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Abstract: In this research, the bootstrap methods are used to mvestigate the effects of sparsity of the data for
the binary regression models. The artificial data was created by the bootstrapping vector. We also used the
percentile confidence intervals as a tool for inference, because they combine point estimation and hypothesis
testing in a single inferential statement of great intuitive appeal We found that the bootstrap confidence
intervals are shorter than classical confidence mtervals with the same confidence coefficient. We also found
that some parameters that are non-significant when using classical confidence mterval become significant with
the bootstrapping sampling methods and vice versa. Moreover the bootstrap confidence intervals provided
robust results for the sparse data. We also found that the sparsity of data results in the bad behaviour of the
tail of the bootstrap sampling distribution, but reduction of confidence coefficient results to obtamned robust

confidence mnterval.
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INTRODUCTION

Binary regression 1s widely used m the applied
statisics (Agrest1, 2002; Kleinbaum and Klem, 2002
Farrell and Rogers-Stewart, 2008). In the standard setting,
subject to regularity conditions, the Maximum Likelihood
Estimator (MLE) of the unknown parameters in the binary
regression are known to be consistent, asymptotically
normal and efficient (Lehmann and Casella, 1998).
However, this situation is not satisfied if the data is
sparse (Zadkarami, 2000). This problem is encountered in
medical (Allardice, 2001; Ainsworth and Dean, 2006),
social (King and Zeng, 2001) and geography (Begueria,
2006, Gruffith, 2006, Vanwalleghem, 2007) studies wlich
mvolve the modeling of the outcomes of rare diseases or
events because they are usually dealing with small
numbers of deaths or events. Therefore, sparse binary
response is of great interest (Fleiss et al., 2003; Farrell and
Sutradhar, 2006). This phenomenon, sparsity, was pointed
out firstly by Hauck and Donner (1977). Let Y, € {0,1} be
the binary response variable. The probability of success
(event) is p, = Pr(Y, = 1) = F(F'X) where, F() is a
cumulative distribution function. If there are some
maximum likelihood estimator of parameters, B, s, that are
large, the curvature of the log-likelihood at B can be
much less than near B, = 0 and so the Wald approximation
underestimates the change in log-likelihood setting P, = 0.
This happens in such a way that as ‘f}]‘ -« , the t-statistic

tends to zero. Thus lighly significant coefficients

according to the likelihood ratio test may have non-
significant t ratios. This problem happens when the data
is sparse and the fitted probabilities are extremely close to
zero or one (Venables and Ripley, 2002). However, there
has been fairly extensive discussion of this mn the
statistical literature, usually claiming the non-existence of
maximum likelihood estimates (Santer and Dufty, 1989).
But, the phenomenon was discussed much earlier in the
pattern  recognition literature (Duda and Hart, 1973;
Ripley, 1996).

The sparsity of data depends on a range of factors
and models which may, or may not, be under the control
of the researchers. Sparsity of the data creates some
problems in using standard asymptotic methods and it
also creates some computational problems in the
estimation of the unknown parameters in the models.

The bootstrap 1s a nonparametric technique that can
be used to provide statistical nference about the
parameter estimates, especially when the standard
asymptotic =~ methods are  not satisfied properly
(Hansen et al., 1999, Yousef et al., 2005, Modarres et al.,
2006, Gerard and Schucany, 2007, Tang ef af., 2007). This
approach is based on using repeated samples from the
data to generate an empirical sampling distribution for a
statistic. In response to sparsity of the data, a completely
nonparametric bootstrap approach is applied to resample
cases. Then we can determine the MLE of the parameters
in the model and make inferences about them.
Nonparametric sunulation requires the generation of
artificial data without assuming that the original data have

2991



J. Applied Sci., 8 (17): 2991-2997, 2008

distribution. We use
confidence intervals as a tool for inference, because they
combine point estimation and hypothesis testing in a
single inferential statement of great intuitive appeal.

