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Development of Real Time Multitask Kernel
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Abstract: This study describes real-time kernel essential mechanisms and deals with the implementation of a
real-time multitasks executive. To make more advantage of microprocessors in applications mvolving many
functions simultaneously, our real-time kemel provides a multiprogramming environment in which many
independent multitasking application programmes may execute and provides facilities to manage efficiently the
processes (tasks) and communicate between them. These facilities are provided by system calls that handle data
structures namely tasks, semaphores, messages, events flag, resources, mail-boxes, queues and interruptions.
Present kernel 1s preemptive and priorities assigned to tasks are dynamic, the kermel manages up to 63 task
levels (63 is the lowest priority level assigned to the idle task). Round robin scheduling is not used here.
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INTRODUCTION

Software development tools are programs that help
developers create other programs and automate mundane
operations while bringing the level of abstraction closer
to the application engineer. In practice, software
development tools have been in wide use among safety-
critical system developers. Typical application areas
mclude space, aviation, automotive, nuclear, railroad,
medical and military (Kornecki and Zalewski, 2005,
Beccari et al., 2005).

Emerging parallel or distributed, heterogeneous real-
time computer systems with many disparate constraints
and requirements would benefit from a unifying and
comprehensive systems engimeering support in the
design, testing and deployment phases, which interfaces
with a human at a very lugh level and efficiently handles
the system complexity (Baki’c and Mutka, 2005).

Industrial control applications are usually developed
mn two phases: control design and real-time system
umplementation. In the control design stage a regulator 1s
obtained and later it is translated into an algorithm in the
implementation phase. Traditionally, these two phases
have been developed in separate ways (Balbastre ef al.,
2004).

The design of an industrial real-time application
always presents a certain specific number of difficulties.
If consequent progress was made on the level of the
design methods/specification, the passage to the detailed
design remains a current problem. Such an application is
in direct catch with the physical world. On the design
level, the application division m two sub-systems became
current (Harel and Prnueli, 1989) thus distinguishing the

transformational systems (tactical level of decision or
supervision) from the reactive systems (level reflex in
contact with the physical devices). The first produce
information starting from other mformation. The seconds
react to events resulting from the physical environment
associated to them and have, in theory, the critical time
constraints most severe (Fohler and Buttazzo, 2002; Real
and Crespo, 2004; Racu et al., 2007). The programming of
such applications rests then primarily on a multi-task data-
processing basis that it is mono or multiprocessors
(Baker, 2006) and the tools available are those introduced
to describe the parallel treatments in opposition to the
sequential treatments. They are on the one hand
numerical models of the operations partially or completely
parallels and on the other hand the computer tools
{operating systems and/or languages) facilitating the
implementation of such treatments. For the applications of
average complexity, which are also most current, one of
the tools most widespread is the executive multitasks real-
time. For the strictly reactive parts of a system, the use of
synchronous languages can prove to be useful.

Tn this study, we will exclusively devote our attention
to the implementation of an executive multitasks real-time.

The mcreasing complexity of real-time distributed
applications demands the use of more sophisticated and
diversified communication services. For instance,
communication services that enforce strong consistency
properties such as ordering and agreement at the
commumnication are used m many mifrastructures to
simplify the development of fault tolerance application
constraints. On the other hand, the necessity to provide
a diversified set of properties to applications demands
an increased flexibility i commumication systems
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(Rodrigues et al., 2007). The role of this one is to ensure
various tasks coherent scheduling of an application and
to place at the disposal of the programmer the essential
elements to manage the commumication/synchronization
and mutual exclusion functions. They make it possible to
cover, on a more or less raised level, the needs for
indication, synchronization, commumication and mutual
exclusion, using objects such as tasks, events, mail-boxes,
messages, semaphores, easy to handle via a set of
primitives.

Independent environments flexibility allows the
application programmers to manage separately each
application resource during development time and test
phases. Resources include processor scheduling,
mterruption resources and /0 devices (Abemi and
Buttazzo, 2004). Managing each of these system
resources and the way of sharing them will be discussed
further (Hamidzadeh et ai., 1999, Liu et al., 2007).

The multi-task kernel real-time, associated or not with
a complete system with file management are currently the
engines of applications in fields as varied as automation,
robotics, electronics, process  control,
instrumentation, telecommumnication and video.

For questions of portability, the major part of the
kernel is written in C language with a specific code of the

medical

target microprocessor written mn assembly language, kept
at least.

KERNEL STRUCTURES

This kernel can manage more than 60 tasks. The stack
size can be specified independently for each task,
reducing the necessary quantity of RAM. The kemel 1s
with ordering of priority and always executes the Higher
Priority Task (HPT), it is also completely preemptive. The
interruptions can suspend the execution of a task and if a
HPT is waked up, following the interruption, the taslk at
higher priority will be treated as of the completion of the
mterruption. The mterruptions can be overlapping until a
depth of 255 levels.

Critical sections: When the kemel 13 in treatment to
update the critical data, it must guarantee not to be
interrupted to avoid deteriorating the data. To guarantee
this, the kernel has the exclusive access to the critical
section of the code; it disables interruptions before
executing this code and enables them when it is
done. Macros OS ENTER CRITICAL () and
0S5 EXIT CRITICAL (), which are specific to the target
are used to disable

ILICTOPTOCEss O, and enable

interruptions.

Interruptions are never disabled for more than 500
CPU clock cyeles. An additional clock with 200 cycles 1s
necessary to save the processor context and to notify
with the kemel that an interruption was treated. The
interruption response 1s thus around 700 clock cycles of
the CPU. The execution times of all the kemmnel services are
deterministic.

