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Adaptive Permutation-Based Genetic Algorithm for Solving
VRP with Stochastic Demands

7. Ismail and Irhamah
Department of Mathematics, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia

Abstract: The primary objective of this study 1s to solve the Vehicle Routing Problem with Stochastic Demands
(VRPSD) under restocking policy by using adaptive Genetic Algorithm (GA). The problem of VRPSD 1s one of
the most important and studied combinatorial optimization problems, which finds its application on wide ranges
of logistics and transportation area. It is a variant of a Vehicle Routing Problem (VRP). The algorithms for
stochastic VRP are considerably more intricate than deterministic VRP and very time consuming. This has led
us to explore the used of metaheuristics focusing on the permutation-based GA. The GA 1s enhanced by
automatically adapting the mutation probability to capture dynamic changing in population. The GA becomes
a more effective optimizer where the adaptive schemes are depend on population diversity measure. The
proposed algorithm 1s compared with standard GA on a set of randomly generated problems followmng some
discrete probability distributions inspired by real case of VRPSD m solid waste collection m Malaysia. The
performances of several types of adaptive mutation probability were also investigated. Experimental results
show performance enhancements when adaptive GA is used.

Key words: VRP with stochastic demands, restocking policy, genetic algorithm, adaptive mutation probability,

solid waste collection

INTRODUCTION

Vehicle Routing Problem (VRP) 1s often faced by
distribution and logistic-transportation  companies.
Usually many companies use classical deterministic VRP
models on their routing that do not capture an important
aspect of real life problems. In real life problems, the
parameters (demand, time, city location, etc.) are often
stochastic or random. It 13 appropriate to model the
stochasticity of real world situation by using VRP with
Stochastic Demands (VRPSD) model to produce better
routes and reduce cost. In VRPSD, the customer demands
are unknown until the vehicle arrives at customer
locations but 1t 13 assumed to follow a specific probability
distribution according to the past customer demands
behaviour. One of the applications is in the case of a solid
waste collection problem where it is impossible to know
the exact amowunt of garbage to be collected at the time
when the route 1s planned.

In stochastic environment, due to its randomness in
customers’ demands, a vehicle capacity may be exceeded
during service. A route failure is said to occur if the
demand exceeds capacity and a recourse action needs to
be taken. Assuming that enough capacity is available at
the depct, the vehicle may return to the depot, replenish

its load and then resume service at the point where failure
occurred. Therefore the vehicle will always be able to
satisfy all demands and the length of the corresponding
tour becomes a random quantity. In the literature, VRPSD
has been studied under two distinct approaches. The
recourse action could be the vehicle resumes service
along the plammed route, namely a priori approach, or
visiting the remaining customers possibly in an order
that differs from the planned sequence that is called
re-optimization approach. There are two common recourse
policies for a priori optimization. The first 1s the simple
recourse policy (Gendreau e al, 1995; Chepuri and
Homem-de-Mello, 2005), a vehicle returns to the depot to
restock when 1its capacity becomes
exceeded. In the second approach (Bertsimas et al., 1995,
Yang et al., 2000; Bianchi et al., 2004), preventive
restocking is planned at strategic points preferably when
the vehicle 1s near to the depot and its capacity 1s almost
empty, along the scheduled route instead of waiting for
route failure to occur. On the other hand, two most recent

attained or

computational studies in re-optimization approach are
done by Secomandi (2001, 2003).

Stochastic VRPs are considerably more intricate and
very time consuming than the deterministic one. It
requires the development of new ideas and algorithm that
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can solve problem in realistic time and reasonable solution
quality. The class of VRPs being addressed 1s a difficult
one, since its elements are usually NP-hard problems.
They are generally solved by heuristic methods
(Secomandi, 2003). Beside the work of Bianchi er al.
(2004), the work on the application of GA 1 VRPSD 1s
very lacking in the literature, although as known for many
vears, GA has been successfully used in a wide variety of
problem domains including VRP. Tn majority of GA
implementation, the operator settings are remaining static
during the GA run. However, some existing works found
were showed that varying GA settings during the GA
application can lead to improvement of GA performance.
Herrera and Lozano (1996) have reviewed many aspects of
the adaptation of GA parameters settngs such as
mutation probability (pm), crossover probability (pc) and
population size (N).