In almost every case the accuracy of the confidence
mtervals depends on parametric assumptions that we are
considered. However if parametric assumptions are not
satisfied properly, the bootstrap methods may be used to
obtain a more robust nonparametric estimate of the
confidence intervals to assumptions commonly made
about data (Moulton and Zeger, 1991; DiCiccio and Efron,
1996). The bootstrap confidence intervals are not only
asymptotically more than the standard
confidence intervals, they are also more correct
(DiCiccio and Efron, 1996). Over the past decade,
substantial attention has been paid to the development of
techmques using the bootstrap sampling distribution to
build confidence intervals around various population
parameters (Efron and Tibshirani, 1986, Stine, 1989,
Moulton and Zeger, 1991; DiCiccio and Efron, 1996;
Tuand Zhow, 2002; Henderson, 2005; Hsieh et al., 2007).

The bootstrap confidence intervals are divided into
two groups: parametric and nonparametric, according to
the assumptions which are used in their construction
(Cojbasic and Tomovic, 2007; Andrews et al., 2006;
Karlis and Patilea, 2008). The choice of which bootstrap
confidence mterval method to use 13 lughly dependent on
the particular research situation facing an analyst
(Manichaikul et al, 2006). None of these techmiques
offers the best confidence mtervals in every situation,
because the criteria for judging the quality of their results
vary widely (DiCiccio and Romano, 1988). Tn this research
percentile confidence 1s used because the data is sparse
and the analytic formulae are not satisfied properly. The
percentile approach provides a nonparametric method that
does not require any assumption, such as normality, in
order to build a confidence interval (Mudelsee and Alkio,
2007).

From the pomt of view of demands on computational
resources, bootstrap methods are particularly useful for
small data sets because the procedure usually needs at
least 1,000 repeated bootstrap samples in order to provide
robust results for making confidence mtervals (Efron and
Tibshirani, 1993).

some particular parametric

accurate

MATERIALS AND METHODS

Let Y, € {0,1} be the binary response variable. The
probability of success is given by

p.=Pr(Y, =1) =®(n,)

where, 1, = p' X, denotes the linear predictor, 3 denotes
the vector of explanatory variables that characteristics of
the individual 1, B 1s a interested parameter vector and
®() is the standard normal cumulative distribution. The
log likelihood function is

4{(p) = iZ:,[y, In(p,) + (1 y,)In{l-p,)]

The probit link function is used because this link
function produces better results compared to the other
link functions in the sparse data (Zadkarami, 2000).

Percentile confidence interval: There are two methods
the bootstrapping (parametric  bootstrap
approach) and the bootstrapping vector (nonparametric
bootstrap approach) for Generalized Linear Models
(GLMSs), (Salibian-Barrera, 2005; Pardo-Fernaudez, 2007,
Shen and Zhu, 2008). However, the defimtions of the
residuals for GLMs and consequently nonparametric
residual resampling approach for GLMs, are not unique
(Davison and Hinkley, 1997). These residuals are:
standardized Pearson residual, standardized residual on
the linear predictor and standardized deviance residual.
Congequently,  three  different  approaches  for
bootstrapping  samples for GLMs can be used,
corresponding to these three residuals. These residuals
are scaled inplcitly or explicitly. However, Davison and
Hinkley (1997) reported that none of these methods is
perfect.

The disadvantage of the parametric bootstrap
approaches for a GLM is that these methods mvolve the
simulation of a new data set from the fitted parametric
model. In fact, the generated data sets from a poorly
fitting model may not have the statistical properties of the
original data, particularly when
overdispersed relative to a Poisson or binomial model
(Davison and Hinkley, 1997).

In response to these difficulties, a completely
nonparametric approach is to resample cases in the
manner described as follows. Nonparametric simulation
requires the generation of artificial data without assuming
that the original data have some particular parametric
distribution. Let the vector z=(2{, Y,).1=1,2, .1 be a
sample from some multivariate distribution F() of (X, Y).
In this approach, the regression coefficients are viewed as
a statistical function of F(.), but with no assumptions on
the random errors of model other than independence. The
pairs (34, Y,) are bootstrapped to provide the bootstrap
data set z* so that

residual

count data are

z= {(Xil’Yvil)’(Xu’Ym)’""(xn’Yim )}
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fori, i,,....1,, a random sample of the integers 1 to n. Then,
following steps 1, 2, 3 and 4 will allow us to make
inferences about parameters m the model.