Tasks: A task is a function with infinite loop, or a
function which autodestruct when it is executed. The
infinite loop can, possibly, being preempted by an
interruption which will allow a higher priority task to
be executed. The task can also call upon one of the
following kernel services: OSTaskDel (), OSTiumeDly ( ),
OSSemPend ( ), OSMbxPend () or OSQPend ().

A task can thus be declared as follows:

Void far Task(void *data)

{

User code;

OSTaskDel(task’s priority);

¥

Or

Void far Task(void *data)

{

While (1) {
Optional user code;
Call Kemel service to DELAY or PEND,
Optional user code;

The application can have up to 63 of these functions.
With each task only one level of priority from O to 63 1s
assigned. The lower priority level corresponds to the
highest priority of the task (the most important). The
priority number is also used to identify the task. The
priority number 1s used by the kernel
OSTaskChangePrio ( ) and OSTaskDel ().

services

Task states: The SLEEPING state corresponds to a task
which lies in the EPROM, but 18 not put of availability for
the kemel. A task 1s put of availability for the kemel by
call of OSTaskCreate ( ). When a task is created, it is put
READY for execution. Tasks can be created before the
beginning of multitasks, or dynamically by a task in
execution. If created task has a higher priority than its
creative task, the control of the CPU is given immediately
to the task created A task can even turn over by it or
another task to the state sleeping by call of OSTaskDel

0.
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Multitasks begin with OSStart ( ) which executes
created HPT. This task 1s then placed in the EXECUTION
state. The task in execution can be delayed for a certain
time by call of OSTimeDly ().

This task is then placed in the DELAYED state and
the HPT (higher prionty task) following takes the control
of the CPU immediately. The delayed task is put at the
READY state for execution by OSTimeTick ( ) when the
desired delay expires. The task in execution needs also to
await the occurrence of an event, while calling 1s
0S8SemPend ( ), OSMbxPend or OSQpend (). The task is
then on standby of an event. As a task awaits an event,
the following HPT takes the control of the CPU
immediately. The task is put at the ready state when the
event arrives. The occurrence of an event can be
announced either by another task or an ISR. A task in
execution can always be INTERRUPTED, unless it
disables the mterruptions. When an mterruption occurs,
the execution of the task is suspended and the TSR takes
the control of the CPU. The ISR can put one or more tasks
at the state ready to execute, by announcing one or more
events. In this case, before returning from ISR, the kernel
determines if the interrupted task is always the HPT ready
for execution. If a new HPT 1s put at the ready state to
execute by the ISR, then it is taken again. Otherwise, the
mterrupted task begins again.

When all tasks are, that is to say on standby for
events, or delayed for a number of clock tops, the kemnel
execute the idle task OSTaskIdle ( ).

Task control blocks: A task control block is assigned to
a task when 1t 15 created: OS_TCB, which 1s used by the
kernel to maintain the state of a task when it is preempted.
When a task takes again the control of the CPU, the
OS TCB makes it possible the task to take again the
execution exactly where it left. A kernal task control bolck
is shown as:

typdef struct os_tcb {

voud *OSTCBStkPtr,
UBYTE OSTCBStat;
UBYTE OSTCBPrio;
UTWORD OSTCBALY;
UBYTE OSTCBX,
UBYTE OSTCBY,
UBYTE OSTCBBItX;
UBYTE OSTCBBItY;
struct os_tch *OSTCBNext,
struct os_tch *OSTCBPrev,

OS_EVENT
}

*OSTCBEventPtr;

Here a description of each field in the data structure
of the O3S TCE:

OSTCBStkPtr: It contains a stack pointer of the task.
The kemnel makes 1t possible each task to have its own
stack. OSTCBStkPtr is the only field in the data structure
OS TCB reached by the assembly language (of context
commutation code).

OSTCBStat: It contains task state. When OSTCEBStat is
0, the task is ready to execute. Other values can be
assigned in OSTCBStat, these values are described in
KERNEL.C appendix.

OSTCBPrio: Tt contains the task priority. A HPT has a
low value (smallest 15 the number, highest is the current
priority).

OSTCBDIy: Tt is used when a task needs to be delayed
for a number of clock ticks, or if it needs to await the
arrival of an event, with a timecut. In this case, the field
contains the clock ticks number for which the task is
authorized to await the occurrence of an event. When this
value 18 zero, the task 1s not delayed; there 1s no timeout.
OSTCBX, OSTCRBY, OSTCBBitX and OSTCBBItY: are
used to accelerate the process to put the task at the ready
state to execute. The values of these fields are calculated
when the task 1s created, or when the priority of the task
1s changed as follows:

OSTCBX = priorty and 0x07,
OSTCBBitX = OSMapThl [priority and 0x07];
OSTCBY = priority == 3;

OSTCEBitY = OSMapTbl [priority >> 3];

OSTCBNext and OSTCBPrev: They are used to link the
O3S _TCB doubly. This chamn of the OS_TCB is used by
OSTimeTick ( ) to update the OSTCBDIy fields for each
task.

A doubly dependant list 13 used to make it possible
an element of the chain to be removed quickly
(OSTaskDel ( ) and OSTaskChangePrio ().

OSTCBEventPtr: Tt is a pointer towards a valve block of
event.

