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Abstract: This study is devoted to compare the goodness of fitting of the monthly precipitation for five old
raingauge stations (Bushehr, Isfahan, Meshed, Tehran and Task) in Iran using parametric and nonparametric
methods. The parametric methods include normal, two and three parameter log-normal, two parameter gamma,
Pearson and log-Pearson type 11T and Gumbel extreme value type T distributions. The nonparametric approach
is Gaussian (normal) kernel function. The smoothing parameter were calculated by four methods including rule
of thumb, Adamowski criterion, least squares cross-validation and Sheater and Jones plug-in. Results from the
least squares cross-validation were better comparing to other methods due to goodness of fit tests applied in
this study. The results of this study showed that the monthly precipitation data fitted to the parametric methods

much better than nonparametric method.
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INTRODUCTION

The estimation of monthly precipitation is essential
in the water resources and water supply planning,
urigation and drainage system design, n agriculture, crop
water requirements and monitoring chmate change.
Precipitation in Tran is mostly occurred between
November and April, with annual mean equal to 250 mm.
The climate of Iran 1s arid and semi-arid. Precipitation
frequency analysis is generally carried out using
parametric methods in which a statistical distribution such
as normal (N), two parameter log-normal (LN2), three
parameter log-normal (LN 3), two parameter gamma (G2),
Pearson type III (P3), log-Pearson type III (LP3) and
Gumbel extreme value type I (G) are used to fit the
available data for frequency analysis and estimation of
rare events. These methods have been successfully
applied in many cases, but have some disadvantages
because of not fitting to the observed data very well, or
diverting from the extreme tails. Some other conditions
that may cause problems with parametric methods are
involved in difficulties of estimation of the best
parameters for these approaches particularly for skewed
data.

To estimate the probability density function and
distribution function of hydrologic events, several
nonparametric methods such as variable kernel method
(Lall et al., 1993) have been introduced in recent years.

Guo (1991) proposed a nonparametric variable kernel
estimation model which provides an altemative way in
flood quantile estimation when historical floods data are
available. Tt is shown that the nonparametric kernel
estimator fitted the real data pomts closer than its
parametric counterparts. Gingras and Adamowski (1992)
applied both L-moments and nonparametric frequency
analysis on the annual maximum floods. By coupling
nonparametric  frequency analysis with L-moment
analysis, it is possible to confirm the T.-moment selection
of unimodal distribution, or to determine that the sample
is actually from a mixed distribution. Thus, the
nonparametric method helps to identify the underlying
probability distribution, particularly when samples arise
from a mixed distribution. Moon ef al. (1993) compared
selected  techniques for  estimating exceedance
frequencies of anmual maximum flood events at a gaged
site. They applied four tail probability and a variable
kernel distribution function estimators and concluded that
the variable kernel estimator appears useful because it
automatically gives stable and accurate flood frequency
estimates without requiring a distributional assumption.
Adamowski (1996) developed a nonparametric method for
low-flow frequency analysis and compared with two
commonly used parametric methods, namely, log-Pearson
Type 111 and Weibull distributions. The numerical analysis
indicates that the nonparametric method better fits the
data and gives more accurate results than currently used
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parametric methods. Adamowski (2000) applied a
Gaussian (normal) kernel function for regional analysis of
annual maximum (AM) and partial duration (PD) flood
data by nonparametric and T-moment methods. The
results pomted out deficiencies 1 curmrently used
parametric approaches for both AM and PD series, since
traditional regional flood frequency analysis procedures
assume that all floods within a homogeneous region are
generated by the same, often unimodal distribution, while
this is not always true and the data series may be
multimodal. Alse, Kim and Heo (2002) employed this
nonparametric Gaussian (normal) kernel function, however
for their comparative study of flood quantiles estimation
by applying seven bandwidth selectors of Rule of thumb
(ROT), Least squares cross-validation (LSCV), Jones,
Marron and Park cross-validation (TMP), Smoothed cross-
validation (SCV), Biased cross-validation (BCV), Park and
Marron plug-in (PM) and Sheater and Jones plug-in (ST).
They concluded that among seven bandwidth selectors,
the relative biases of SJ were the smallest in most cases.
Faucher et al. (2002) compared the performance of
parametric and nonparametric methods in estimation of
flood quantiles. The log-Pearson type LI, two parameter
lognormal and generalized extreme value distributions
were used to fit the simulated samples. Tt was found that
nonparametric methods perform quite similarly to the
parametric methods. They compared six different kernel
functions include biweight, normal, Epanechnilcov,
extreme value type I, rectangular and Cauchy. They found
no major differences between the first four above
mentioned kernels. Behnia and Tou (2007) applied Fourier
series to estimate ammual flood probability of the Great
Karoun river flowing southwest of Tran. Then, the
predicted results from the application of this method were
compared to results of seven parametric methods include
normal, two and three parameter log- normal, two
parameter gamma, Pearson and log-Pearson type TIT and
Gumbel extreme value type [ distributions. Results of this
comparison showed a better ability for Fourier series
method. Karmakar and Simonovie (2008) used
nonparametric methods based on kemel density
estimation and orthonormal series to determine the
nonparametric  distribution functions for peak flow,
volume and duration. They selected the subset of the
Fourier series consisting of cosine functions as
orthonormal series. They found that nonparametric
method based on orthonormal series is more appropriate
than kemel estimation for determimng marginal
distributions of flood characteristics as it can estimate the
probability distribution function over the whole range of
possible values.

