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Abstract: In the present study, solution methods for velocity and temperature fields of incompressible fluids
are developed. The mathematical characteristic of governing flow equation used for mcompressible fluids 1s
changed from elliptic dominated to hyperbolic dominated, by applying artificial compressibility concept.
Resorting to the pseudo-compressibility concept, the continuity constraint is perturbed by the time derivative
of pressure. In this study, to calculate convective fluxes, Roe Riemann solver is applied to the equation and the
required coefficients are derived for both velocity and temperature fields of artificial compressible flows. The
discretized equation are solved by an explicit 5th order Runge-Kuta time stepping scheme which is found to
be efficient in terms of convergence rate and stability. Faster convergence is achieved by applying local time
stepping. The equation are discretized in fimite-volume cell-centered approximation. The method 1s verified by
solving fluid flow over circular cylinder and 1id driven cavity and comparing the results with those available in
literature. Finally, the convergence rate of the developed method is compared with the averaging method, in
which the current method shows a noticeable reduction in iteration steps.
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INTRODUCTION

During the past decade, much progress has been
made in developing computational techniques for
predicting flow and heat transfer fields. The accuracy and
efficiency of these methods can be affected by factors
such as flux treatment, boundary conditions and the grid
type. Many existing methods have been developed to
solve the compressible flow equation witlhin transonic
Mach numbers. However, a lot of applied problems are
mherently mcompressible and must be treated
appropriately. Even with the high interest in
incompressible flows, the incompressibility requirement
has always been an obstacle in solving the flow equation
m a straightforward manner. Since there 18 no time-
evolution term in the continuity ecuation, the standard
time-discretizing schemes developed for solving the
compressible Navier-Stokes equations can not be applied
directly and the continuity equation unposes a constraint
which the momentum equations have to satisfy.

One of the methods which is used for incompressible
flows 1s called pressure correction method. This method
uses a Poisson equation for the pressure field (Tsui and
Pan, 2006). The other known method is stream function-
vorticity which calculates the wvalues of the stream

function and vorticity and determines the velocity and
pressure fields afterwards (Anderson ef al., 2006).

With the progress mn recent years of the compressible
flow schemes, these schemes have been considered for
use with incompressible flows, simply by lowering the
Mach number to minimize the compressibility effects.
Unfortunately, as Mach number 1s decreased toward
incompressible limit, the performance of compressible
methods, in terms of both convergence rate and accuracy
suffers greatly. Guillard and Viozart (1999) have identified
that, in the low Mach number limit, the discretized
solution of the compressible fluid flow equations may fail
to  provide an accurate approximation to the
incompressible equations.

To overcome the difficulties associated with the use
of compressible methods, excellent progress has been
made in applying Artificial Compressibility Method
(ACM) to incompressible flows. ACM, a way of extending
the use of compressible flow schemes for near zero Mach
number flows, was first introduced by Chorin (1967). This
method introduces a pseudo time-derivative of pressure
into the continuity equation. This pseudo term changes
the mathematical character of the continuity equation from
elliptic to hyperbolic. This enables the system of
equations to be solved with a variety of schemes
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developed for compressible flow equations. The method
has been successfully used for both steady and unsteady
flows. Tai et al. (2004) developed a method to solve
Navier-Stokes equations, for velocity field, based on the
artificial compressibility method in finite-volume
discretization. Tang and Sotiropoulos (2007) applied the
ACM to unsteady problems with a kind of fractional time
stepping procedure on non-staggered grids. Some
researchers have applied ACM in conjunction with
different upwind-differencing schemes and solution
techniques to solve steady-state as well as unsteady
mcompressible problems. The upwind-differencing
schemes that have been used include the Monotone
Upstream-centered Scheme for Conservation Laws
(MUSCT.) (Rahman and Siikonen, 2001), Total Variation
Dimimishing (TVD) (Chot et al., 2007), Essentially Non-
Osilatiory (ENO) (Cheng and Shu, 2007) and Weighted
Essentially Non-oscillatory (WENO) (Yang et af., 1998;
Choi et al., 2007) schemes. Kao and Yang (2007) have
used a segregated fimite-difference scheme based on
ACM to solve velocity field of shear-driven cavity.
Bassi et al. (2006) have used Discontinuous Galerkin
(DG) methods in conjunction with (ACM) to solve
mcompressible Navier-Stokes equations.  As
Madsen and Schaffer (2006) have claimed, the time
marching approach used in this study can predict both
steady and unsteady flows, but this work will focus on
steady condition.

