——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com




Tournal of Applied Sciences 8 (17): 3005-3011, 2008
ISSN 1812-5654
© 2008 Asian Network for Scientific Information

Estimation of Vegetable Qil-Based Ethyl Esters Biodiesel
Densities Using Artificial Neural Networks

Saeid Baroutian, Mohamed Kheireddine Aroua,
Abdul Aziz Abdul Raman and Nik Meriam Nik Sulaiman
Department of Chemical Engineering, Faculty of Engineering, University Malaya,
50603 Kuala Lumpur, Malaysia

Abstract: Tn this study a new approach based on Artificial Neural Networks (ANNs) has been designed to
predict the density of various vegetable oil-based ethyl esters biodiesel. The experimental densities data
measured at various temperatures from 15 to 90°C at 1°C interval were used to train the networks. The present
work, applied a three layer back propagation neural network with nine neurons in the hidden layer. The results
from the network are in good agreement with the measured data and the average absolute percent deviation are
0.35, 0.72, 0.54, 0.68 and 0.72% for the ethyl esters of palm, canola, corn and ricebran oil, respectively. The
results of ANNs have also been compared with the results of theoretical estimations.
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INTRODUCTION

Biodiesel 1s a renewable fuel produced from biological
oils and fats, which has many characteristics of a
promising alternative energy resource. It has properties
similar to ordinary diesel fuel made from crude oil and can
be used mn conventional diesel engines. The most
common process for making biodiesel 15 known as
transesterification. This process involves combining any
natural oil (vegetable or animal) with virtually any alcohol
and a catalyst. Among the applicable cils and alcohols,
vegetable oils and methyl and ethyl alcohol are most
frequently used in the biodiesel production

Density data are important in numerous chemical
engineering unit operations. Biodiesel density data as a
function of temperature 13 needed te model the
combustion processes and other applications. The
density of a ethyl ester biodiesel depends on its molecular
welight, free fatty acid content, water content and
temperature. As vegetable oil based biodiesel 15 getting
popular as a fuel, a similar procedure for correcting
measured density data will be needed. Results of
measurements and predictions of specific biodiesel
properties have been reported recently but ethyl ester
biodiesel density measurements and predictions were
rarely done.

Liew et al. (1992) determined the densities of the
methyl esters of hexanoic, heptanoic, oetanoic, decanoic
and dodecanoic acids. Tate er al. (2006) obtained the

densities of cancla, soy and fish oil methyl esters at
temperatures up to 300°C. Noureddini et al. (1992) has
measured the density as a function of temperature for a
number of vegetable cils as well as eight fatty acids in the
range C9 to C22. Baroutian ef al. (2008a) measured the
density of palm oil-based methyl ester at various
temperatures and validated the data obtained was
validated with the results of estimation methods.

Neural networks or simply neural nets are computing
systems which can be trained to learn a complex
relationship between two or more variables or data sets.
Neural networks utilize a matrix programming env ironment
making most nets mathematically challenging. The newron
model and the architecture of a neural network describe
how a network transforms its input to output. This
transformation can be viewed as a computation. Each
model and architecture generate limitations on what a
particular neural net can compute. The way a network
computes its output, is in such a way that the products of
the neuron’s output and weight are summed with the
neuron’s bias and passed through the transfer function to
get the neuron’s output. Neurons may be simulated with
or without biases.

The feed forward neural network is one of the most
important historical developments in neurocomputing.
One of the many benefits of this kind of network is the
capability to approximate mathematical function or
mapping. Subsequently, it was shown that a feed forward
neural network with one hidden layer could approximate
any continuous function to any degree of accuracy.
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Back propagation was created by generalizing the
Widrow-Hoff learmning rule to multiple-layer networks and
nonlmear differentiable transfer functions. Input vectors
and the corresponding target vectors are used to train a
network until 1t can approximate a function, associate
mput vectors with specific output vectors, or classify
vectors 1 an appropriate way as defined. Networks with
biases, a sigmoid layer and a linear output layer are able
to approximate any function with a finite number of
discontinuities. Standard back propagation is a gradient
descent algorithm, as is the Widrow-Hoff learning rule, in
which the network weights are moved along the negative
of the gradient of the performance function. The
schematic for the back propagation model 1s shown in
Fig. 1. The term back propagation refers to the manner in
which the gradient computed for nonlinear multilayer
networks.

