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Abstract: Various methods for finding explicit solution to nonlinear evolution equations have been proposed
in this letter Homotopy Perturbation Method (HPM) is employed for solving Korteweg-de Vries-Burgeres
(KdVB) equation and coupled Burgers™ equations which both of them are very applicable in mathematics,
physics and engineering. The final results obtained by means of HPM are compared with those results obtained
from the exact solution and the Adomian Decomposition Method (ADM). The comparison shows a precise

agreement between the results and introduces this new method as an applicable one which it needs less

computations and 1s much easier and more convernient than others, so it can be widely used in engineering too.
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INTRODUCTION

In various fields of science and engineering, many
physical problems can be described by linear and
nonlinear parabolic equations. In this study we
mvestigate solutions of KdV-Burgers equation and
coupled Burgers’ equations. Burgers’ equation has been
found to describe various kinds of phenomena such as
mathematical model of turbulence and the approximate
theory of flow through a Shock wave traveling in viscous
fhuid. It 15 well known that many physical phenomena can
be described by the Korteweg-de Vries-Burgeres (KAVB)
equation. Typical examples are provided by the behavior
of long waves in shallow water and waves in plasma. The
KdV-Burgers’ equation 1s a one-dimension generalization
of the model description of the density and velocity fields
that takes into account pressure forces as well as the
viscosity and the dispersion. It may be a more flexible tool
for physicists than the Burgers® equation. The coupled
Burgers’ system was derived by FEsipov. Tt is simple model
of sedimentation or
concentrations of two kinds of particles m fluid
suspensions or colloids, under the effect of gravity.
Several studies in the literature, employing a large variety
of methods, have been conducted to derive explicit
solution s for KdV-Burgers and coupled Burgers’
equations. Gard and Hu used a steadt-state version of
Eq. 1 to describe a weak shock profile in plasma. They
studied the same problem using a similar method to that

evolution of scaled volume

used by Johnson and the related problem was studied by
Jeffery. A numerical mvestigation of the problem was
carried out by Canosa and Gaxdag. Bona and Schonbek
studied the existence and uniqueness of bounded
traveling wave solution to Eq. 1 which tend to constant
states at plus and minus infimity. A comprehensive
account of the traveling wave solution of the KdVB
equation can also be found in the review paper by Jeffrey
and Kakutani. Also, several researches have been
implemented for solving coupled Burgers® equations.
Using the Hop-Cole transformation, Fletcher gave an
analytical solution for the system of two dimensional
Burgers’ equations. Several numerical methods for
solving this equation have been given as algorithms
based on the cubic alpine function techmique. The
explicit-implicit method and the implicit finite element
scheme. Soliman used the reductions for the partial
differential equations to develop a scheme for solving
Burgers’ equation. The variational iteration method was
used to solve the on dimensional (1D) Burgers® and
coupled equations. Recently, an extended tanh-function
method and symbolic computation have been suggested
for solving the new coupled modified KDV equations to
obtain four soliton solutions. ADM has been previously
implemented to obtain exact solutions of this system.
Then variational iteration method proposed by He was
used to solve different types such as on dimensional
Burgers’ equations and coupled Burgers’ equations. In
this research, homotopy perturbation method (He, 1999,
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2003; Ganji and Rajabi, 2006; Aabbasbandy, 2006) is
employed to compute an approximation to the solution of
these equations in comparison to the exact solution
(Helal and Mehanna, 2006, Dehghan ef al., 2007) and
ADM.

The general form of Burgers’ equation can be
mentioned as fallows:

(1)

U LUty + Ly Uy + Hallgyy =0, XER,

Where, p,, p, and p, are constant coefficients, with
the mitial and boundary conditions:

u(x,0 = f(x) )
u0,t) = g(t) (3)
Where:
u=u(xt) = Sufficiently smooth function
f(x) = Bounded

In addition we shall assume that the solution u(x.t),
along with it’s derivatives, tends to zero as |x|

The well-known KdV-Burgers’ equation that mvolves
both dispersion term u,,, and dissipation term ., is:

00

U, 2(0), U T, = 0 4
Subject to 1mtial condition:
u(x ‘L):l 1+tanh lx . (5)
46 6

This nonlinear partial differential equation has an exact
special solution. We replace the independent parameters
x and t by one composed parameter

(x—

2
=

This transformation leads to the traveling wave solution

5)

Tt is worth noting that this exact solution is a special one
(Helal and Mehanna, 2006).