The maximum number of tasks, therefore the maximum
number of the OS_TCB is declared m the user code. All
the OS_TCB are placed m OSTCBThI [] and to manage by
the kernel.
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OSTCBFrecList  OSTCB Thl ]
—

[0]
OSTCB Next P
[
OSTCB Next _<_|
2]
OSTCB Nexl ]
3]
[MAX TASKS] P
OSTCB Next | —»
OR

OSTCB Thl
OSTCB Tbl [0] OSTCBTbl[1] OSTCBTbI[2] [MAX_TASK]
OSTCB_’ [05TCB Nexl psTCB Nex| ™ [0STCB N ~™OSTCB New| ™
FreeList

Fig. 1: O5_TCB free list

An extra O3S _TCB 1s allocated to the 1dle task and
thus, if a memorizing is allocated for 20 tasks, OSTCBTbI
[1will have 21 entries. When the kernel 1s imitialized, all the
0S8 TCB, in this table, are linked in a single linked list of
free OS TCB (Fig. 1).

Create a task: Tasks are created by call of OSTaskCreate
(). This function is specific to the target microprocessor.
The code for microprocessor 80486/80188 1s shown below.
Tasks can be created, either before the begimming of
multitasks, or by a task mother during the execution time.
A task camnot be created by an ISR (interrupt service
routine). The OSTaskCreate () function made pass four
arguments:

The task: Tt is a pointer towards the task code.

The data: Tt is a pointer towards a definable data surface
of the user who 1s used to pass the arguments. For
example, a task can be written to manage multiple
commumcation chamnels. When a task 1s created, it
passes a pointer towards a structure which defines the
channel specificities.

pstk: It is a pomter towards the task stack surface which
is used to store the local variables and the registers of the

CPU during an interruption.

p: It 1s the task priority.

UBYTE OSTaskCreate(void{far *task)(void *pd), void
*pdata, void pstk, UBYTE p)
{

TUWORD *stk;

UBYTE err;

OS ENTER CRITICAL();
If (OSTCBPrioTbl[p] == (OS_TCB *)0) §

OS_EXIT CRITICAL()
Stk = (UWORD *)pstk;
*—stk = (UWORD)FP_OFF(pdata),
*-stk = (UWORD)FP_SEG(task);
*--stk = (UWORD)FP_OFF(task);
*—stk = (UWORD)Ox 0200,
*--stk = (UWORD)FP _ SEG(task);
*-—stk = (UWORD)FP_ OFF(task),
*--stk = (UWORD)0=0000,
*_—stk = (UWORD) 0x0000;,
*--stk = (UWORD) 0x0000,
*_—stk = (UWORD) 0x0000;,
*--stk = (UWORD) 0x0000,
*_—stk = (UWORD) 0x0000;,
*--stk = (UWORD) 0x0000,
*_—stk = (UWORD) 0x0000;,
*--stk = (UWORD) 0x0000,

err = OSTCBInit(p, (void *)stk),

if (err == OS NO ERR) {
If (OSRunning) {
0OSSched(),
H

H

Return (err);

Lelse §

O3S EXITCRITICAL();,

Return (OS_PRIO_EXIST);

}

Before the task is created, OSTaskCreate ( ) makes
sure that it was not already created. The stack format of a
task created for an 80486/80188 1s shown m Fig. 2.

OSTaskCreate ( ) then calls OSTCBInit ( ), which
obtains an OS TCB (Task Control Block) starting from
free OS TCB. If all the OS_TCB were used, the function
returns an error code. [F an OS _TCB 1s available, it 1s
mmtialized. A pointer towards the OS_TCB of the task 15
placed in the TCB priorities table of the task
OSTCBPrioThl [], using the priority of the task as index.
The O3S TCB of the task 1s then inserted in a doubly
dependant list OSTCBList pointing towards the OS_TCB
of the task most recently created. The task is then inserted
in the list of the tasks which are ready with the treatment,
1.e., the ready list.
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StkPtr

08_TCB

High memory

Void*data
SEG task
OFF task
PSW
SEG task
OFF task
AX
CX
DX
BX
SP
BP
81

DI J

— ES

simulation to the far
function with argument

Interruption call

>PUSHA instruction

Low memory
Fig. 2: Stack Format when tasks are created (801 86/801 88)

If the task 1s created after multi-task began it (thus
created by the task), the scheduler is called to determine
if the task created has a higher priority than its creative
task; 1l 1t 1s the case, the new task 1s carried out
imnmediately, if not, OSTaskCreate ( ) turns over to its
caller. Initialize the TCB is shown as:

UBYTE OSTCBInit{UBYTE p, void *stk)
i

OS TCB *ptch;

OS5 _ENTER CRITICALQ);

pteb = OSTCBFreeList;

if (pteb !=(0OS TCB *)0) {

OSTCBFreeList = pteb->OSTCBNext;
OSTCBPrioTbl[p] = ptcb;
pteb->0OSTCBStkPtr = stk;

pteb->0OSTCBPrio = (UBYTE)p;
pteb->OSTCBStat = 03 STAT RDY;
pteb->OSTCBDly =0

pteb->0STCBX = p and 0x07,
pteb->0OSTCBBItX = OSMapThl[p and 0x07];
pteb->0OSTCBY =p>>3;
pteb->OSTCBBitY = OSMapTbl[p>> 3];
pteb->OSTCBEventPtr= (0OS_EVENT *)0;

pteb->0OSTCBNext = OSTCBList;
pteb->OSTCBPrev =(0S TCB )0,
1f (OSTCBList 1= (O3 TCB *)0 £
OSTCBLi1st->OSTCBPrev = pteb;
H
OSTCBList = pteb;
OSRdyGrp | = OSMapTbl[p == 3],
OSRdyTbl[p => 3] | = OSMapTbl[p and 0x07],
OS5 EXIT CRITICAL();
Return (OS NO _ERR);

telse {
OS EXIT CRITICALQ),
Retumn (OS NO MORE TCB),

}

i

Suppression of a task: A task can turn over, by itself or
another task, with the state SLEEPING by call of
OSTaskDel (). The code for OSTaskDel () 1s shown below.
The prionity of the task to be removed passed to
OSTaskDel ().