¢ Selected B replicated bootstrap samples of size n,
z*, 7%, .z, F

*  The binary response with probit link function was
fitted to each bootstrapping sample z* = (Y*, X*)
and the vector of the parameters, B, , is estimated by
GLIM package ( Aitkin et al., 2005).

*  The 100(1-2a)% percentile confidence mterval for the
parameter P is obtained as

(b= b
where, B is calculated as
B 100 (o) th empiricalpercentile of f, (1

+ The BC (Bias Correction) confidence interval is
calculated as

(B = [ e
where, B® was mtroduced i (1) and ¢, and «, are
functions of z,, the « th percentile of the standard normal
distribution. In fact, the percentile interval may be
mproved by a simple adjustment, the BC (bias-corrected)
method (Efron and Tibshirani, 1986; Pituch et al., 2006,

Cerin and Leslie 2008; Timmerman and Ter Braak, 2008). In
the BC method, «, and «, are calculated by

o= @2z, +2,), o =0(2z,+2,_,) (23]

Where:

When half of the beotstrap distribution of § is less
than the observed value p, then

7, =0 (05)=0, ey =aand o, =1 - @

The bootstrap confidence intervals are also divided
into two groups: parametric (normal approximation method
and the bootstrap-t methed) and nonparametric (the
percentile method), according to the assumptions which
are used in their construction. The choice of which

bootstrap confidence interval method to use is highly
dependent on the particular research situation facing an
analyst. None of these techmiques offers the best
confidence intervals in every situation, because the
criteria for judging the quality of their results vary widely
(DiCiccio and Romano, 1988). However,
approximation confidence intervals rely on a strong
parametric assumption when the bootstrap procedure
actually was designed to be a nonparametric technigue.
Confidence intervals developed in this way are no better
than those developed using the traditional parametric
approach when this particular assumption is violated
(Mooney and Duval, 1993).

The bootstrap-t method raises two problems. First,
we need to calculate §'(p), the estimated standard error of
for " the bootstrap sample z,.b=1,B which is difficult
when p is a complicated statistic for which no simple

normal

standard error formula exists. Therefore, we need to
compute a bootstrap estimate of the standard error for
each bootstrap sample. This implies that two nested levels
of bootstrap sampling are needed, which 1s costly in terms
of computational resources. Another problem 1s that the
bootstrap-t confidence mterval does not possess the
transformation-respecting property, such that it makes a
difference which scale is used to construct the interval
and some scales are better than others (Efron and
Tibshirani, 1993). But the advantages of this method are:

¢ This method is free from parametric assumptions and
1s simple to execute. We need no complex analytical
formulae to estimate the parameters of B's assumed
sampling distribution and no tables of critical values
for the probabilities of the standardized sampling
distribution are needed.

» Ifastatistic 15 distributed asymmetrically, it does not
in theory adversely affect the accuracy of the
percentile  method's
bootstrap percentile method allows (5"} to conform
to any shape suggested by the data. This allows the
confidence intervals to be asymmetrical around the
expected value of p (Mooney and Duval, 1993;
Helermann ef ai., 2005).

»  The percentile interval for any (monotone) parameter
transformation m(P) 1s simply the percentile interval
for B mapped by m(p), because this method 1s
transformation-respecting (Efron and Tibshirani,
1993).

confidence iterval. The

However, the percentile method does have some
problems. First, it may perform poorly with small samples,
because the tails of the sampling distribution m these
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types of confidence interval calculation are important. The
second potential problem with the percentile method is
that we must assume that the bootstrapped sampling
distribution 1s an unbiased estimate of p(p). However,
this is certainly less restrictive than assuming F(fg) has
some standard distribution with known properties.
However, the percentile mterval may be mmproved by the
BC method (Efron and Tibshirani, 1986).