And also we will consider the systems of Burgers’
equations in the form:

u(x,t)= é[l +tanh [1 (6)

6

ut—uXX—2qu+uXv+vXu:0, o

Vv

t—V

«x —ZWX +uvHvu =0.
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The solutions of which are to be determined subject
to the initial conditions:

u(x,0) =sin(x), v(x,0)=sin(x) (8)

Clearly, the exact solutions

(Dehghan et al., 2007):

of this system are

u(x,t) = exp(-tsm(x), v(xt)=exp(-tsinx) (9

BASIC IDEA OF HOMOTOPY PERTURBATION
METHOD (IIPM)

To explain this method, let us consider the following
function:

AwW-fn) =0, reQ (10)
With the boundary conditions of
B(u,%)zo, rel (11)

Where, A, B, f(r) and ' are a general differential
operator, a boundary operator, a known analytical
function and the boundary of the domain Q, respectively.

Generally speaking, the operator A can be divided in
to a linear part L and a nonlinear part N. Eq. 10 can
therefore, be written as:

Lw)+N(w-fir)=0 (12)
By the homotopy technique, we construct a homotopy
v(r,p):Q=[0,1]~ R which satisfies:

H(v,p)=(1-p)[ L(v)-L(u ) |+

p[AG)—£()]=0. (13)
pe[0,1],re Y

Oor
HE.p)=LO)- L LU+

PIN(V)—£(1r)]=0,

Where, pe[0,1] 1s an embedding parameter, while u,
1s an initial approximation of Eq. 10, which satisfies the
boundary conditions. Obviously, from Eq. 13 and 14 we
will have:

H(v,0) = L(v) ~L{u,) = 0 (15)



J. Applied Sci., 8 (2): 322-327, 2008

Hv,)=A)-fr)=0 (16)
The changing process of p from zero to umty 1s just that
of v(r,p) from u, to u(r). In topology, this 1s called
deformation, while L{v)-L{u,) and A(v)-f{r) are called
homotopy.

According to the HPM, we can first use the
embedding parameter p as a small parameter and assume
that the solutions of Eq. 13 and 14 can be written as a
power series in p:

V:v0+pv1+p2V2+p3V3+... (17)

Setting p = 1 results in the approximate solution of Eq. 10:

u:ggl1\f:v0+vl+v2+v3+...

(18)
The combmation of the perturbation method and the
homotopy method 1s called the HPM, which eliminates the
drawbacks of the traditional perturbation methods while
keepmg all its advantages. The series (18) 1s convergent
for most cases. However, the convergent rate depends on
the nonlnear operator A(v). Moreover, the following
suggestions were made by He (1999):

The second derivative of N(v) with respect to v must
be small because the parameter may be relatively
large, i.e.,p - 1.

The norm of L*I?WN must be smaller than one so

that the series converges.

APPLICATION OF HOMOTOFPY-PERTURBATION
METHOD

To mvestigate Eq. 4, we first construct a homotopy
by separating the linear and nonlinear parts of the
equation; we apply homotopy-perturbation to Eq. 4 using
Eq. 13 as fallows:

(1—p>[%v<x,t)]+
[%V(X,t)} + 6v2(x,t)[%\f(x,t)} - (19)

P/ .3 3
5, 5,
{3\1()(,‘[)} + [axzv(x,t)}

Substituting Eq. 17 into 19 and rearranging the resultant
equation based on powers of p-terms, one has:
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3}
p?: EVO(X’t) =0, (20)

1

p': [%Vl (X,t)J + [;;VO (X,t)} [;};VO(XJ)} +

6v02(x,t)[%v0(x,t)J =0

(21)

p?: 12v,(x,t)v, (x,t)[%vo (X,t)J + [%VQ(X’t)J +

32

6v02(x,t)[%vl(x,t)J + [@VI(X,U} - (22)