UBYTE OSTaskDel (UBYTE p)
{
register O3S TCB *ptch;
register OS EVENT *pevent;
if{p == 0OS_LO PRIO) {
retun (OS5 _TASK DEL IDLE;
H
O3 ENTER _CRITICAL();
f{((pteb = OSTCBPrioTbl[p] = (OS_TCB *)0) {
OSTCBPrioTbl[p] = (OS_TCB *)0;
If{(OSRAyTbl[pteb->OSTCBY] and= ~ptcb-
>0OSTCBBitX)==0) {
OSRdyGrp and= ~pteb->OSTCBBItY;
i
If (ptcb->OSTCBPrev == (OS5 TCB *)0;
pteb->0STCBNext->0OSTCBPrev = (OS5 _TCB
*)0;
OSTCBList
Lelse §
pteb->0OSTCBPrev->OSTCBNext = pteb-
>0OSTCBNext;
pteb->0OSTCBNext->0OSTCBPrev = pteb-
>QOSTCBPrev;
H
If ((pevent = ptcb->OSTCBEventPtr) 1=
(OS_EVENT *)0) §
If ((pevent ->OSEventThl[ ptcb->OSTCBY | and=
~pteb->OSTCBRItX) == 0) {
Pevent ->OSEventGrp and= ~ptcb-
>0OSTCBBitY,

= pteb->OSTCBNext;
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H

B

pteb->OSTCBNext = OSTCBFreeList,

OSTCBFreeList = ptch;

OS5 EXIT CRITICAL();

0SSched(),

return (O3S NO_ERR);
telse {

OS5 EXIT CRITICALC(),

return (OS_TASK DEL ERR);
H

0OSTaskDel () checks that the priority of the task to
be removed is not OS LO PRIO, to prevent an
application from erasing the idle task of the kernel
OSTCBDel ( ) also checks that the task to be removed was
created. Tf the task were created, it is initially withdrawn
from the ready list (ready task to execute), then the
0S8 TCB is detached from the OS TCB chain.

If the OSTCBEventPtr field in the OS_TCB of the task
15 not zero, the task to be removed is on standby event
and thus must be withdrawn from the waiting list of event.
Before finding the next HPT (Higher Priority Task) to be
executed, the OS TCB is turned over to the list of the free
08 TCB in order to be used by another task.
Note: OSTaskDel () should not be called by an ISR
(Interrupt Service Routine).

Task scheduling: The kernel always executes the HPT
ready to execute. The scheduler determines the task which
at the highest priority and thus which execute soon. The
scheduling of the task 1s carried out by OSSched (). The
code of this function 1s shown as:

Void OSSched(void)

d
Register UBYTE v,

OS_ENTER CRITICAL(),
If({OSLockNesting | OSIntNesting == 0) {
Y = OSUnMapTbhl[OSRAyGrp];
OSTCBHighRdy = OSTCBPrioTbl[(y << 3) +
OSUnMapTbhl[OSRAyTbH[y]]];
If{OSTCBHighRdy !'= OSTCBCur) {
OSCtSwCtr++,
0OS TASK SW(),
}
}
OS EXIT CRITICAL();
With each task only one level of priority between 0

and 63 is assigned. Priority 63 is always assigned with the
idle task of the kernel when it is initialized.

OSRdy Grp
[71al5T413T2T110]

A A A 4 A

OSRdy Th1 [8]

Higher priorty task
| X 'I.z
1{o
[

[0] 716151413 ]|2
(] 151141131 12]111]10] 9
2] 23122121 120]19]18]17] 16
i3] 31|30]29]|28]|27]26]25] 24
4] 39|38)137]|36]35|34]33| 32
5] 47|46 |45]| 44| 43| 42|41 | 40
61 5554153 52)51|50]49]| 48
7 63|62]61|60]59|58|57| 56y

Task priorty No. S

Lower priorty task
(Idle task)
Task priorty
lofol¥¥]y[x|x]x|
Nt e et e

Bit position in OSRdy Tb1 [8]
Bit position in OSRdy Grp and index in OSRdy Tb1 [8]

Fig. 3: Ready list

The duration of the scheduling of a task of the kernel
18 constant, independently of the number of tasks created
in an application. Each task which is ready to execute is
placed in a ready list contamning two variables, OSRdyGrp
and OSRdyTbl [R]. The priorities of the tasks are grouped
n OSRAyGrp (8 tasks by group). Each bit in OSRdyGrp is
used in indicating all the times that a task, in a group is
ready to be executed. When a task is ready to be
executed, 1t puts also its corresponding bit in the ready
table, OSRdyTbl [8]. To determine the following priority
(and thus the task) which will be executed, the scheduler
determines the number of the lowest priority which has its
bit placed in the table OSRdyTbl [8]. The relation between
OSRdyGrp and OSRdyTbl [8] 1s shown in Fig. 3 and 1s
given by the following rules:

Bit 0 OSRdyGrp 1s 1 when any bit in OSRdyTbl [0] 1s 1.
Bit 1 in OSRdyGrp is 1 when any bit in OSRdyTb1 [0] is 1.
Bit 7 m OSRdyGrp 1s 1 when any bit in OSRdyTbl [0] 1s 1.