The purpose of the current study is the development
of characteristic-based methods for velocity and
temperature fields of mcompressible flows using methods
used for solving compressible flow equations. In the new
method artificial compressibility concept was successfully
used. To calculate convective fluxes Riemann solver of
Roe was used. The required coefficients, for both velocity
and temperature fields of artificial compressible flows,
were derived. For time-marching, 5th order Runge-Kuta
algorithm was utilized because of its wide range of
stability. The method was examined by solving velocity
and temperature fields over circular cylinder and lid driven
cavity and comparing the results by those available in
literature. As authors know there is no study in literature
which uses this approach to solve both velocity and
temperature fields of incompressible flows. Other
investigators have used the mentioned characteristic-
based method for compressible flows and usually their
study were restricted to velocity fields.

MATERIALS AND METHODS

Governing equations: The primitive form of the
mcompressible Navier-Stokes equations in Fmite-volume
form with artificial compressibility is given as:

jj dA+gS (Fdy- Gdx) = ch (Rdy-sdx) (1)
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Equation 1 has been non-dimensionalized by the
following reference values:

8 ¥ i PP ii §
=, Y= =, = LU= , V= 3
D D’ ly pU U, U, @)
U
g 17T pe VD @
T -T v v

Convective flux treatment: At the present time, various
flux treatments are in use. In this study Riemann solver of
Roe was applied to calculate fluxes at cell boundaries. By
the use of ACM, the governing equations took a
hyperbolic dominated nature, therefore the application of
characteristic based wave propagation models became
possible. Riemann solver of Roe had been originally
developed to estimate the fluxes of compressible Euler
equations (Roe, 1997) but in current study this solver was
applied to the artificial compressible system of Navier-
Stokes equations. Tt can be shown that in this method
fluxes at cell boundary can be written as:

Flux:%(N'FRJrNFL)—%\AKUR—UL) (h

where, NF is the flux vector normal to the grid boundaries,
U, and U, are the values of variables at the right and left
side of cell boundaries and

[A[=R|AL 3

where, A is a diagonal matrix whose elements are the
eigen-values of flux jacobian matrix A and are given by
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R and T. are right and left eigenvectors of matrix A,
respectively. These matrices for the primitive variables, in
the presence of artificial compressibility factor, has been

derived as follows:
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where, @ 18 the shear velocity:

This
components are:
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All the components were calculated using the
average of variables, as follows:

Uy +U,
2

U (13)

The order of accuracy of the scheme depends on
choosing U and U, values. Assigning cell-center values
leads to a first order accuracy, Eq. 14, but using a kind of
interpolation (Drikakis and Rider, 2004) will result in
second order of accuracy, Eq. 15:

First-order

UL,i+1!2 =U, UR,1+1 2= Ui (1 4)
Second-order
3 1 3 1
UL,1+112 = EUi - EUHs UR,1+112 = EUHI - EUHE (1 5)

Viscous fluxes: The viscous fluxes discretization 1s
straightforward and uses 2nd-order averaging. The right
hand-side of Eq. 1 1s approximated by:

$(Rdy-— Sdx) = (ﬁ[[%}dyf {%}dx}

(16)

In the calculation of JU/Gx and UGy (Fig. 1),
secondary cells are employed.
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Fig. 1: Approximation of wviscous fluxes on secondary
cells

JU/Fx is approximated as follows:
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dU/dy 1s calculated in a similar manner. In which s” 1s the
secondary cell area.