The awareness of the importance of mutation is
growing within the evolutionary algorithm commumty and
interest is increasing in a closer consideration of its
features (De Falco et al., 2002). Mutation operator may be
considered to be an important element in GA for solving
the premature convergence problem, since, it serves to
create random diversity in the population. If the lack of
population diversity takes place too early, a premature
stagnation of the caused. Under these
circumstances, the search 1s likely to be trapped in a local

search 1s

optimum before the global optimum 1s found. Most
approaches adapt pm along with other GA parameters
(Lee and Takagi, 1993; Srinivas and Patnaik, 1994,
Sugisaka and Fan, 2001, Mei-Y1 ef al., 2004; Xing et al.,
2007) and so, the specific effects of the adaptation of pm
alone were not studied. Lee and Takagi (1993) presented
experimental study which was ammed at isolating the
effects of the adaptation by Fuzzy Logic Controllers of N,
pe and pm. Tt showed that the adaptation of pm
contributes most to high performance.

A time-dependency of pm was first suggested by
Holland (1992) although he did not give a detailed choice
of the parameter for the time-dependent reduction of pm.
The 1dea of sustamning genetic diversity through mutation
15 then developed by measuring the Hamming distance
between the two parents during reproduction. One of it
was done by Herrera and Lozano (1996) using the
adaptive control of pm by Fuzzy Logic Controllers.
Reeves (1995) used adaptive mutation rate allowing high
mutation rate and slowly decreased as long as a
reasonably diverse population exists. Liu and Feng (2004)
presented a modified GA based on tuning of pm by the
value of mdividual fitness. The modified GA implements
mutation first, after that crossover.

This study contributes mainly on presenting an
adaptive GA based on diversity measures for a prion
VRPSD. We also proposed a new adaptive mutation
probability based on Lr
performance of several adaptive mutation probability
types on VRPSD was also studied for the first time. In this
study, the VRPSD recourse action 1s under restocking
policy.

distance measure. The

VEHICLE ROUTING PROBLEM WITH
STOCHASTIC DEMANDS

The VRPSD 13 defined on a complete graph:

G=(V.A O

Where:

Vo= 40,1, ., n} is aset of nodes with node 0 denotes
the depot and nodes 1, 2, ..., n correspond to the
customers,

A= (4, 1,j€ V,1#]}is the set of arcs joining the
nodes,
and a non-negative matrix

C = gL, J eV, 1% )} denotes the travel costs

(distances) between node i and j.

The cost matrix C is symmetric and satisfies the
triangular inequality. Customers have stochastic demands
» 1= 1,..., n which follows known probability distributions
P =probf=kLk=0,1,2 .. K Assume further that
customers’ demands are independent. Actual demand of
each customer 15 only known when the vehicle arrives at
the customer location. A feasible solution to the VRPSD
1s a permutation of the customers s = (s(1), 5(2),. .., s(n))
starting at the depot (that is, s(1) = 0) and it is called a
prioritour. Let0—1—2 ... ;= j+1 ... = nbe a particular
vehicle route. Upon the service completion at customer j,
suppose the vehicle has a remaining load ¢ (or the
residual capacity of the vehicle after having serviced
customer J) and let £(q) denote the total expected cost
from nede j onward. If S, represents the set of all possible
loads that a vehicle can have after service completion at
customer j, then, £(q) for q € 5, satisfies:

. IR
f(q) = L (1)
-(q) = minimum {fj’(q)
Where:
fjp {q)= Ciimt me {q- k)pj+1,k
kig
+2[b+2¢, +f {0+ Q-Bp,,,

kxq

(2)
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f;(‘]) =0Tl n T Z fj+1 (Q- k)pjn,k (3)
with the boundary condition:
f.@=c,;.qe5, (4

InEq. 2-4, £{{q) represents the expected cost of going
directly to the next node, whereas (9 represents the
expected cost of the restocking action. Equation 2-4 are
used to recursively determine the objective value of the
plamed vehicle route and the optimal sequence of
decisions after customers are served (Bianchi et al., 2004).
In principle, this
programming since each time a customer demand is
revealed, a decision has to be taken as to where the
vehicle should proceed.

