to develop these efforts, He's variational
iteration method and homotopy perturbation method

method proposed by George
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(He, 2000, 2004; Abdou and Soliman, 2005; Ganji and
Rafei, 2006; Tolou et al., 2008) also, homotopy analysis
method (Khatami et al., 2008) have been wsed to conduct
an analytical investigation on the solution of time-
dependent partial differential equations. In order to assess
benefits of the methods, firstly, fundamentals of the
proposed method have been presented and some
llustrating examples have been used. Afterwards, the
results obtained by aforementioned methods have been
shown and compared graphically. Finally, conclude with
some discussion

MATERIALS AND METHODS

Variational Tteration Method (VIM)

Fundamentals: To illustrate the basic concepts of
variational iteration method, consider the following
deferential:

LutNu=g (x) (12)

where, L. is a linear operator, N a nonlinear operator and
g (x) a heterogeneous term. According to VIM, can
construct a correction functional as follows:

000 =u,60+ [ MLy O+ N ©-goa (13

where, A is a general Lagrangian multiplier (He, 1998a,
2005), which can be identified, optimally via the variational
theory (He, 1998b), the subscript n indicates the nth order
approximation, i, which 1s comnsidered as a restricted
variation, i.e., 84, = 0.

Application:  Considering time-dependent  partial
differential equations as (Garcia-Olivares, 2002a):
u_ du u
E:§+W—Rug+f(x,y) 14

Subject to the following wmtial condition (Garcia-Olivares,
2002a):

2 2
u(x,y,t= 0y = oY =X) (15)
W
Solve Eq. 13 and 14 using VIM, have the correction
functional as:

—u, (X,v,1) . & (x,y,1) . &, (x,v.1)
& ax’

au, (x,v,1)
54

t
U, (X 3,0 = U, (5,0 4 A €
1)

-BRu, (xy.0( 3+Ex

(16)

where, u_(x,y,T)0u_ (x,y,7)/0x) indicates the restricted
variations; i.e., &(u, (x,y, )0, (x,y,1)/3x))=0

Making the above correction functional stationary,
obtain the following stationary conditions:

144, =0 (17)
A=-1 (18)
The Lagrangian multiplier can therefore be identified as:
A=-1 (19)
Substituting Eq. 19 mto the correction functional

equation system (16) results in the following iteration
formula:

“,xyn) | Sy | Sy
a &’ ay’

W) Py

t
Up (5,0 = U, 06 3,0 - [(
1)

- Rlln(X=Y>T)(

(20)

Each result obtained from Eq. (20) is u (x, y, t) with its
own error relative to the exact solution, but higher number
iterations leads to better approximation, even to the exact
solution. Using the iteration formula (20) and the maitial
condition as u,, two iterations were made as follows:

The first iteration results in:

(Y12 — yz)(xl — X) _ 2 (Xl — X)t T R(Y12 — yz)z(x1 — X) t
/X, % %

u X, y.t) =

(21)

The second iteration results 1n:

(Y12 — yz)(xl — X) _ 2(X1 — X)t + R—(Y12 — Y2)2 (Xl — X)t

X y.0=
’ W V%, ¥/,

1 -2(x,-x) Ry -v)(x,-x 2 R(y?-vy*)
re (21 ) RO yd)g(l ))( 2 (y14 zy))t3
y1X1 YIXI y1X1 y1X1

L1 SRy (x,-x) 4R{y -y (x,-x)
2 ¥ ¥
2 R -¥Y
Ry’ -y (x - s —F——-— )
7 S .
W%
—2(x,-%) Ry -y -x
R0 ROIYPG 0 )
+ i % yE{; L t? (22)
1

In the same mamner the rest of the component of the
iteration formula can be obtained.
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Homotopy Perturbation Method (HPM)
Fundamentals: To clarify the basic ideas of HPM,
consider the following nonlinear differential equation:

A-f)=0 rcQ (23)

Considering the boundary conditions of:

B(u duwon)=0, rel’ (24)
where, A 153 a general differential operator, B a boundary
operator, f{r) a known analytical function and I" is the
boundary of the domain Q.

The operator A can be divided into two parts of L
and N, where L 1s the linear part, while N 15 a nonlinear
one. Eq. 23 can, therefore, be rewritten as:

L (uHN @W-f(r) = 0 (25)

By the homotopy techmique, construct a homotopy as
which satisfies:

H(v,p)=0-p)=[L (v)-L {u)+p [A (¥)-T(@)] =0,
Pel0,1],reQ (26)

where, p € [0, 1] is an embedding parameter and v, is an
mitial approximation of Eq. 26 which satisfies the
boundary conditions. Obviocusly, considering Eq. 26 will
have:

H{v, =L ()-L{u)=0
H@v, D=AW-f@=0 (27

The changing process of P from zero to unity 1s just
that of v (r, p) from v, (r) to u(r). In topology, this is called
deformation and L{v)-L{u,) and A(v)-f(r) are called
homotopy.  According to HPM, can first use the
embedding parameter P as small parameter and assume
that the solution of Eq. 26 can be written as a power series
mp:

v =vhpv ipi, o (28)
Setting p = 1 result in the approximate solution of Eq. 26:

u=Imv=vo+ v +v; e (29

p=l

The combination of the perturbation method and the
homotopy method 1s called the HPM, which elimmates the
limitations of the traditional perturbation methods while 1t
has full advantages of the traditional perturbation
techniques.

