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Abstract: In this study, consider three general flowshop scheduling problems: (1) with the objective function
of the total weighted tardiness and the assumption of having ready tumes for jobs, (2) with the objective
function of the makespan and the constraints of time lags and (3) with the makespan as objective and the
constraints of the Sequence Dependent Setup Times (SDST). We present a Mixed Integer Linear Programming
(MILP) model for each of them. The modeling formulations of this paper can generate the non-permutation

schedules and cover the missing operations assumption. The implementation of the proposed formulations is

demonstrated using some numerical examples.
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INTRODUCTION

There are many mathematical formulations for
modeling the flowshop scheduling problem in the
literature (Stafford et al., 2002, 2005; Rios-Mercado and
Bard, 2003). But these models generate only the
permutation schedules. One reason 18 that in a m-machine
n-job non-permutation flowshop scheduling problem, the
total mumber of feasible schedules tends to (n!)™ and n
the permutation case, the number of feasible solutions is
reduced to n! (Pugazhendhi ef al., 2002), since in the
problem under the permutation assumption, the sequence
of jobs on all machines are the same. Therefore, modeling
and solving the non-permutation problems are much more
difficult. Another reason is that there is little improvement
made by non-permutation schedules over permutation
schedules with respect to completion-time based criteria.
But the improvement is significant with respect to some
special constraints such as SDST, missing operations of
jobs, time lags and so on, or due-date based criteria like
maximum tardiness or total weighted tardiness (Liao et al.,
2006). However, there 1s a lack of mathematical
programming models for the non-permutation flowshop
scheduling problem with these
objectives in the literature.

An important assumption in the flowshop scheduling
problem which is seen in many of the real problems is the
missing operations of jobs which allow the jobs to pass
some machines with any processing. Pugazhendhi and
Rajendran have done extensive researches on this kind of

assumptions and

problem and presented several heuristics and meta-
heuristics for solving the problem with some objectives
separately, for example see (Pugazhendhi et al., 2002;
Rajendran and Ziegler, 2001). But there is not any
mathematical formulation to model the problem. Although,
it can use the regular flowshop scheduling models for this
type of problem by setting the processing time of missing
operations to zero, but they do not have the desired
performance with respect to the objective function value,
because of the specific type of this problem which would
be described later. Therefore, the missing operations
assumption 1s lighlighted in this paper and its proposed
models.

In tlis study, consider three non-permutation
flowshop scheduling problems: (1) with the objective
function of the total weighted tardiness and the jobs
having ready times, (2) with the objective function of the
makespan and the constraints of the start-start and stop-
start time lags (Fondrevelle et al, 2006), (3) with the
objective function of the makespan and the constraints of
SDST. These problems are very applicable i the real
world and wusually denoted as Fir/EwT, FAIC ..
F/ST /C... respectively (Allahverdi et af., 2008). Here,
present a MILP model for each problem. The modeling
formulations of this paper can generate the non-
permutation schedules and cover the missing operations
assumption. They are also linear models and linearity may
lead to lower complexity and higher performance. Finally,
the conclusion remarks of this study are presented at the
end to summarize the contribution of the study.
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General notations used throughout the study are:

I : TheNo. of jobs

K :  TheNo. of machmes

1 : Denotes i'thjob,i=1,...,1

k Denotes k'th machine, k=1,.. . K

Ty :  The processing time of job i on machine k,

X | DBinary variable taking value 1 if 1'th job on k'th
machine is processed in j'th order and 0O
otherwise. If t, = 0, then the operation really
does not exist. However, a rank is given.

qy ©  The completion ime of job 1 on machine k if it is
processed in j'th order.

PROBLEM 1

In this problem, the objective is to minimize the total
welghted tardiness. It assume that the jobs may reach to
the shop after the time zero. Let 1, d and g be the ready
time, the due date and the completion tine (ie. the
completion time of the final operation of job i on the last
machine) of job 1, respectively, then the tardiness of job 1
is denoted as D, D; = max (0, g—d,). The proposed MILP
model 15 as follows. M 1s an upper bound of the makespan
(Tt has not to be tight and can be set to the sum of all
processing times).