The following code is used to place a task in the
ready list (Fig. 3):

3088



J. Applied Sci., 8 (18): 3083-3095, 2008

OSRdAyGrp | = OSMapThl [p == 3];
OSRdyThl [p == 3] | = OSMapThbl [p and 0=07];
p 1s the task priority.

As can be shown in the Fig. 3, the three least
significant bits of the task priority are used to determine
the bit position in OSRdyTbl [8], whereas the three
following most significant bits are used to determine the
index m OSRdyThl [8]. To notice that OSMapTbl [8] 15 a
table mn the ROM memory, used to equalize an index from
0 to 7 with a bit mask as shown it the following table:

Tndex bit mask (binary)
0 00000001
1 00000010
2 00000100
3 00001000
4 00010000
5 00100000
6 01000000
7 10000000

A task is withdrawn from the ready list by conversely
process. The following code 1s executed in this case:

1 ((OSRdyThbl [p == 3] and = ~OSMapTbl[p and 0x07]) ==
0)
OSRdyGp and = ~OSMapThl[p == 3];

This code erases the ready bit of the task
OSRdyTbl [8] and erases the bit in OSRdyGrp only if all
the tasks m a group are not ready to execute, Le., all bits
in OSRdyThl [] are 0. Another table look-up is carried out,
rather than to explore the table while starting with
OSRdyTbl [0] to find the task at higher priority ready to
execute. OSUnMapTbl [256] 13 a table of resolution
(definition) of priority. Eight bits are used to represent
tasks which are ready m a group. The least sigmficant bit
has the highest priority. The following code section
determines the priority of the task at higher priority to
execute:

y = OSUnMapTbl [OSRdyGrp];
X = OSUnMapTbl [OSRdyThl [v]];
p o= (y=<3)+3

Again, p is the task priority and having a pointer
towards block OS_TCB of this task, (OSTCBHighRdy) 1s
carried out by mndexing in OSTCBPrioThl [64] using the
task priority.

Once the HPT found, OSSched () checks that it is not
the current task in order to avoid a useless context switch.
The whole code in OSSched () is regarded as a critical
section. Interruptions are mvalidated to prevent ISR to
indicate the ready bit of one or more tasks during the
process of research of the HPT to be executed. OSSched

( ) could be entirely written in assembly language to
reduce the duration of scheduling. OSSched () 1s written
in language C for legibility and the portability and also to
mimmize the assembly language.

Count of mapping to correspond bit position to the bit
mask: The index in the table is the position of the wished
bit, 0...7. The indexed value corresponds to the mask of
bit.

UBYTE const OSMapThbl [] = {0x01, 0x02, 0x04, 0=08,
0x10, 0x20, 0x40, 0x80}

Priority resolution table: The index in the table is the bit
configuration to solve the highest priority. The indexed
value comresponds to the bit position of the highest

priority.

UBYTE const UMapThl [] = {

0,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
7,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
50,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0

zzzzzzzzzzzz

INTERRUPTION TREATMENT

Here, covers the assumption of responsibility of the
interruption, the mmportance of the response times of the
interruption and clock ticks interruptions.

The kernel requires an ISR written in assembly
language. For the 80486/80188, the ISR must be written as
follows:

ISR*xPROC FAR
STI
PUSHA
PUSHES
CALL OSIntEnter
CALL UserlSRCode
CALL OSIntExit
POP ES
POPA
IRET

ISR<ENDP
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Interruptions are validated early in this ISR if other
mterruptions have a higher prionty. However, our ISR
does not have to validate the interruptions prematurely.
We could carry out a certain code with the interruptions
invalidated as shown low, but should save to us the
remainder CPU context before carrying out any code.

ISRxPROCFAR
PUSHA
PUSH ES
CALL UserCode
STI
CALL OSIntEnter
CALL UserISRCode
CALL OSIntExit
POP ES
POPA
IRET

ISRXENDP

By executing the code before validating the
mterruptions, one increases the nterruption waiting
duration (latency) for other interruptions.

The kemel requires that the OSIntEnter () function 1s
called before any system call. OSTntEnter ( ) keep the trace
of the interruption overlap level. The kemel makes it
possible the interruptions to be overlapping up to a level
of 255, With the return of OSIntEnter ( ), the code of the
TSR of the user is called upon. Tt should be noted that the
user code 18 responsible for the interruption suppression.

The completion of the TSR is marked by the call of
OSIntExit ( ) which decrement the level of the interruption
overlap. When the level of overlap is zero, all the
interruptions are completed, the kernel determines if a task
at higher priority were awaked by an ISR (or any other
event which was to interrupt this ISR). If a HPT is ready
to be executed, the ISR will turn over to the HPT rather
than to the interrupted task (unless scheduling was
invalidated: OSLockNesting! = 0)).