There are two different ways in which the gradient
descent algorithm can be inplemented: meremental mode
and batch mode. In the incremental mode, the gradient is
computed and the weights are updated after each input is
applied to the network. Tn the batch mode all of the inputs
are applied to the network before the weights are updated.

Since, the first application to estimate chemical and
physical properties of material, Artificial Neural Networks
(ANNSs) have been established as a dependable method
for the achievement of this task. Neural network models
have been used for the prediction of biodiesel
characteristics, with very good results.

Ramadhas et al. (2006) successfully developed a
multi-layer feed forward Astificial Neural Networks to
predict the Cetane number of biodiesel. Duran et al. (2005)
used neural networlks for estimation of diesel particulate
matter composition from transesterified waste oils
blends. Baroutian et al. (2008b) emploved artificial neural

Expected
outputs

Fig. 1: Back propagation learming schematic (Grossberg,
1987)

networks to estimate the density of pure palm oil-based
methyl ester biodiesel. The results from the network were
in good agreement with the measured data and the
average absolute percent deviation 1s 0.29%.

In this study, a new approach based on Artificial
Neural Networks (ANNs) has been designed to estimate
the density of vegetable oil based ethyl ester biodiesel
obtained from various vegetable oils. Measured data of
densities at various temperatures from 15 to 90°C were
used to tram the networks and test the results of it. The
present study, applied a three layer back propagation
neural network with nine newrons in the hidden layer.
Predicted results were also compared with experimental
densities and estimated results of theoretical method.

MODEL SPECIFICATION

TIn this study, in order to train and validate the neural
network, several measured density data of various
vegetable o1l ethyl esters were used (Duran et al., 2005).
The ethyl esters biodiesels obtained from palm, soybean,
canola, com and ricebran oil.

Biodiesels were prepared by transesterification of
vegetable oils using ethanol as alcohol sowce and
potassium hydroxide as catalyst in a batch system. The
reactions were carried out using 100% excess ethanol, 1.e.,
molar ratio of ethanol to o1l is 6:1. Ethyl ester densities
were measured at temperatures from 15 to 90°C,
measurements were done three times to obtain mean
values for each temperature.

The present study, applies a feed forward back
propagation neural network in three layers. The mput,
hidden and output layers had 5, 9 and 1 neurons,
respectively as showed in Fig. 2.

Deciding the number of neurons m hidden layer 1s a
very important part of deciding our overall neural network
architecture. Though the hidden layer does not directly
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Fig. 2: Feed forward back propagation networlk with three
layers
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interact with the external environment, this layer has a
tremendous influence on the final output and nmumber of
neurons of this hidden layer must be considered.

Using too few neurens in the hidden layers will result
i something called underfitting. Underfitting occurs
when there are too few neurons in the lidden layers to
adequately detect the signals in a complicated data set.
Using too many neurons in the hidden layers can result in
several problems.

First too many neuwrons in the hidden layers may
result in overfitting. Overfitting occurs when the neural
network has so much information processing capacity
that the limited amount of information contained in the
traiming set 1s not enough to tramn all of the neurons in the
hidden layers. The second problem 1s mereasing the time
of traimng.

Obviously, some compromise must be reached
between too many and too few look neurons mn the hidden
layers. The selection of the architecture of the neural
network has come down to trial and error. To organize the
trial and error search for the optimum network architecture
forward selection method was used. This method begins
by selecting a small number of hidden neurons (only two
hidden neurons).

Subsequently, the neural network is trained and
tested. The number of hidden neurons 1s then ncreased
and the process 1s repeated so long as the overall results
of the tramming and testing improved. The forward
selection method 1s shown n Fig. 3.