RESULTS AND DISCUSSION

The National Child Development Survey (NCDS) data
set is used to investigate the effect of the sparsity of data
on parameter estimates for the binary model. This data set
was collected on babies born in one week (3-9 March
1958) m England, Wales and Scotland (Wildschut et al.,
1997, Spencer, 2006). We selected a sample of 10,141
individuals for whom we have complete information on
forty variables associated with perinatal mortality. The
mterval between 28 weeks (196 days) of gestation and
week 4 after birth is divided into four subintervals,
allowing for the possibility of death before delivery
(antepartum stillbirth), during delivery (fresh stillbirth), in
the first week after birth (early neonatal deaths), or
between the first and fourth weeks after birth (late
neonatal deaths). We call these stages 1, 2, 3 and 4,
respectively. The survivors beyond stage one are further
divided mto two groups, those with assisted delivery and
those with natural delivery to allow for the differential
effects of the type of delivery in the two groups
(Zadkarami, 2000). The data in stage 3, early neonatal
duration, of the assisted delivery cases are selected as an
illustration in the investigation of the effect of sparsity of
data on the parameter estimates for the binary models.
There are 1132 cases of the assisted delivery that include
12 deaths, Y =1 and 1120 survival cases, Y = 0.

In the nonparametric approach the bootstrapping
vector is used to construct the percentile confidence
mterval for parameters i the model. Although the
bootstrapping of cases demands extensive computational
resources, this method has the properties of the original
data set and the results are not affected by poorly
fitting model.

Efron and Tibshirani (1993) suggested at least 1,000
repeated bootstrap samples were needed in order to
provide robust results for making confidence intervals. Tn
order to protect the results from the effect of sparseness
in the data, 2,000 bootstrapping samples z* = (X*, Y*)
were selected from the original data set (X, Y). Moreover,
the bootstrapping sample size was subsequently
mncreased to 5,000 and 10,000 samples in order to obtain a
better bootstrap confidence mterval. However, increasing

the number of bootstrap samples from 5,000 to 10,000
improved the results only slightly. The binary response
with probit link function was fitted to each bootstrapping
sample z* = (X*, Y*). Various starting values were used
to assess the effect of starting values on the results.
Finally the percentile confidence interval for each
parameter was obtained.

As empirical results demonstrated, bootstrap samples
with far fewer numbers of (early neonatal) deaths result in
poorly estimated parameters. Consequently, the tails of
the bootstrap sampling distribution are badly behaved at
levels of 95% and higher. However, the behaviour the tails
of the distribution at the 90% level is satisfactory enough
to allow us to construct the percentile confidence interval.
The bad behaviour of the tail of the bootstrap sampling
distribution also does not allow the BC methods to
improve the endpoints of the percentile confidence
interval. Therefore the sparsity of the data results in the
bad behaviour of the tail of the bootstrap sampling
distribution at levels of 95% and higher. However, the
reduction of confidence coefficient results to find the
robust confidence interval.

Table 1 displays the 90% percentile confidence
interval and classical confidence mterval based on the
results of the package GLIM (Aitkin e# al., 2005). As we
can see, the two confidence intervals are completely
different and the percentile confidence intervals are
shorter than classical confidence intervals with the same
confidence coefficient. Shorter size is one of optimality in
using confidence intervals (Casella and Berger, 2002).

In the percentile confidence interval, the variable
“baby birth order (2nd or later baby)” is associated
positively with early neonatal death. Uddian and Hossain
(2008) reported similar results. A previous caesarean
delivery does not increase the risk of neonatal death
(Richter et al., 2007). We also find similar results as
reported in Table 1.