1
min 2 3. (D,)
!
Subject to:
! .
Z(qxj(kﬂ) - Q) 2 by i=1,..Lk=1,,(K-1) (1)
1
; (qx(]+1)k Ty Mg 'Q,Jk) 20 j=L..d-1xk=1K (2)
ty, =0
I
D -3y +d. 20 i=1,..1 (3)
1
D, >0 i=1,.,1 (4

i=1,.Lk=1,.k (3

1
Zx‘jk =1
i=1

i=1,.Ik=1,.k (6)

1
> Xy~ 1
=1

g, -Mx,, <0 i,k (7)

ik =

i

1
3, -ty -1, 20 i=1,.1 (8)
1

X, belong to {0,1} i, ).k (9)

Note that the sum 2., 9, equals the completion time
of operation (i, k). Similarly, >, 9 is the completion
time of the operation ranked j on machine k. The
constraint sets 1 and 2 insure that a job does not start on
a machine until it finishes processing on the previous
machine and its predecessor has completed processing on
that machine. In the constraint set 2, if the processing time
of operation (1, k) 1s equal to zero (t, = 0), then the
constraint set 2 does not effect on this operation and so
the completion time of the operation is determined based
on the other constraints. The constraimnt sets 3 and 4 are
related to the jobs tardiness described earlier. The
constraint set 5 insures that in each machine, each
sequence position is filled with only one job and the
constraint set 6 insures that in each machine, each job is
assigned to only one position in the job sequence.
Constraint set 7 bind pairs (x;, q;.); if g0, thenx, = 1.
The constrant set 8 msures that each job on the first
machine does not start earlier than its ready tune.

Numerical example: Let us consider, the following
instance of a 5-machine, 4-job problem:

2.0 315
35 7 42
Ly =
21 569
010 58 4
wi=[3 2 4 1]
tT=[7 21 5] d"=[21 27 15 39]

To compare the best solution with the best
permutation solution of the problem, Here, first present
the optimal permutation solution of the above test
problem which is shown in Fig. 1. The objective value of
this solution is equal to 66.

To understand the role of considering the missing
operations assumption in improving the objective value,
we also solve the problem 1 model without considering
this assumption, i.e., the constramnt set 2 changes as
follows:

> Wiy - b X A 2 0 j=1,..0-1k=1,.K

iel L,

The optimal solution of this model is shown n Fig. 2.
In this solution, the objective value is equal to 60 and for
two missing operations, ie., (1, 2)and (4, 1), we have
Qzz = 9and g, = 9.
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Fig. 1: The optimal permutation solution of the example of problem 1
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Fig. 2: The optimal solution of the example of problem 1 without considering the missing operations assumption
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Fig. 3: The optimal solution of the example of problem 1

The optimal solution of the test problem 13 shown in
Fig. 3 where, the objective value of this solution 15 equal
to 58.

In the above optimal solution reported by a solver,
Qi3; 18 equal to 9. Because the constraint set 2 of the
model does not affect the missing operation (1, 2) and so
the completion time of this operation is determined based
on the other constraints. In this example, the optimal
solution 18 a non-permutation schedule.

HEEEE |
1 3

PROBLEM 2

In this problem, it is assumed that there are given time
lags. These time lags are the waiting times between two
consecutive operations of the same job. Here, assumes
that the gap between the starting time of 1'th job on k'th
machine and its starting time on (k+1)'th machine (start-
start time lag) must be greater or equal to a,y,, and the gap
between the fimshing time of 1'th job on k'th machine and
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its starting time on (l+1)'th machine (stop-start time lag)
must be greater or equal to byy,,). Therefore, if job i starts
on machine k at (g, —t,) then it can start on machine k+1
at (G~ tigery) SUch that,

=(q

sy i ey ™ teety )- (Cluk -t )

and similarly,

<(q,

i e 1(k+1)) - (qqk)

'(kﬂ)

The MILP model of this problem is as follows. v is the
makespar, 1.e., the largest completion time.

mnz=y

subject to:
I
2w -y <0 k=1,.K (10
=
I
X (A X 20 (11
=
I i 12
Z(qg(kﬂj - qqk) - t‘1(k+1) Tl - Diere sy =0 l’k:a1(k+1) =0 ( )
1
! .
Z(qg(kﬂj ~ i) - ey = Digeany 20 Lkibgy >0 (13)
1
Z(qu(kﬂ) quk) Ly = i=k:a(k+1) 0 ,(1<+1) =0 (14

And the constraints 2, 5 to 7 and 9 of the problem 1
model are added to the above constraints with no
changes. Constraint set 10 affects the objective function.
Note that the makespan may be not achieved on
machine I because of missing operations on this machine.
Hence these constraints involve all machines. Constraint
(11) affects the completion time of the first operation on
machine 1. The constraint sets 12 and 13 are related to the
start-start and stop-start time lags described above. The
constraint set 14 is the same as the constraint set 1 in the
model of the first problem.