23

@vl(x,t) =0

G,

p’ :12v0(X,t)vl(x,t)[&vl(x,t)]+
1ZVO(X,t)vz(x,t)[%vo(x,t)]+

av (x,0) [+ 6v 2(x,1) av (x,1) |+
a3 (NES Prabits (23)

8 &2

6v12 (x,t) [&VO (x,t)J + [5‘}(2V2 (X,t)] -

8?3 _
[@vQ (X,t)] =0
With the following initial conditions:

u (. D=ux.0)=v,(x,t)=
[1 +tanh [%XD

Vi(x,O):O,i =12,

1

6 (24)

In order to obtamn the unknowns, we should solve
Eq. 20 through (23), considering the initial conditions
Eq. 24 and having the mitial approximations of Eq. 17. So
we have:

_1 1
vo(x,t)—6[1+tanh[6xD. (25)
v, (x t):thJrLttanh lx i (26)
1™ 1627 162" 6 ’
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v, (%)= 4374tanh[ ]2{1+tanh[éx]2} (27

t3[3t [1 ]2 ]
anh 6x -1

2

B 1
V300 = 35507

x{—l + tanh [éx]

In the same manner, the rest of components can be

(28)

obtained using the maple package.
According to the HPM, we can conclude that:

u(x,t)= lim v(x,)=vy(x,U)+v, X0+
p—1 (29)
Vo (X, )+ v, (X, )+

Therefore, substituting the values of v(x,t) through v,(x,t)
from Eq. 25 through 28 into Hq. 29 yields:

u(x)= L [ﬁ+¢anh[ JJ—

2
1 1
—t+ 162ttanh[ J +

162
1 2
tanh[ ]t2[1+tanh[6xJ }+
1y 1.7
t3 3tanh[ng —1|x 71+tanh[gx] )

The nmumerical comparison between the HPM and the
ADM (Helal and Mehanna, 2006) and the exact solution
are shown m Fig. 1.

1 (30)

4374

1
354294

To investigate Eq. 7 we first construct a homotopy as
fallows:

(kp)[@vl(x,t)}

Gnen) [ . 1(xt)]

2v, (X,t)[%vl (x,t)] + [%Vl(x,t)]vz (xt)+

[%vz (x,t)]vl(x,t)

(3D

=]
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0.281

—— Exact
-0- HPM
—o— ADM

0.271
.26
0.251
’-v;: 0.24+
=
0.234
0.224

0.211

0.20

Fig. 1: Numerical comparison of the results obtained by
the HPM, the ADM and the exact solution for
t=0.001 and 1<x<3 for Eq. 4

AR

5, 02
[ﬁvl (x,t)J - [axzvz (X,t)] -
(32)
P ZVZ(X t)[ 2(}( t)J [ 4 Vz(x,t)]vl(x,t)—i- =0
g t t
ﬁvl(xa ) Vz(X, )
And the initial approximations are as fallows:
VI,O(X’t) =v;(x,0) =uy(x.t) =sin(x)
v, (X0 =v, (x,0)=v (X t)=sin{x)
2.0 2 0 33)
Vi (x,0)= Vo (x,00)=0,
1=1,2.3,....
And
v(x,t)= vl,o(x,t) + pvl,l(x,t) +
2 3
P, (X D+ p7v, LXK+
1.2 13 (34)