In the current study a Gaussian (normal) kernel
function 1s performed on a series of monthly precipitation
from five old raingauge stations i Iran. Results of the

performance of this proposed nonparametric method will
be then compared to the seven above mentioned
parametric treatments to illustrate which method fit better
to the data.

MATERIALS AND METHODS

This study was started from October 2007 at the
Department of Hydrology and Water Resources,
Faculty of Water Sciences Engineering, Shahid Chamran
University, Ahwaz, Tran.

Sources of precipitation over Iran: There are five distinct
sources of precipitation over Iran which mcludes westerly
winds blowing from Mediterranean Sea, southwesterly
winds flow from the Horn of Africa and northern winds
which flow from Siberia. These winds produce rainfall on
northwestern, western and southwestern parts of the
country in winter. Southeasterly Monsoon winds blowing
from Indian Ocean, which produce scanty and scattered
rainfalls on southeast in summer and northerly winds
blowing from Caspian sea which only produce relatively
heavy rainfall on littoral provinces i.e., Gilan, Mazandaran
and Golestan throughout the year.

Sources of data: The monthly precipitation data from
five old raingauge stations m Iran were selected to be
analyzed. These stations include Bushehr, Isfahan,
Meshed, Tehran and Jask. Figure 1 shows geographical
location of the stations on the map of Iran. There are
many Synoptic and Meteorological stations in Tran,
but the mentioned stations were selected because they
have long length records. The record lengths of these
stations range between 84 to 113 years. The data were
collected from two sources including World Weather
Records and Meteorological year books of Iran which are
published by Tranian Meteorological Organization. Data
up to year 1960 were collected from the first source and
the rest of them up to year 2004 were collected from the
second source. The sample sizes of data and date of
establishment for each of the stations are given in
Table 1 and the geographical characteristics of the
stations are shown in Table 2. The statistical

Table 1: The sample sizes and date of establishment of stations

Station Jask Tehran Meshed Isfahan Bushehr
Date of egtablishrment 1893 1893 1893 1893 1877
Record length (vears) 3 94 98 98 113

Table 2: Geographical characteristics of the stations

Station Latitude Longitude Altitude (im
Bushehr 28°59 28°59' 19.6
Isfahan 32°37 32°37" 15504
Meshed 36°16 36°16' 999.2
Tehran 35°41' 51°19' 1190.8
Jask 25°38 57°46" 4.8
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Oman Sea
Fig. 1: Geographical location of rain gauge stations on the map of Iran
Table 3: Mean monthly precipitation (mm) for the old stations
Station Jan. Feb. Mar. Apr. May Jun. Jul Aug. Sept. QOct. Nov Dec. Annual
Boushehr 721 397 22.0 9.2 13 0.0 0.0 0.0 0.0 4.1 39.6 78.6 266.6
Istahan 19.1 14.8 20.9 162 7.5 1.1 1.5 0.3 0.0 34 12.4 18.8 116.6
Meshed 30.6 34.5 55.7 47.4 28.8 6.2 1.1 0.6 1.4 8.9 15.5 213 252.0
Tehran 37.7 352 41.4 324 14.9 30 2.5 1.5 1.5 9.5 241 33.0 236.7
Jask 333 27.9 20.5 5.5 0.1 0.6 0.9 0.2 0.0 32 6.8 26.1 125.1
characteristics of monthly precipitation data for the 5 f(X)‘Lik[X_XIJ (2)
stations are shown 1n Table 3 to be used in proposed nh = h

methods.