Each layer of this network has its own weight matrix,
its own bias vector, a net input vector and an output
vector. This network can be used for general function
approximation. It has been proven that three layer
networks, with sigmoid transfer function in the hidden
layer and output layer, can approximate virtually any
function of interest to any degree of accuracy, provided
that a sufficient amount of hidden units are available.

Therefore, the newron model key component, the
transfer function, 1s used to design the network and
establish its behavior. Sigmoid functions are often used
in neural networks to mtroduce nonlmearity in the model
and/or to make sure that certain signals remain within a
specified range.

A popular neural net element computes a linear
combination of its input signals and applies a bounded
sigmoid function to the result; this model can be seen as
a smoothed variant of the classical threshold neuron.

A reason for its popularity in neural networks is that
the sigmoid function satisfies this property. The
derivative of the sigmoid function can be written
(Mitchell, 1997):

Select a small No. of
layer nenrons

v

Train the network and |
evaluate the performance [

Add a hidden
neuron

Is performance
acceptable?

Fig. 3: Selecting the nmumber of hidden neuwrons with
forward selection

%sig(t) = sig(t)(1 - sig(th) (1)

This simple polynomial relationship between the
sigmoid function and its derivative is computationally
easy to perform. It makes the back-propagation based
learning easy because, it is differentiable, has simple
relation between the function and its derivative, is flexible
with easily changeable slope signs and the error
convergence criteria of mean square error works well
with it.

MATERIALS AND METHODS

The methodology of the approach used in this study
is accomplished by means of Matlab Toolbox. This
software has extensive neural net capabilities. The study
was conducted in 2008 at the Department of Chemical
Engineering, University Malaya.

In this study, ethyl ester biodiesel prepared from
transesterification of various vegetable oils and ethyl
alcohol in presence of potassium hydroxide catalyst i a
batch reaction system. The reactions were carried out
using 100% excess ethanol, i.e., molar ratio of ethanol to
o1l 1s 6:1. After an hour reaction time in 50°C reaction
temperature, the produced biodiesel were analyzed by gas
chromatography method to determine the fatty acid ethyl
ester composition.

Density measurements were carried out using a DMA
4500 density/specific gravity meter (Anton Paar, Austria).
The adjustment of the density meter was checked using
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degassed bi-distillated water, the measured value was
compared with the corresponding value in the density
tables and the accuracy was £0.00003 g cm . Ethyl ester
densities were measured at temperatures from 15 to 90°C,
measurements were done three times to obtain mean
values for each temperature, the uncertainty was
+0.00001 g cm ™,

Among the 380 density data pomnts, 340 measured
densities of various vegetable o1l based ethyl esters at
different temperature from 15 to 90°C were chosen to train
the network and the rest for simulation and evaluate the
accuracy of the newly trained network by providing the
network a set of data it has never seen.

To improve the learning process fatty acid
compositions of ethyl esters were used as input
parameters. These fatty acid compositions include ethyl
palmitate (C16:0), ethyl stearate (C18:0), ethyl oleate
(C18:1) and ethyl linoleate (C18:2).

The procedure to create and train a network using
this toolbox was as follows:

*  Input (temperature, C16:0 wt.%, C18:0 wt.%, C1&:1
wt.% and C18:2 wt.%) and target (density) vectors
entered in its suitable format in the workspace of
Matlab.

¢ The vectors normalized independently to assign a
number between -1 and 1 to each element of vectors
because inputs are sensitive in this range when
sigmoid transfer function is used. On the other hand,
mputs are normalized because the traming domain
may be biased toward one mput variable or toward
higher mput. Furthermore, the sigmoid transfer
function produces the output within the range of -1
to 1 and if the input is not normalized, bias may be
generated.

¢ A three layer feed forward backpropagation network
created in the Matlab neural networks toolbar. This
was done because back propagation uses a gradient
descent method and it allows the neural network to
train with a higher degree of efficiency.

¢  Trainlim and Tansig chose as training and transfer
fumetion, respectively.