We observed that “the week of 1st antenatal visit”
also 1s associated negatively with neonatal death
Uddian and Hossain (2008) reported that the negative
association between neonatal mortality and timing of
first antenatal checlk was highly significant such that the
neonatal mortality was highest among the babies whose
mother had not received antenatal check during
pregnancy. Improving antenatal and neonatal care are
resulted in the decline in perinatal mortality
(Forssas et al, 1998, Cruz-Anguiano ef al., 2004).
Moreover, every year many women die due to pregnancy
and delivery-related complications. Many of these deaths
and related morbidity can be avoided through effective
appropriate matermty care and preventive, diagnostic and
timely therapeutic interventions (Petrou et af., 2003).
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Table 1: The results of bootstrap and classical confidence intervals

Variables

20%% percentile bootstrap C.1. 2004 classical C.I

Baby birth order

Abnormality
during pregnancy

Whether labour
induced

Past complication
of pregnancy

Intercept

Re: First baby

2nd or later baby
Miscarriage

Re: None

APH?

Placenta praevia
APH and Bleeding
Placentatbleeding
Bleeding

Other abnormality
Birthweight
(Birthweight)**2

The week of 1°' antenatal visit

RE: None
Oxytocintsurgica

Oxytocintnonsurgial

0.B.E.+oestrogen

Oxytocin in Labour

Re: None
Caesarean
Other abnormality

No. of past stillbirths or neonatal deaths

(-2.392, 10.788)

(1.039, 21.675)
(-0.183,10.83)

(-0.022, 18.128)
(-4.677,-0.27)
(-3.493,5.513)
(-3.187, 2.374)
(-3.34, 2.607)
(-1.231, 0.928)
(-1.443, 0.008)
(-1.244, 1.883)
(-1.49,-0.006)

(-3.083,-0.285)
(-3.805, 3.279)
(-4.564,-0.222)
(-0.405,-0.001)

(-3.813, 3.482)

(-27.593, 21.757)
{-16.234, 32.722)
{-16.667, 32.377)
{-11.026, 24.506)
{-117.93, 111.71)
{-0.698, 2.42)
(-0.641,1.957)
(-0.315, 1.634)
(-1.208, 0.448)
(-0.54,-0.152)
{0.106, 0.788)
(-0.449, 0.04)
{-65.082, 59.906)
{-0.341, 1.547)
{-55.745, 50.127)
{-174.08, 171.63)

(-0.445, 1.4)

APH?: Accidental anteparturn haemorrhage

Whether the baby is delivered naturally or with
assistance reflects both the effect of previous
pregnancies and the current pregnancy. If the health of
the mother or baby would be endangered by allowing the
pregnancy to continue, the labour will be induced by
using artificial means. Sanchez-Ramos ef al. (2003)
reported that women whose labour was induced
experienced a lower perinatal mortality rate. We found
that the  variable  whether labour  induced
(oxytocintsurgical, O.B.E.+oestrogen and oxytocin in
labour) are negatively associated with early neonatal
deaths for assisted delivery babies.

We also found the variables abnormality during
pregnancy (placenta praevia), past complication of
pregnancy (other abnormality) are negatively associated
with early neonatal deaths for assisted delivery babies. In
fact the association between wvariables “abnormality
during pregnancy, past complication of pregnancy with
early neonatal deaths is the effect of type of delivery on
the surviving baby during the first week after delivery
(Zadkarami, 2000). Moreover, a previous caesarean
delivery does not increase the risk of neonatal death
(Richter et al., 2007). We obtained similar results as
reported in Table 1.

However, in the classical confidence interval, the
terms birthweight and (birthweight)**2 are the only
significant variables. Considering the results that are
displayed in Table 1 and discussion about variables in the
model, the percentile confidence interval presents better
results for the sparse data.

(-13.415,-0.44) (-22.049, 12.747)
(-5.213, 0.407) (-1.349, 0.753)
CONCLUSION

Owr results confirm that sparsity of the data can
affect the results of fitting binary models. We found that
some parameters that are non-significant when using
classical confidence interval become significant with the
bootstrapping sampling methods and vice versa. We also
found that the bootstrap confidence intervals are shorter
than classical confidence intervals with the same
confidence coefficient. Therefore, the bootstrap
confidence intervals are more robust and the bootstrap
methods can be useful to confirm results in the analysis
of sparse data.
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