The series (29) is convergent for most cases.
However, the convergence rate depends on the nonlinear
operator A (v). The following opinions are suggested by
He (2004):

*  The second derivative of N (v) with respect to v
must be small because the parameter p may be
relatively large, i.e., p-1.

¢ The norm of L™ @N/3v must be smaller than cne so
that the series converges.

Application: With the same first example as mentioned
previously, the equation 1s as:
au_&u du

du
E_g-#?—l{u&-#f(x,y) (30)

With the mmtial condition of:

U(X,y,tzo)zw (31)

yl Xl

Substituting Eq. 29 into 26 and then substituting
v from Eq. 28 and rearranging based on power series
of P, have an equation system including ntl equations
to be simultaneously solved; n 1s the order of Pin
Eq. 28
Eq. 32.

Now try to obtain a solution for equation system (32),
i the form of (33):

Assuming 3, the system is as follows

duy(x,y,t) _
ot

0

A, (x,5,1) _ 62”0 (%.¥.t) _ uy(x,y,t)

at &’ at
& t), & t
+Ru, (53,0 (XY, ))_ uD(Xz,y, ) o
o oy
au,(x,y,1) _ 62“1(XsY>t) _ o (x,y,t)
a ax’ a
ey, &y, au, (53,0
+Ru,(x,y, ) (" -t +Ru, (x,y, ) (12 =
u(y)(ax ) P L (3, 7.0( o )
Qu,(x,y,t) au, (x,7,t)
Rug(x,y,t)(zT) +Ruy (x,y, ()
du(x,y.t) Fuxyt) Fu iyt
a ac ayz
du,(x,y, 1) du, (. 1)
+————+Ru, x,v,t)(—————) =0
ot (= 7,00 o )

(32)
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Finally, u(x, v, t) = u Gy, tu (v, O+ (X y, OF
uy(x, v, t)

Homotopyz Analysis Method (LLAM)

Fundamentals: Consider the following differential
equation:

Nfu(t)] =0 (34)
where, N 13 a nonlnear operator, T denotes an

independent variable, u(t) 15 an wnknown function. For
simplicity, ignore all boundary or initial conditions, which
can be treated in the similar way. By means of generalizing
the traditional homotopy method, Liao (2003) constructed
the so-called zero-order deformation equation as:
(1-p)L[o(zp) —uy(n)]=pAHON[¢(zp)] (35)
where, p € [0, 1] is the embedding parameter, h # 0 a
nonzero auxiliary parameter, H (T)# 0 an auxiliary
function, L an auxiliary linear operator, u,(T) an imtial
guess of u (1) and ¢(t; p) is an unknown function. Tt is
umportant to have enough freedom to choose auxiliary
unknowns in HAM. Obviously, when p=Oand p=1, 1t
holds: ¢(t; 0) = uy(t) and p(t; 1) = u(T).
Thus, as p increases from 0 to 1, the solution ¢(t; p)
varies from the initial guess, u,(T) to the solution u(T).
Expanding (T, p) in Taylor series with respect to p, have:

(P =y (D) + ium(t)pm (36)
Where:
u, (%) = 1 &nEp (37)
m! ap" .

®

2891

U, (X, y,th = 2
nx
2.2 4 2 4
U, 1) = (-2Ry,'y’ + Ry, 24Y1 >2(1 + Ry )-x,+x)t
WX
Rt Ry + Ry’ + 3Ry,'y" +4y,'x, - 3Ry, "y" - 8"y, %)) (=%, + %)
U, {(x,y.0) = ]
¥ X
2RxyY R 2Ry’ Rx 2x Ry* Ry'x 2
R v e i sl H o e DAY
YI Xl Xl YI Xl Xl YI Xl YI Xl YI Xl YI (33)
-1
u, (%, ¥, t) = —— (R(=%, + %}
wx
y (3R2yf +3RYY —12Ry'y” + 18R Yy, —18Rxy,” + 68y, ' Rx,¥° —12R%y"y* - 50y'Ry*x, + 20y14X12) ¢
3
n 32y°y 7 -16y x + 4y R R 12y x Ry’ + 12y s Ry* — 4Y5Y12X1R)t2))
2
R 2Ry’ Rx 2Rxy¥ Ry' Ryx 2 2x
ot gttt g oot
Xl YI Xl Xl yl Xl YI Xl YI Xl YI YI Xl

If the auxiliary linear operator, the imitial guess, the
auxiliary parameter h and the auxiliary function are quite
properly chosen, the series (37) converges at p = 1 then
have:

+oo

u(n) =uD(':)+Zum(r)

m=1

(38)

This must be one of the solutions of the original
nonlinear equation, as proved by Liao (2003). Ash= -1
and H(t) = 1, Eq. 35 becomes:

(- p)L[¢(z:p)—ulo(z)]+ pN[ap(zp)]=0 (39)

This 15 mostly used in HPM, whereas the solution
can be obtained directly without using Taylor series.
According to the Eq. 35, the governing equation can be
deduced from the zero-order deformation Eq. 40. The
vector 1s defined as:
ug (0}

i, = fug(o),u,(t)

,,,,, (40)

Differentiating Eq. 35 for m times with respect to the
embedding parameter p and then setting p = 0 and finally
dividing them by m!, will have the so-called mth-order
deformation equation as:

L[u, (t)- %1, (0]=hH(OR, @,_) (41)
Where:
S Ba. 11650 42
R, (0, )= (m—1)! 6pm_1 |p:EI ( )
and
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_ 0, m<l
=11 ms1

43)

It should be emphasized that u,(t) for m>1 is governed by the linear Eq. 41 with the linear boundary conditions

coming from the original problem, which can be easily solved using symbolic computation software.

Application: Consider Eq. 30, 31 and let us solve them through HAM with proper assignment of H(t) = 1 subject to the
initial condition and assuming m = 2.

&=y %)
WX,
(22Ry,'y” + Ry, = 2y/’x, + Ry" )X, +X)ht
vi'x/?
21(x, —X) IRy, —y*) (%, - %)
¥x, vi'x?
(7 (2y’%,” +2xy,’%, +Ry,'x, —Rxy," - 2Ryy/’x, + 2Ry’xx,” + Ry'x, —Ry*x’R(y,* —y)t*)

u,(X,y,t) =

u,(x,y,t) =

U,y =

10,5

2y1x,
+ (h(=1-m(=2y,’x +2xy,’%, + Ry,"x, - Rxy,* - 2Ry’y/’x, + 2Ry xy)” + Ry*x, ~Ry*0)D) _
vy’
(hZR(Y1Z ~ yz)(X] - X)(Zylle -Ry'+ ZRYZY1Z -Ry"Ht)
2%,
L P4y xR + 4y xR + 12Ry’x, —12Ry’ )t
I 2y,'%/

FinaHY> u (X> Y, t) = u0 (Xa y: t)+u1 (Xa Ya t)_H]'Z (X> Y> t)

RESULTS AND DISCUTION

44

In this study, new kind of analytical methods, VIM, HPM, HAM, have been used in order to obtain the solution of
time-dependent non-linear partial differential equations. Figure 1a-c shows the behavior of u(x, y, t) versus x and y from
VIM, HPM HAM respectively for t = 0.001. This figure clearly shows the well agreement between results of these
methods. For further verification, the cross-section of u(x,y, t)is shown in Fig. 2a .b fort =0.001 and t = 0.002 while
y assumed to be constant at value o f zero. Figure 3 a, b shows the cross-section of u(x, y, t) for t = 0.001 and t = 0.003
while the constant value of x is zero. Figure 1 as well as Fig. 2 and 3 are obtained for R =1, y,= 0.4, x, = 0.4. Figure 2, 3

approve once more an excellent agreement between methods.

u(x,y.t)

Fig. 1. The behavior of u (x,y, t) versus x and y evaluates by VIM (a), HPM (b), HAM (c) att=0.001: R=1,y, =

x =04
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@
2.0, —=—HPM —— HAM—e— VIM

u'(x5 y’ t)

®)

Fig. 2: Cross-section of u(x, y, t)yatt=0.001 (a),t=0.002 (b), y=0: R =1,y =04, x =04

(a)

g~ HEM—+~HAM —--VIM

ufx, y, t}

ux, y, t}

{®)

Fig. 3: Cross-section of u(x, v, t)att =0.001 (), t=0.003 (b), x=0:R=1,y,=04,x, =04

CONCLUSION

In this suwrvey, VIM, HPM and VIM have been
successfully applied to obtain the analytical solution of
nonlinear time-depended partial differential equations. As
a clear conclusion, these methods provide successive
rapidly convergent approximations without any restrictive
assumptions or transformations causing changes m the
physical properties of the problem. Also adding up the
number of iterations leads to the explicit solution for the
problem. Moreover, the VIM, HPM and HAM do not
require small parameters in the equation so that it
overcomes the limitations that have arisen in traditional
perturbation methods. The approximations are valid not
only for small parameters but also for larger ones. The
VIM, HPM and HAM are all efficient and powerful
mathematical method to overcome this kind of problem
and can be appropriate substitutions for each other.
However, since the HPM has got shorter equations, the
related results converge more rapidly. VIM including

mternalization calculations, takes a longer time and more
difficulty arising in calculations. HAM is a new method
that can be use for wide rang of nonlinear equation and
the auxiliary parameter, h, provides a convenient way to
adjust and control convergence region and rate of
solution series so, it may leads to obtain the solution for
fewer approximations. Moreover the solution of given
nonlinear problem can be expressed by many base
function and thus, can be more efficiently approximated
by letter set of base function. All the aforementioned
methods  give rapidly  convergent — successive
approximations of the exact solution if such a solution
exists, otherwise approximations can be used for
numerical purposes.
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