The expected cost-to-go in case of restocking, is
constant in ¢, since in case of restocking the vehicle will

procedure leads to a dynamic

have full capacity Q before serving the next customer,
whatever the current capacity g 1s. On the other hand,
ff{@) 1s a monotonically non-increasing function n g, for
every fixed customer . Therefore there i1s a capacity
threshold value by such that, if the vehicle has more than
this value of residual goods, then the best policy 1s to
proceed to the next planned customer, otherwise it is
better to go back to the depot for replenish (Yang et al.,
2000).

DATA

VRPSD application 1s considered n the solid waste
collection problem of residential area in Malaysia. The
problem of optimization of waste collection can be
described as follows. The solid waste 1s located m box or
containers along the streets and they must be all collected
by a fleet of vehicles whose capacity can not be exceeded.
Each vehicle can service several such sites before going
to dumpsite to unload. Each vehicle starts from the depot,
visits a number of stops and ends at the depot. When a
vehicle is full, it needs to go to the closest available
dumpsite to empty its load and then resume their visit.
Each vehicle can make multiple disposal trips per day.

Based on experiments reported in Gendreau ef al.
(1995), three factors seem to mumpact the difficulty of a
given VRP mstances: number of customers’ n, number of
vehicles m and filling coefficient £ In a stochastic
environment, the filling coefficient can be defined as:

(3)

2 E
3 (%)

m

where, B(£) is the expected demand of customer i and Q
denotes the vehicle capacity. This 1s the measure of the
total amount of expected demand relative to vehlicle
capacity and can be approximately interpreted as the
expected number of loads per vehicle needed to serve all
customers. In this experiment, the value of f1s 1.1.

A set of data are randomly generated to sumulate this
problem of waste collection. n nodes are generated in the
[0,100)° square according to a continuous uniform
distribution. Nodes are first assigned to a specific three
demand range in equal probabilities. Three ranges of
demand present low, medium and high solid waste weight.
The value of each demand is then generated mn the
appropriate range according to a discrete umiform
distribution. The sample size of number of nodes and
associates demand ranges are described:

*  Small sample size: n = 10 and n = 15, Demand range:
(1,3), (2,4, (3.5

+ Larger sample size: n = 20, n = 30 and n = 50,
Demand range: (1, 5), (6,10), (11, 15)

THE PROPOSED GENETIC ALGORITHM

The mmportant details of the Genetic Algorithm are
outline below.

Step 0:  (Define): Define operator settings of GA suitable
with the problem which is VRPSD.

Step 1: (Initialize): Create an initial population P of N
chromosomes that consists of constructive heuristics
solutions and randomly mutation of it where all
individuals are distinct or clones are forbidden.

Step 2: (Fitness): Hvaluate the fitness f(C;) of each
chromosome C, m the population. The fitness 1s the
function of VRPSD objective function.

Step 3: (Selection): Apply Roulette Wheel Selection.
This gives the set of Mating Population M with size N.

Step 4: (Crossover): Pair all the chromosomes in M at
random forming N/2 pairs. Apply crossover with
probability pc to each pair and form N chromosomes of
offspring, if random number > pe then offspring 1s the
exact copy of parents.

Step 5: (Mutation): With a mutation probability pm
mutate the offspring.
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Chromosome A 325471698

Chromosome B 1532647938

Fig. 1: Tllustration of order representation

Step 6: (Replace): Evaluate fitness of parents and new
offspring. Choose the best N chromosomes. Replace the
old population with newly generated population.

Step 7: (Test): If the stopping criterion is met then stop
and return to the best solution in current population, else
gotostep 2.