* Input and target vectors introduced to the created
network and weight imitialized.

¢  Traimng parameters such as the epochs and error
goal adjusted.

*  The specified network trained gradually. This process
finished when the defined error was reached. During
training the weights and biases of the networks were
iteratively adjusted to minimize the network
performance function.

llllrl'l'l!l
1 23 4 5 6 7 8 9 1011 12 13 14 15

No. of neurons

Fig. 4. Average Absolute Percent Deviation (AAPD)
parameter of training results versus number of
neurons in hidden layer

The optimized mumber of lndden layer neurons was
determined during the learning and training processes by
trial and error tests. On the other hand, different numbers
of hidden neurons were tested, however since the
performance did not change significantly with more
neurons, the simplest network was chosen. To show
optimization, 1, 3, 5, 7, 9, 11 and 13 neurons were chosen
for training process.

As can be shown m Fig. 4, the best choice 15 the
network with nine neurons in the hidden layer which is
in good agreement with the experimental data. In Fig. 4,
the Average Absolute Percent Deviation (AAPD)
parameter of training process using different number of
hidden layer newrons is shown according to the
eXPIession:

1 N
AAPD =—
2

i=1

«100 (2)

Density o pmonia — DENSIY siinge
Density )

exprimental

After traiming the three-layer, feed forward, back
propagation network, the vegetable oil ethyl esters
biodiesel densities at other temperatures were predicted
from the simulation of this network with the suitable
inputs.

RESULTS AND DISCUSSION

As can be shown in Fig. 5, there is a very good
agreement between the measured data (normalized
density) and the trained data.

This illustrates that the networks has been trained
very well and can be used to simulate the biodiesel
density at a wide range of temperatures.

There is a good agreement between the experimental
data and the simulated data. The equations of the form
y =t (%) in the Fig. 5 and 6 are the equations of the
regression lines. Whern, all the pomts fall exactly on the
line of 45° the regression line is y = x. In this case, the
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Normalized density (trained)

i
T

Normalized density (experimental)

Fig. 5: Comparison between the tramning results and the
measuring data (Normalized data)
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Fig. 6; Comparison between the simulating results and
the measuring data (Normalized data)

network is trained or simulated very well. Otherwise, the
regression line will has the form of y = ax+b. The
regression constants (R*-value) which are also shown in
Fig. 5 and 6 show the agreement of trained and simulated
data with experimental data.

In Fig. 7, the measured densities of ethyl ester
biodiesels obtained from various vegetable oils, mcluding
palm, soybean, canola, corn and ricebran oil are compared
with those predicted by the ANNs. It can be seen that
there is a very good agreement between the results of the
ANNs and the measured data, The AAPD parameters for
neural network simulation are 0.35, 0.72, 0.54, 0.68 and
0.72% for the ethyl esters of palm, canola, corn and
ricebran o1l, respectively.

In Fig. 8-12, the predicted densities by ANNs are
compared with those predicted by the Spencer and
Damner method (Baroutian ef al., 2007¢). The AAPD
parameters for the result of Spencer and Dammer method
are 6.86, 13.5, 7.37, 8.09 and 6.34% for the ethyl esters of
palm, canola, com and ricebran o1l, respectively. It can be
seen that the ANNs give a better prediction with less
deviation than those given by Spencer and Danner
method. Although, the Spencer and Danner method has
good prediction reliability at lower temperatures but at
higher than 30°C ANNs are more reliable.