A description of the distributions and parameter
estimation methods are not presented m this study,
because they are available in other publications such as
(Kite, 198%; Haan, 1977, Rao and Hamed, 1999). Therefore,
only nonparametric kernel density function estimation 1is
described here.

The kernel method: In the kernel method, a fumction k(x)
is associated with each observation in a sample. The main
requirement to k is:

jjk(x)dx -1 1)

The nonparametric density function 1s constructed
from the set of kernels as:

where, 1 1s the sample size, k 1s the kernel function and h
1s a parameter that determines the degree of smoothing
and is called bandwidth or smoothing parameter. The
kemel may be mterpreted as a weight function that
represents the weight of each observation in the
estimation of the density at x. The kernel distribution
function 1s the mtegration of the density function (Eq. 2)
as:

3

Where:

(4
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The kernel distribution function may serve to
estimate quantiles corresponding to a given probability of
exceedance. For example, in the hydrological context, one
may be interested in determiming the flood with a return
period of T years, that is:

X =F [1 - l} (3)

where, F~' represents the inverse of distribution function,
F. Inpractice the value of x must be determined by solving
Eq. 5 numerically.

In principle, all classical probability density functions
like the Gaussian (normal) or the Cauchy distributions are
candidates for kemel functions. Other types of functions
subject to certain constraints could also be considered.
Some authors have argued that the kernel choice is not
critical compared to the choice of smoothing parameter.

In thus study, a Gaussian or normal kernel (Gingras
and Adamowsla, 1992) has been used and 13 given by:

K(x):.\hlﬁexp(—(x—x‘)zflh2 ) (6)

Choosing the smoothing parameter: The problem of
choosing the value of smoothing parameter 1s of crucial
i density estimation. One strategy for selecting the
smoothing parameter is to begin with a large bandwidth
and to decrease the amount of smoothing until the
fluctuations start to appear. Too large an h value will lead
to a unimodal nonparametric density regardless of the
multimodality of the data while too small one will lead to
distorted multimodal density shape regardless of the
unimodality of the data. This approach is viable but there
are also many cases where it is beneficial to have the
bandwidth automatically selected from the data. Tn this
study, four bandwidth selectors such as rule of thumb
(ROT), Adamowski criterion (AC), least squares cross-
validation (LSCV), Sheater and Jones plug-m (SI) are
employed. The optimal bandwidth for a kernel density
estimate is typically calculated based on an estimate for
the integrated square error (ISE) as follow:

1sEh) = [[F(x)- f(x)de (7)
And its expected value, the MISE is given by:

MISE:E(I[%(X)—f(X)T dxj (&)

:J.‘\,’::lrf‘(x)dx-¢—J.bia£a2 f“(x)dx @

where, the first integral is integrated variance (IV) and the
second integral is integrated squared bias (IB). Hence the
optimal bandwidths depend on the unknown density for
deriving of £.

Rule of thumb: The ROT was proposed to minimize the
asymptotic mean integrated square emror (AMISE)
(Silverman, 1986). The best trade-off between asymptotic
variance and bias is given by:

L5105 (] 0)

where, h is the minimizer of the AMISE and R(f'¥) is the
only unknown. Assuming the unknown distribution to
be normal with pearameter p (population mean) and o
(standard deviation of values), the estimate of h, for a
Gaussian kernel was done as:

hpor =1.06on7"" (11)

The advantage of ROT is that it provides a very
practical method of bandwidth selection while the
disadvantage 1s that the bandwidth 13 wrong if the
population 1s not normally distributed.

Adamowski bandwidth
Adamowski (1989) proposed the following formula for
computing the smoothing parameter

criterion for selection:

. ﬁé(xf?{j) (12)

SN(N-10/3)

=)

where, x; and x; are order statistics of observation and N 1s
sample size.

Least square cross-validation: The Least square cross-
validation function is defined by Rudemo (1982) and
Bowman (1985) as:

n

LSCV (h) = [T (x.h)' dc -3 F (x,.h) (13)

=]

i=1

where, f_, is the density estimate based on the entire data
set except for the ith observation.