Chromosome representation: In developing the
algorithm, the permutation representation or the path
representation or order representation is used since the
typical approach using binary strings will simply make
coding more difficult. Order representation is perhaps the
most natural and useful representation of a VRP tour,
where customers are listed in the order in which they are
visited A chromosome represents a route and a gene
represents a customer and the values of genes are called
alleles. The search space for this representation 1s the set
of permutations of the customers; every chromosome 1s
a stting of numbers that represent a position n a
sequence. Order representation can be described as
shown in Fig. 1.

Initialization: Usually, the mitial population of candidate
solutions 18 generated randomly across the search space.
However, other mformation can be easily incorporated to
yield better results. The inclusion of good heuristic in
mitial solution 1s stated as Prins (2004) by using Clarke
and Wright, Mole and Jameson and Gillett and Miller
heuristics for solving distance-constramed VRP (DVRP)
mstances. In this study, Nearest Neighbour (NN) and
Farthest Insertion (FI) is included to the mitial solution
and the rest are the mutation results of NN and FI. The
population is an array P of N (population size)
chromosomes. Each chromosome P, is initialized as a
permutation of customers. Clones (1dentical solutions) are
forbidden i P to ensure a better dispersal of solutions
and to dimimish the risk of premature convergence.

The population size is one of the important factors
affecting the performance of genetic algorithm. Small
population size might lead to premature convergence. On
the other hand, large population size leads to urmecessary
expenditure of valuable computational time. Prins (2004)
stated that population size < 25 or > 50 will give moderate
degradation of the average solution and found that
population size equal to 30 performs best.

Evaluation: Once the population is initialized or an
offspring population is created, the fitness values of
candidate solutions are evaluated. The fitness value 1s the
function of VRPSD objective fumction The lower the
VRPSD objective function means the higher the fitness of
solution.

Roulette Wheel Selection with elitism: This research
employs the combination of two types of GA selection
techniques, namely roulette wheel and elitism. The
roulette wheel selection works by selecting the
chromosome by looking at their proportional fitness rank.
This is where the evolution concept survival of the fittest
comes into plays. Some researchers found that this
technique will lead to only the best chromosome been
selected m the population It because the fittest
chromosome rank is bigger compared to the less fit
chromosome and in probability of course chromosome
with the highest rate will have a big chance to be selected,
while the elitism technique 1s a simple selection operator,
which reserved the best found chromosome in the current
population to rebirth for the next generation.

Mitchell (1996) said that elitism could merease rapidly
the performance of genetic algorithm, because 1t prevents
losing the best-found solution. When creating a new
generation using the reproduction operator, we could
have a chance of losmg the best-found chromosome in
the current population. This i1s where elitism plays their
role in preventing the lost of this chromosome. In this
example,
chromosome probability has been done, the elitism
operator will automatically reserved the chromosome that
produce the lowest expected cost.

after the calculation for each selection

Order Crossover (OX): Oliver et al. (1987) applied
Partially Match Crossover (PMX), Cycle Crossover (CX)
and Order Crossover (OX) to the 30-city problem of
Hopfield and Tank. They found that the best tour
generated with OX was 11% shorter than the best PMX
tour and 15% shorter than the best CX tour. In a later
study by Starlowreather e al. (1991), six different crossover
operators were tested on the problem of Hopfield and
Tank. Thirty different runs were performed with each
operator. In this experiment, OX found the optimum
25 times (out of 30), while PMX found the optimum only
once and CX never found the optimum.

Thus m this study, OX was employed in the
generation of offspring. OX was first proposed by
Oliver et al. (1987). This crossover operator extends the
modified crossover of Davis (1991) by allowing two cut
pomnts to be randomly chosen on the parent
chromosomes. In order to create an offspring, the string
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between the two cut points in the first parent is first
copied to the offspring. Then, the remaining positions are
filled by considering the sequence of cities in the second
parent, starting after the second cut point (when the end
of the chromosome is reached, the sequence continues at
position 1). The pc is set to be 0.6 as used by Jerald et al.
(2006).