Introducing ISR
Void OSIntEnter(void)
d
O8 ENTER CRITICAL(),
OSIntNesting++;
O8 EXIT CRITICAL(),
Leaving ISR
Void OSIntExit(void);
d

O3 ENTER CRITICAL();

If ({--OSInfNesting | OsLockNesting) == 0) {
OSIntExitY = OSUnMapThl[OSRdAyGrp];
OSTCBHighRdy = OSTCBPrioThl[(OSIntExatY << 3p
OSUnMapTbl[OSRdyTbl[OSIntExitY]]];

It (OSTCBHighRdy != OSTCBCur) §
OSCtSWCtr++;
OSIntCtxSw();
i
H
OS5 _EXIT CRITICAL();

}

OSIntExit() calls OSIntCtxSw function in assembly
language instead of OSCtxSw. There are two reasons for
that: firstly, half of work 1s already achieved, because the
interruption saved the PSW, CS (Code Segment) and the
TP (Instruction Pointer) of interrupted task and all the
other registers (saved at the beginning of the ISR).
Secondly, OSIntExit () allocates local variables (register
SO for the 80486/80188) on the stack of interrupted task
and calls upon OSTntCtx Sw.

To make the stack format such a simple context
commutation 1s in progress, the stack pomnter of the
processor needs to be adjusted as shown in Fig. 4. The
number to be added to SP register depends on the
compiler used and the choice on the options on the
compiling duration.

High memory
PSW
SEG task Interruption
OFF task
AX k
cx
DX
BX
ISR << PUSHA >>
SP ingtruction
BP
SI
The SP must be oI )
adjusted to point here ISR << PUSHA ES >>
— SP46 ES Instruction
SP4 OFF OSIntExit OSIniExi0 call
SP+2 SI
s
PH— " oFF oSIiComsw OSIntCExSw() call
Low memory

Fig. 4: Stack format during an interruption (80486/80188)
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Carry out a context switch (starting from an ISR)
Void OSIntCtxSwi(void)

Total execution time: 142 bus cycles

_ OSIntCtx3w proc NEAR

ADD SP.6 . 4~, be unaware of the

calls to OSIntExit and

OSIntCtxSw

; 9~, save the stack pointer

m the old TCB

MOV [BX],SP ; 12~

MOV BX,[ OSTCBHighRdy] ; 9~ pomt towards TCB of
the ready HPT to execute

MOV BX,[ OSTCBCur]

MOV

[ OSTCBCur],BX ; 12~ this update the TCB
now

MOV SP,[BX] . 9~ obtain the new task
stack pomter

MOV ES 8~

POPA : 51~

IRET . 28~ return to the new task

_OSIntCtxSw ENDP

Interruption latency, response and recovery: The
duration necessary to answer an mterruption and to really
begin the execution of the user code to deal with the
interruption (Fig. 5) is an important point in real-time
systems.

Our kernel disables interruptions for a maximum of
500 cycles of CPU clock (80486/80188).

The latency is given by:

Meaximum duration of invalidation of interruption (500) +
lasted of routing towards the ISR (50)

In the worst case, interruption latency is thus 550
cycles of CPU clock. Before the execution of the user
code, the context of the processor must be saved and if
the services of the kernel are required, OSIntEnter () must
be called. The response time is given by:

Latency of mterruption (550) +
time of saving all registers (60) +
execution time of OSIntEnter () (75).

For this kermnel, the response time, in the worst case,
is thus of 685 cycles of CPU clock.

Since, the kernel disables interruptions for 500 cycles
of CPU clock (80486/80188), an application can make the
same thing without carrying out the interruption latency

Time

v

Interruption request

Thsk Task
E—

Saved CPU conlext

OSIntExit 0 /l :

ISR iOSIntEnIFr 0

i, | T
A— ; :

[ntem!lpuo' i nrécovery
-—

(<550 clock cycles of CPU) (<450 clock cycles of CPU)

Interruption response
—_—
(<685 clock cycles of CPU)

Fig. 5: Interruption latency (timeout), response and
recovery

(in the worst case). For example, the application could
invalidate the interruptions for 500 cycles of CPU clock to
reach the critical sections of the code or to reach the
shareable data.

Recovery time is the duration necessary to the
processor to restore its context and to tum over
interruption. The recovery of the interruption is carried
out by OSIntExit (). If a HPT were put at the ready state to
execute (result of the TSR), the recovery time of the
interruption, in the worst case, is of 450 cycles of CPUJ
clock (Fig. 5).

Clock tick: The kernel allows tasks either to suspend the
execution for a number clock ticks or to wait untl the
occurrence of an event with a timeout. A clock tick is
typically gotten by a periodic interruption and can be
regarded as the beat of the system heart. The duration
between mterruptions (ticks) is specific to the application
and is typically between 10 and 200 m sec. Faster is the
flow of ticks, lighest are the overhead.

The code to treat a tick interruption can be
established as follows:

TickISR PROC FAR
STI
PUSHA
PUSHES
CALL OSIntEnter
CALL OSTimeTick
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; user code to erase tick interruption

CALL OSIntExit
POP ES

POPA

IRET

TickISR ENDP

The tick TSR calls OSTimeTick () which decreases the
field of OSTCBDIy for each OS TCB if it is not zero.
OSTimeTick () follows chain OS TCB starting with
OSTCBList until reaching the idle task. When the
OSTCBDly field of a task OSTCB 1s decreased to zero, the
task 1s put at the ready state to execute. The execution
time of OSTimeTick is directly proportional to the number
of tasks created in an application. System tick treatment is
shown as:

Void OSTimeTick(void)
d
Register OS TCB *ptcb;
Ptch = OSTCBList;
While (pteb->OSTCBPrio = OS5 _LO PRIO) {
OS ENTER CRITICALQ);
If (pteb->OSTCBDly = 0)4
If(--ptcb->OSTCBDly == 0){
OSRduGrp != pteb->0OSTCBBItY;
OSRdyThl[ptcb->OSTCBY] = pteb-
>0OSTCBBItX;
B
i
OS EXIT CRITICALQ);
Ptcb = ptcb->OSTCBNext;
;
OS ENTER CRITICAL();
OSTimet++
OS5 _EXIT CRITICALQ);

If one does not wish to have the ISR as long as they
would owe the being, OSTimeTick () can be called on the
level of the task. For thus making, we allocate priority 5
with the task to serve the tick as follows (the priorities
from O to 4 are reserved for the future use).