0.018
. < Palm
0.016 . : O Soyt
0.014+ N o Canola
_ _ * Com
g 0.012 o X
= 0.010- o o A Ricebran
§ i e :
g 0,008 g . o g
8 0,006
[ ] ]
0,004 o © o :
0,002 o m by
0-0m E) 1 T T T ; T ; T
0 10 20 30 40 50 o6 70 8 90 100
Temperature (°C)

Fig. 7. Comparison of ethyl ester density estimation
deviations from experimental data
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Fig. 8 Palm ethyl ester density deviation from
experimental data, comparison of ANNs and
modified rackett method

0.40
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g 0.25
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Fig. 9. Soybean ethyl ester demsity deviation from
experimental data, comparison of ANNs and
modified rackett method

The better predictability of ANNs can be attributed to
its adaptability that changes its structure based on
external or internal information that flows through the
network during the learning phase. ANNs are rich and
flexible systems that show robust performance in dealing
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Fig. 10:Canola ethyl ester density deviation from
experimental data, comparison of ANNs and

modified rackett method
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Fig. 11:Corn  ethyl ester density deviation from

experimental data, comparison of ANNs and
modified rackett method

with noisy or incomplete data and have the ability to
generalize from the input data. They may be better suited
than other modeling systems to predict outcomes. In this
study due to the sufficient amount of traiming data, the
network trained properly and the outputs were accurate.
Spencer and Danner method use the modified Raclett
equation with critical properties of mixtures to estimate
liquid density (Spencer and Danner, 1972).

The Rackett equation modified by Spencer and
Danner to estimate liquid density p (g cm™) is (Spencer
and Danner, 1972):

p=tn (3)

T
ZRA

Where:
o=(1-T/T Y7 —(l-T,/T)" 4

In Eq. 3 and 4, Zg, 18 Rackett compressibility factor
and can be determined for biodiesel using measured

=-¢-- ANNs
025- —=— Modified rackett

Deviation (%)
o
v
1

10 20 30 49 50 60 70 80 90 100
Temperature {*C)

Fig. 12:Ricebran ethyl ester density deviation from
experimental data, comparison of ANNs and
modified rackett method

densities and applying the Eq. 3. T(K), T(K), T(K) and ¢
are temperature, reduced temperature, critical temperature
and fugacity coefficient, respectively.

To determine the mixture critical properties, the Tee-
Kesler mixing rules can be used (Plocker et af., 1978). The
equations to calculate critical temperature of mixture T,
(K), P, (bar) and V_, (cm’ mol™) are:

T, - V%,ndz SRRV, (5)
vV, = Z;X'X’Vw (6)
o, = me (7
T, = (T,T,) K, (8)
V= %(V;” +VIEY &)
P =(0.29050.085c0, )RT_ / V. (10)

where, x 13 mole fraction, w 1s acentric factor and R 1s gas
constant (mT.. bar mol™ K™). The fatty acid composition
of the ethyl esters are shown m Table 1.

The critical properties of each pure constituent (fatty
acids of ethyl esters) are estimated by the Joback
modification of Lydersen’s method (Poling et al., 2000)
using the following relations:

-1

T.=T, {0.584 + 0.965{2 N, (tck)}— {Z N, (tck)}z} (11)

k k
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Table 1: Fatty acid mole fraction of vegetable oil ethyl esters

Fatty acid Palm Saybean Canola Com Ricebran
cthy] ester X X X X X
C16:0 0.47 0.14 0.06 0.11 0.19
C18:0 0.04 0.05 0.02 0.03 0.05
Cc18:1 0.38 0.25 0.71 0.29 0.32
C18:2 0.11 0.56 0.21 0.57 0.44
-2
P, =| 0113 +0.0032N,,,, - SN, (pck)} (12)
k
V, =175+ 3" N, (vck) (13)
k
CONCLUSION

The approach presented in this study speeds up the
process of prediction of the densities of various vegetable
oil-based ethyl ester biodiesels. This new approach is
based on artificial neural networks to estimate the density.
This method 1s able to predict the density at various
temperatures. The comparison of the results obtained by
Artificial Neural Networks (ANNs) with those predicted
by Spencer and Damer method (Spencer and Danner,
1972) shows the reliability of ANNs over the theoretical
methods. Finally, good agreement between measured data
and the result of artificial neural network shows that the
ANNs can be a powerful model for predicting density for
the ethyl esters biodiesel of different vegetable oils.

Furthermore, this approach provides a new way to
estimate the density of ethyl ester biodiesel with respect
to available methods accurately.
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