Mutation: Mutation alters one or more genes (positions)
of a selected chromosome (solution) to reintroduce lost
genetic material and introduce some extra variability into
the population. The role of mutation in GAs has been that
of restoring lost or unexplored genetic material into the
population to prevent premature convergence of the GA
sub optimal solutions (Laoufi, 2006, Zuhaimy and
Irhamah, 2007). As opposed to the classical mutation
operator, which introduces small perturbations into the
chromosome, the permutation operators for the VRP and
or TSP often greatly modify the original tour. In this
study, we mmplement swap mutation.

The choice of probability of mutation is known to
critically affect the behaviour and performance of the GA.
Increasing the value of pe and pm promote exploration at
the expense of exploitation. The moderately large values
of pc promote the extensive recombination of schemata,
while small values of pm are necessary to prevent the
disruption of the solutions. Several schemes of mutation
probability 1s used mcluding fixed mutation probability
and adaptive ones. In fixed mutation probability, the
mutation probability remains the same from generation to
the next generation Small values of pm (0.001 until
0.05) that commonly employved in GA practice were
implemented (Davis, 1991).

Stopping criterion: In using the optimization algorithms,
the goal 1s to search for the global optimum and 1t should
be found. However, in general it is not clear when the goal
is achieved especially in our application in the real world
situation. Therefore, it i1s sometimes not that easy to
decide when execution of an optimization algorithm
should be terminated. There are many different
mechanisms can be used for the detection of an
appropriate time for ending an optimization run and one of
the commonly used mechamsm i1s the setting of a
maximum number of generation. The GA procedure is
repeated until the maximum number of generation set in

the algorithm (which may be adjusted).
ADAPTIVE MUTATION PROBABILITY

Adaptation of operator probabilities 1s an attempt to
make the Genetic Algonthm a more effective optimizer. In

this study, we compare the performance of several
schemes of adaptive mutation probability as follows:

Mutation probability is random numbers in the range of
[pmyg, pmg.]: Mutation probability is dynamically
changed in the range of [0.001, 0.05] during the
generations.

Adaptive mutation probability based on PDM: Lee and
Takagi (1993) propose two Phenotypic Diversity Measure
(PDM) performance measures:

f

PDM, = fbfTﬂ and PDM, = .

wors

PDM, and PDM, belong to the interval [0, 1]. If they are
near to 1, convergence has been reached, whereas if they
are near to 0, the population shows a high level of
diversity.

Adaptive mutation probability based on Euclidean
distance: Herrera and T.ozano (1996) proposed Genotypic
Diversity Measure (GDM) based on BEuclidean distances
of the chromosomes in the population from the best cne.
The GDM 1s denoted by ED.

d-d

ED = min
oo =

_ N
Where) d:%Z d(cbest’cl) E dmax = mﬂX{d(C best Cl}: d mm=
min{d(C,,., C¥C, is chromosome in population with

Euclidean distance g v - ’Zn: (x, —y)* - The range of ED

is [0, 1]. TfED is low, most chromosomes in the population
are concentrated around the best chromosome and so
convergence is achieved.

Lee and Takagi (1993)and Herrera and Lozano (1996)
were proposed the use of Fuzzy Logic Controller to
dynamically control the mutation probability. But in this
study we rather use simple linear formula of pm = PDM,
or pm = PDM, and pm = 1-ED. These formula are used
since the value of PDM,, PDM, and ED are in the range of
[0, 1] as the mutation probability. The nearer to the
convergence 1s shown by higher PDM,, higher PDM ,
(nearer to 1) and lower ED (nearer to 0) that each
requires higher pm, higher pm and lower pm,
respectively. But since we attempt to compare
performance of algorithms, we have considered that these
techniques should handle the same range of possible
pm values in the range of [0.001, 0.1]. So, a transformation
was made

from the interval considered by these
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technicques into [0.001, 0.1]. Beside the above measures,
we also propose new adaptive mutation probability as
below.