TimeTask ()
{
while (1) {
OSSemPend (...),
OSTimeTick (),

We could create a semaphore (initialized to ) to
announce to the task that a tick mterruption arrived. The
execution time of the tick interruption could have been
very short as shown low (R0486/801 88):

TickISR PROC FAR
STI
PUSHA
PUSHES
CALL OSIntEnter

MOV AX, TickSem
PUSH AX
CALL OSSemPost
ADD SP,2
; user code for erasing the tick mterruption

CALL OSIntExit
POPES

POPA

IRET

TickISR ENDP

0OS3TimeTick () accumulates also the number of klock
ticks (variable not signed of 32 bits called OSTime). The
current price of OSTime can be read by a task by calling
OSTuneGet (). OSTimeGet prevents the application from
directly handling O STime. OSTime can also be forced with
any value during the execution of the program by call of
OSTimeSet () 1s shown as:

ULONG OSTimeGet(void)

{
ULONG ticks;

OS ENTER CRITICAL();,
Ticks = OSTime,

OS EXIT CRITICALJ);,
Return (ticks);

To put the system clock

Void OSTimeSet{ULONG ticks)

{
OS_ENTER CRITICAL(),
Ticks = OSTime;
OS EXIT CRITICAL();

!

3092



J. Applied Sci., 8 (18): 3083-3095, 2008

COMMUNICATION, SYNCHRONIZATION AND
COORDINATION

Here, we give a short deseniption without going in the
details. The details of this section will be the subject of
another article which will be given later on.

The kernel uses mail boxes of message and the files
(queues) for the commumication. It uses the semaphore for
synchronization and coordination. Under the kernel, these
services are regarded as events, one announces is the
occurrence of an event (POST) or one awaits the arrival of
an event (PEND).

Only the tasks are authorized to await the occurrence
of events, indeed, an ISR should never wait for an event.
More than one task is authorized to await the occurrence
of the same event, when the event arrives, the kemel puts
at the ready state to execute the HPT on standby event.
The ISR and the tasks can announce the arrival of the
events.

Event Control Block (ECB): A data structure called Event
Control Block (ECB) 1s used to mamtain the state of an
event. The state of an event is composed of:

The event itself:

e A semaphore counter
* A message for the mail-boxes
+ A file of message for files (queues)

A waiting list for the tasks awaiting the occurrence of
events

With each semaphore, mail-boxes and file, is
assigned an ECB

An ECB contains four fields

OSEventGrp is similar to OSRdAyGrp except that it
indicates that any task in a group of eight tasks 1s on
standby of the arrival of an event

OSEventTbl [8] 1s also similar to OSRdyTbl [] except
that it contains an addressable bit of waiting tasks for
events

OSEventCnt is used to maintain the counting of the
semaphore (when the ECB i1s used for a semaphore)
OSEventPtr contains the mailboxes message or a
pointer towards the queue data structure,
respectively (when the ECB is used for mailboxes or

a file)

Semaphores: The semaphores of the kernel are signed
entities with 16 bits which must be initialized with a value
between 0 and 32767 before their use. The semaphore can
be only handled through three functions:

s OSSemCreate ()
+  0OSSemPend ()
s OSSemPost ()

0O3SemCreate () allocates a valve block of event to be
used by the semaphore. It positions also the mtial value
of the semaphore.

OSSemCreate () return a pointer to the ECB allocated
to the semaphore. This pointer will need to be assigned
with a variable 1 the application, because 1t 1s used like
the pointer of the semaphore. If all the ECB are used,
OSSemCreate () retumn a NULL pointer. The field of
OSEventCnt () of the ECB includes/understands the
current semaphore value and can be between -63 and
32767, A positive value indicates the number of tasks
which can reach the resource at the same time, or the
number of times that an event arrived. When the value of
the semaphore 1s zero, the resource 1s not available, or the
event did not arrive. When the value is negative, it
indicates the number of tasks waiting for a resource to
becoming available, or for the occurrence of an event.

If a task calls OSSemPend () and the semaphore value
is higher than zero, then OSSemPend () decreases the
semaphore count and tums over to its caller. If the
semaphore value is lower or equal to zero, OSSemPend ()
decreases the semaphore count and place the calling task
in the semaphore waiting list.

A semaphore 1s announced by call of OSSemPost ().
If the semaphore value is equal to or higher than zero, the
semaphore count 15 mereased and OSSemPost () tums
over to its caller. If the semaphore count is negative, tasks
waiting for semaphore are to be announced. In this case,
OSSemPost () withdraws the HPT waiting for semaphore
of the waiting list and puts this task at the state ready to
execute by OSTaskResume ().