Numerical example: Consider a 5-machine 4-job test
problem one more time where the values of processing
times are the same as those of the example of problem 1
and the parameter values for the start-start and stop-start
time lags constraints are as follows:

o

w
(== =RV )
o o o o ow
(=TS T
W wnm o o
(=TT TR N S
[ =T ==
(=R

If we have ay,,, >0 {orby.,;>0) and t, =0or
tigeny = O, then this processing time of zero does not mean
a missing operation, i.e., the operation really exists, but its
processing time is very little and near to zero.

The optimal solution of the test problem 1s shown in
Fig. 4.

And the optimal permutation schedule of the test
problem 1s shown in Fig. 5.

12 3 456 7 88 101121314156 16171819 2021 2223 2425 2627 282930313233 3435 36 337 318 I

3 1 2

Machine 1

3 i

Machine 2

2
1]

Machine 3

IMachine 4 1

IMachine 5

Fig. 4: The optimal solution of the example of problem 2

12 3 456 7 8 9 10111213 14 15 16 17 181920 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 41 42

1 1 2
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4
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N

Fig. 5: The optimal permutation solution of the example of problem 2
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PROBLEM 3

Here, 1t consider the case of SDST where the
objective 1s to mimimize the makespan. Let s, be the setup
time between two consecutive jobs i, i' on machine k.
Therefore, the proposed model is formulated as follows:

mnz=y
subject to:

I

Zqﬂk'yso k=1, K (15)
i=1

I

2y -ty %) 20 (16)
i=1

1

1
Z(qu(kﬂ) - quk) by — ZZ (Si'l(k+1)xi'ij(k+1)) 20 i=1.,Lk=1.,(K-1)
1 =
(17

3 (e~ taXigem ~ G — 2 (RS} 20 j=1..(I-1xk=1,.K
el 1 i

jell, fElL
1y =0 1

e .
tfk =0

(18)

Epiotyoety T Koty — Koty <1 iL,i'=1,.Lj=2,..Lk=1,,(K-1)

(19)

Kigape + Xige — x;jk =1 ipi'=1,..Lj=1,,0-1xk=1,.K
(20)

—Xnen — Nigon F 2gaan 0 LIT=1L5 =2, Lk=1,(K-1)
2D

Li=1,.L j=1,.d-1:k=1,.K
(22)

i

'
“Eigane ~ Xige + 2Xig <0

Xigieaty ,X;,Jk belongto {0,1} iitj=1,.Lk=1,.K

(23)

And the constraimnts 5 to 7 and 9 of the problem 1
model are added to the above constramts with no
changes. v is the makespan, i.e., the largest completion
time. The constraint set 15 is related to the makespan. The
constramt 16 msures that the first job on the first machine
does not start earlier than the time zero. The constraint
sets 17 and 18 insure that a job does not start on a
machine until it has finished processing on the previous
machine and its predecessor has completed processing on
that machine and, that machine has set up for processing
the job. The constraint sets 19 to 22 are added to the
model for converting the nonlinear expressions to linear
(Schrijver, 1998).

123 466 789 0112314151617 1819202 2

Machine 1 3 2 1 I

Machine 2 3 2

Machine 3 3 1 2

Fig. 6: The optimal solution of the example of problem 3

Numerical example: Here, consider a 3-machine 3-job
example with the following data.

2 0 3
t,=|3 5 7|
21 5
Sin =4 S1=3, 55 =3, 5,=5,
Son =2, 5535, 5y =4, 555 =6,
S;p=2, 355=1, 85, =

And all other s, variables are equal to zero.
The optimal solution of this test problem is shown in
Fig. 6.

CONCLUSION

In this study, 1t 1s presented some MILP models for
some general flowshop scheduling problems. The
proposed models of this paper can generate the non-
permutation schedules and cover the missing operations
assumption which can be found in many real world
problems. The implementation of the proposed models on
some numerical examples has shown that the proposed
models could present better solutions compared with the
optimal permutation solutions and even compared with
the optimal non-permutation solutions which are obtained
from the proposed models without considering the
missing operations assumption.
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