v, (X, )= Va0 (e t+ pvz,l(x,t) +

pzvz,2 (e t+ p3v2,3 (x,0)+

Substituting Eq. 34 into Eq. 31 and 32 and rearranging the
coefficients of p powers, we have:
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pO : %VLO (x,t)=0 (35) [%VZ,I(X’OJ + [%VZ:O (x,t)}vh0 (e t)+
a
8 8 Vo o (K0 5=V, o(X,t) |-
2y (x,t)}{—v (X,t)}v (x,t)— 2.0 [ax L0 ]
[at 11 7x 2.0 10 ol o
2| == N )
2v) g%, t)[ v y(x, t)} [5){ Vo ol% )JVQ,O(X )
1. _ 2
p: =0 o
[%VLO(X,‘L)JVZ,O(X,‘L)— [5‘}(2 VQ,O(X,t)]
a2 (40)
@vho(x,t)
8 nl_[ 2% ;
(36) [avz,z(x’ )J* A2t
5,
[%Vl 2(X t)} [aax II(X t)] 5 O(X t)+ 2V2,1(X,t)[&V2,O(X,t)J_
[5 vy ol t)] Vi, (D 2vy (%, t)[é‘x 510% t)]
a
[% 2105 t)] Lo(x D= p?: [_Vl 1(X°t)}’2 (Xt + =0 1)
P> -0 t t
{ 8% l(x,t)} 2v 4, t)[ax Vi, t)} [ Vo )} [+
e t)Jv (t)+
2v, (. t)[ax vy, t)] [ L0
[%vl o(x’t)}"z (0 [ Q’O(X’t)Jvl’l(x E
(37 )
5} 5}
8 a2 [E"z,s(xi)} B [@Vz’z(x’t)} )
=V (Xt [—v (X,t)]
{5'5 L3 J ax? L2 2v, (%, t)[ vy, t)}
2Vl 0(X t)[ax 12(X t)J 2v2,2(x,t)[gv2,0(x,t)J72v250(x,t){%v252(x,t)J+
2V1,1(X=t) {%Vu (X,t)} —2v 12 (Xst){%vlao(xatﬂ + P VLZ(X,’[){%VZ,O(X,’[)J + =0
p3 V12 (1) [%VQ’O(X, t)]+ v, 2(x,t)[£v1 O(X,t)J Vg (x,t) [%VU (x,t)} +
vz,z(x,t)[%vl,o(x,t)J+ vy, (%0 [%VI,I(X’DJ + V) 0l% t){c’;’x 1 2(X=t)J +
5}
e t)[%vl Z(X’t)]+ vl,l(x,t){avll(x,t)}+v1’0(x,t)[&v2=2(x,t)J
vu(x,t) {%VZ,I(X’DJ Vg (3,1) [%VZ,Z(XJ)] (42)
Solving Eq. 35 through 42 and using the initial conditions
(38) Eq. 33, one can find the fallowing results:
0 £ ve( =0 (9 ¥ o(%,0) = Sin(x), (43)
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v, (%, )=—tsin(x), (44)
1.4 .
v (x.t)= jt2 sin(x), (45)
1.2 .
V(= fgt3 sin(x). (46)
And
vy o(%:0)= sin(x), (47)
v, (%,1)=—tsin(x), (48)
1.4 .
V(%)= jt2 sin(x), (49)
1.2 .
V()= fgt3 sin(x). (50)
According to the HPM, we can conclude that
0= limv (= 3 v (), 6D
ux,t)= p;navl x,t)= kgovlak x, 1),
t)=1i =3 t (52)
v(x,t)= p1_>mlv2 (t)= kgovz,k (3, t)

After putiing Eq. 43 through 46 into Eq. 51 and 47 through
501nto Eq. 52 the final results can be obtained as fallows:

u(x,t):sin(x)(l—t+%t2—%t3 4 )=ctsinx) (53)

1o

2

1

v(x,t) =sin(x)(1—t+ gt3 +.0)=¢tsin(x) G4

Tt can easily be seen that using ADM also leads to the
same results (Dehghan et al., 2007).

CONCLUSION

In this study, the homotopy perturbation method
(HPM) was used for finding the approximate solutions of
KdV-Burgers equation and coupled Burgers’ equations.
In can be concluded that the HPM is very powerful and
efficient technique in finding exact solutions for wide
classes of problems. It 13 worth pointing out that the HPM
presents a rapid convergence for the solutions.
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The two solved examples show that the results of the
present method are in excellent agreement with those
obtained by the exact solution and the ADM. The HPM
has got many merits and much more advantages than
other ADM and methods. Also the HPM does not require
small parameters in the equation, so that the limitations of
the traditional perturbation methods can be elimmated and
also the calculations in the HPM are simple and
straightforward. The reliability of the method and the
reduction in the size of computational domain gives this
method a wider applicability. The results show that the
HPM is a powerful mathematical tool for solving systems
of nonlinear partial differential equations having wide
applications in engineering.
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