Time discretization procedure: For time discretization,
Sth-order Runge-Kuta time stepping scheme, because of
1ts wide range of stability (stability margin of CFL = 4 for
the linear advective Eq.) and high accuracy, was utilized.
This allowed that larger time steps to be chosen, hence
allowing a faster convergence to a steady state condition.
The solution is updated at consecutive time steps as
shown i Eq. 19. The proposed characteristic based
method was able to dampen oscillations, so no oscillation
elimmating method was required.
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Stability

where, oy =%, o, =%, [e :%, oy =%, o, =1.
requirement imposes a restricion on the time steps
(Chorin, 1967). To have a stable solution time steps
should satisfy the following conditions. By the use of thus
relation a kind of local time stepping was utilized.

at,, = SFEX AL (20)
Cmax
Where:
C, J o ﬁ
Che = Max
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Boundary condition: Consistent boundary treatment
ensures  the disturbance dissipation m discretized
domain without reflection. At the solid boundary a
condition of zero mass and energy flux through the
surface was prescribed by setting the fluxes
corresponding to these faces equal to zero. Pressure on
the solid surface was found using a kind of interpolation.
Temperature on the solid swface was assumed to be
constant. This technique only permits a flux of pressure
term of momentum equation through solid boundary. At
the inlet boundary pressure was extrapolated from interior
domain, velocity and temperature was set equal to the
free-stream values. At the outlet boundary the pressure
was fixed, remaming variables were interpolated from

interior domain.

Grid features: An algebric method was used for grid
generation and the grid was clustered near solid
boundary. Grid independency is achieved in a 120x120
resolution.

RESULTS AND DISCUSSION

Numerical results: The method was verified by solving
flow over a circular cylinder and lid driven cavity. For this
flow Pr = 0.71 and CFL = 0.6 was considered. In Fig. 2
Local Nusselt number around circular cylinder is
presented and 1s compared with results of other
investigators (Chun and Boehm, 1989). The maximum
Nusselt number as expected cccurs in the first stagnation
point of the cylinder. As boundary layer develops,
thermal resistance increases and local Nusselt number
reduces. The mimmum occurs in separation point.
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Fig. 3: Comparing average Nusselt No. with emprical
relations

In Fig. 3 average Nusslet number against Reynolds
Number 1s compared with empirical relations. Equation
21-23 are proposed, respectively, by Fand, Knudsen and
Katz and Churchill and Bernstein (Holman, 2002).

Nu = (0354 0.56Re*)Pr™, 107 <Re<10° (22)
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C and N coefficients for above relation in the range of
40< Re< 4000 are respectively, 0.683 and 0.466.

Re
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Nu=03+ 282000)”8}
(24)
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The Eq. 22 proposed by Fand, for 107'<Re<10’, is
simple and has good accuracy. Equation 24 1s a little
more complex but covers higher Reynolds numbers.

In Fig. 4 streamlines in Re = 200 and Re = 500 are
presented. Vorticity region behind the cylinder and
unsteady nature of flow is obvious.

Tt is shown in Fig. 5 that the pressure coefficient at
Re = 40 obtained using the proposed method agrees
well with that of Choi et al. (2007). In Fig. 6 streamlines
for lid driven cavity is compared with the results of
Malan et al. (2002) at Re = 1000, 3000.
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Fig. 4: Streamlines around circular cylinder

L5 & Choietal (2007)
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Fig. 3: Comparison of wall pressure coefficient along  Fig. 6: Stream lines for lid driven cavity at Re= 1000, 5000,
cylinder surface at Re =40 a and b current study, ¢ and d (Malan et al., 2002)
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Error norm 1s defined as:

I Il
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(25)

Enorm =

CONCLUSIONS

In the present study a characteristic based method
(Riemann solver of Roe) was applied to velocity and
temperature fields of incompressible flows. The
method was examined by applying it to flow over
circular cylinder and shear driven cavity. Artificial
compressibility concept made it possible to use the
Riemann mcompressible flows wlich 1s
usually used for compressible flows. This method was
successful in predicting flows in different Reynolds
Numbers. It was able to dampen oscillations, thus
generating a stable behavior. Thus kind of flux treatment
relates the physical behavior of flow to the mathematics.
The flux treatment considers the Pseudo acoustic
wave propagation in the computational domain. This

solver for

was made possible by reconstruction of fluxes and
their corresponding eigenvectors. The comparison of
convergence rate of the proposed method and
averaging method showed a noticeable reduction in
lteration steps.
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