Adaptive mutation probability based on Lr distance:
Another diversity measure is provided which is based on
Lr distance that usually used to measure dissimilarity
between two objects. Formula 18 proposed by Herrera and
Lozano (1996) by substituting the ED with LD where Lr
distance between two objects is. Then pm = 1-L.D.

RESULTS AND DISCUSSION

Table 1 shows the result obtained based on
performance: average of the best fitness function found
at the end of each rim. We executed all the algorithms for
10 times and 50 iterations for each run.

Regarding to the GA versions under fixed pm values,
we may underline fact that the best performance measures
for each problem set are reached with different pm values:

Forn=10: pm = 0.01
Forn=15 pm = 0.05
Forn=20: pm = 0.1
Forn=50: pm = 0.001

whereas, for n = 30, the result of all fixed pm values are the
sane.

Now, considering the performance between fixed
versus adaptive mutation probability, we may observe
that adaptive algorithms leads in better solution quality
rather than fixed parameter, since for each problem set, it
returns results that better than all fixed pm values, or the
same as the ones of the most successful GAs with fixed
pm settings (the case of n =15 and n = 50). The adaptive
scheme plays a role in improving selution quality and
possibly directing search to unknown regions to avoid
being trapped in local optimum. By using the adaptive
GA, the amount of time to spend mn finding appropriate
mutation probability values of GA can be reduced.

From the results it can also be deduced that different
AGAs are better suited to different problem sets. Compare
to other adaptive schemes, PDM, showed superiority
since it can find best performance measure for 2 (two)
problem set, while if we compare it to fixed pm, the lowest
values of VRPSD objective function from PDM), were still
lower than that can be resulted from all fixed pm setting,
or the same with fixed pm results like in the case of n=15.
The proposed LD measure was proven to yield best
performance measure among other diversity measure on
the problem set n = 15, its performance was also quite
good on the n=20,30 and 50but performs worst in

Table 1: Performance of fixed parameter vs adaptive GA
Types and values of

mutation probability  n=10 n=15 n=20 n=30 n=2350
Fixed prm = 0.001 287.2 292.0 310.0 336.0 360.6
Fixed pm = 0.005 286.2 202.0 310.5 336.0 361.0
Fixed pm = 0.01 280.9 292.0 314.0 336.0 361.0
Fixed pm = 0.05 2858 201.9 307.3 336.0 361.0
Fixed pm = 0.1 2854 292.0 303.5 336.0 361.0
Range (0.001, 0.1) 282.5 202.0 306.1 336.0 361.0
PDM, 278.8 292.0 299.8 334.5 361.0
PDM; 2858 202.0 2004 336.0 361.0
ED 285.0 292.0 303.8 336.0 360.6
LD 287.6 201.9 300.8 336.0 361.0
—— Rﬂﬂ@
405 —— PDM,
-= PDM,
385 -= ED
- LD

3651

3451

3254

dudn”
PR ettt s T it
e e TRl

3054

285

174771013 16 19 22 25 28 31 34 37 40 43 46 49
Fig. 2: Search process of several AGAs inn =20

n = 10. The illustration of search process of several
adaptive GAs on problem set n = 20 is shown in Fig. 2. Tt
1s observed that PDM, was better than the others and had
nearly the same convergence with PDM, and LD after
40 1terations.

CONCLUSIONS

A Genetic Algorithm (GA) approach as a solution to
the VRP with Stochastic demands under restocking policy
was designed and presented. The GA does exhibit a very
good performance when suitable combinatons of
operator parameters were used. The amount of time
required to examine several combinations of parameters
especially in mutation probability can be reduced
significantly by using the proposed adaptive mutation
probability scheme. When compared with the solution
generated using fixed pm values, the adaptive GA does
produce a better solution quality. On the other hand,
based on the different performances of the various AGAs,
it was found that different adaptation mechanisms are
better suited to different problems. Future work should be
directed towards the development of other adaptive
scheme that allows for the integration of these diversity
measures with the fitness of every individual.
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