Mailboxes: Kernel authorizes a task or an ISR to send a
message (a pointer size varlable) to one or many tasks
through a mailbox. The application decides towards what
the pointer points. A mailbox can be handled through
three functions:

s OSMboxCreate()
s OSMboxPend()
s OSMboxPost()

OSMboxCreate() allocates an ECB for use by the
mailbox and allows to mitialize its contents. OSMbox ()
return a pointer to the ECB allocated to the mailbox. This
pointer will need to be assigned with a variable in the
application, because it is used like the pointer of the
mailbox. If all the ECB are used beforehand,
OSMboxCreate () return a NULL pointer.
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If a task calls OSMboxPend() and the mailbox
containg a non NULL peinter, then OSMboxPend() take
out the message from the mailbox and erase it. The
withdrawn message 15 returned to the OSMboxPend()
caller. Tf the mailbox contains a NULIL pointer,
O SMboxPend() place the calling task in the waiting list for
mailbox. The task will wait until another task or an ISR
deposits a message in the mailbox.

A message is sent to a task by calling OSMboxPost().
If the mailbox contains already a message, OSMboxPost()
return an error code to his caller. If the mailbox 1s empty,
the message 1s deposited there and OSMboxPost()
determines if there is a waiting task for a coming message.
If there is a waiting task, OSMboxPost() withdraw the HPT
from the waiting list and put this task at the ready state for
execute by calling OSTaskResume().

Queunes: Queues are similar to mailboxes. A mailbox
permits to a task or an ISR to send a single message of
pointer size to one or many tasks. Queues are used to
send a user finite messages number to one or many tasks.
As for mailboxes, contents of sent messages are specific
to the application. A queue may be handled through three
functions:

+  OSQCreate()
+  OSQPend()
+  OSQPost()

OSQCreate() allocate an ECB to be used by the
queue. OSQCreate() return a pointer to the ECB allocated
to the queue. This pointer will need to be assigned to a
variable in the application, because it is used as queue
pointer. If all ECB are used, OSQCreate() return a NULL
pointer.

If a task calls OSQPend and the queue contains one
or many messages, then OSQPend() withdraws the
pointed message by OSQOut from the queue and return
to the calling task. However, if the queue is empty,
OSQPend() place the calling task in a queue waiting list.
The task will wait until a task or an ISR deposits a
message in the queue. When the current task is placed in
the waiting list, rescheduling occurs and the following
HPT ready to execute take CPU control.

A message is sent to a task by calling OSQPost(). An
error occurs if the queue is full. Tn this case, OSQPost()
return an error code to his caller. If the queue 1s not full,
the message 13 deposited in the queue and OSQPost()
determines if there is a waiting task for a coming message.
In this case, OSQPost() withdraw the HPT waiting for a
message in a waiting list and put this task in the ready
state to execute by calling OSQResume().

CONCLUSIONS

This study proposes a development framework for
the industrial applications by giving to the designer
architectural elements for the general organization of its
software. The proposed services at the higher level
(modules of service) make it possible to facilitate, by
guiding the passage of the specification to the preliminary
design, the design of a large variety of mdustnmal
applications.

The system architecture has changed from a
federated system architecture to an integrated system
architecture and then to system of systems. Each shift has
brought about enormous challenges to the available
technological mnfrastructure.

In integrated system architecture, sensors,
communication channels and processors are extensively
shared. The large number of possible configurations
becomes a challenge for system architects. The current
generations of schedulability analysis tools offer
nadequate support for system architects. They must
manually create the alternative options and then check the
schedulability of each option. They would like to have
tools to automatically search the design space and
perform sensitivity analysis regarding the uncertainty of
task parameters. During the system engineering phase,
the values of task parameters are often educated guesses.
Finally, from the perspective of runtime reconfiguration,
dynamic priority scheduling theory has potential
advantages (Chandra et al., 2003). In addition to the
potential of higher schedulability, the feasibility analysis
of dynamic priority scheduling is often faster. We are
looking forward to the maturing and subsequent use of
dynamic scheduling theory in practice (Chen and Mok,
2004).

In modemn integrated systems, there are substantial
high volume and high variability imaging data streams.
Depending on the nature of applications, they have either
hard or soft end-to-end deadlines (Abdelzaher et af., 2004,
Yeung and Lehoczky, 2001). If the images are used for
steering a vehicle, they will have a hard end-to-end
deadline and tight jitter tolerance. Such hard-deadlines
streams pose challenges to traditional scheduling theory
using worst-case assumptions. A system of systems 1s
often a large distributed system, where keeping
distributed views and actions timely and consistent 1s at
the heart of collaborative actions. Tdeally, we would like to
keep distributed views, state transitions and actions
consistency with each other. Tn business systems, the
consistency of a distributed system 1s managed by atomic
operations. Simply put, atomic operations wait for every
working component to be ready and then commit the
operations. However, this may not be viable for real-time
systems. How to handle the interactions between timing
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constraints,  congistency  requirements and = re-
synchronisation mn a large disttibuted system 15 a
challenge. As a networked embedded system of systems
grows larger and the coordination becomes tighter, so will
be the impact of this technological challenge. The re-
synchronization loop is a form of feedback control.
Feedback is a powerful technique which has yet to be
fully exploited m the control of the behaviour of
computing systems in the face of uncertamty (Eker ef al.,
2000, Gandhi et ai., 2001).

Another characteristic of a system of systems is that
a wide variety of real-time, fault tolerance (Lima and
Burns, 2003) and security protocols are used in different
systems, because most of the systems of systems are
integrated, not built from scratch. Priority inversion is an
example of pathological interaction  between
independently developed synchronization protocol and
priority scheduling protocol. This is not an easy problem
to solve because the scope of modern technologies is so
large and complex. To advance any area, one must
specialize. As a result, we have developed mechanisms
with little attention on how separately developed
protocols may interact. Research is needed to formally
verify that protocols do not invalidate each others” pre-
conditions when they interact.
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