Sheater and Jones plug-in: Sheater and Jones (1991)
reconsidered the problem of estimating R(f%). They used
the same i1dea as Park and Marron (1990) but with
bandwidth as follow:
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2

gOCR(fU)hm' (14)

R(f(B))
where, R(f”) and R(f™) can be estimated by R(frgl(z)) and
R({?gf)) and both bandwidth g, and g, are determined by
asymptotic optimal values and only in this step the normal
probable density function (PDF) is used as a reference
probability model. This improves the method of Park and
Marron (1990) but is not the best achievable rate yet. In
this study for comparison of the parametric and
nonparametric methods, the mean relative deviation
(MRD) and the mean square relative deviation (MSRD)
were used to measure the goodness of fit of above
mentioned methods, these statistical terms are defined as
follows:

(15)

(16)

i=1

2

18(x -%
MSRD = — ! L 100
IS

i

where, x and X are the observed and calculated monthly
precipitation and n is sample size. In addition, observed
and estimated data will be compared graphically as well.

Data analysis: One of the most common characteristics
of the monthly precipitation data from the mentioned
raingauge stations is the character of their positive
skewness. Histogram of January precipitation for
Boushehr station during 114 years 1s shown in Fig. 2 as an
example.

Monthly precipitation data from five old raingauge
stations in Tran were fitted to the mentioned parametric
and nonparametric methods to compare the performance
results of these various approaches.

For analysis of data by the nonparametric kernel
functior, the values of smoothing parameter (h) for all
months and all stations were calculated by the mentioned
four methods explained in the previous section at which
the L3CV method resulted in the minimum values for this
parameter. Therefore, the results of this method were
selected to calculate MRD and MSRD values for analysis
of data by the nonparametric kernel function. Table 4
shows all of the smoothing parameter (h) values for
Boushelr station as an example and the selected mimimum
values resulted from L.SCV method are shown in Table 5-9
under the parameter h for Boushehr, Isfahan, Meshed,
Tehran and Jask stations respectively to be used for
calculation of MRD and MSRD for kernel function.

30+
=P
-] 20
[
(=]
g
5 10-
[-"
o _I_I /]
T L] T T
0 100 200 300
Precipitation (mm)

Fig. 2: Histogram of January precipitation over Boushehr
station during 114 years showing its positive
skewness

Table 4: Values of smoothing parameter, h for various months resulted from various bandwidth selector methods for Boushehr station

Bandwidth

selector Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.
LSCV 8.6248 4.5404 1.1916 0.9310 0.5201 - -—- - - 1.3031 3.2983 15.1413
ST 14.4665 6.4110 3.3740 1.8321 0.6877 - -—- - - 41918 74151 15.1873
AC 14.8026 9.5284 6.2912 3.0800 1.2964 - -—- - - 54244 13.0557 17.0180
ROT 25.0299 16.2582 11.9158 5.6805 3.6977 - -—- - o 13.0311 24.3758 29.2994
Table 5: Values of MRD and MSRD for best parametric method and nonparametric normal kemel for Boushehr station

Statistic Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.
Dist. LP3 G2 LP3 LP3 LP3 - -—- - - LP3 LP3 LP3
MRD 9.39 13.26 1343 10.34 16.56 - -—- - - 18.99 10.979 13.73
MSRD 201.79 603.66 403.69 187.63 602.73 - -—- - - 57347 218812 655.01
h 8.6248 4.5404 1.1916 0.9310 0.5201 - -—- - - 1.3031 3.2983 15.1873
MRD 11.70 70.54 11.46 14.35 34.73 - -—- - - 9.37 15.89 84.40
MSRD 1748.50 1.31E5 1503.80 3111.20  102E4 - -—- - o 273.29 4.79E3 3.35E5
Table 6: Values of MRD and MSRD for best parametric method and nonparametric normal kernel for Isfahan station

Statistic Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.
Dist. LP3 G2 G2 LP3 LP3 LP3 LN3 LP3 LN3 LP3 LP3 LP3
MRD 7.89 5.33 6.92 8.23 13.02 18.78 16,67 32.84 18.85 27.19 11.37 10.78
MSRD 140.74 61.94 99.59 135.44 489.98 500.20 514.90 1893.02 910.44 1439.04  206.08 248,72
h 1.1008 2.8058 2.7651 2.0492 0.8977 0.5334 0.8037 0.1840 0.8769 0.3747 1.3182 0.8247
MRD 4.73 27.78 10.86 17.79 29.63 20.56 45.24 28133 48.62 23.06 20.09 4.21
MSRD 253.23 3.28E4 2343.00 6.12E3 1.62E4 2.32E3 1.72E4 2.41E3 1.51E4 4.65E3 6.71E3 108.63
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Table 7: Values of MRD and MSRD for best parametric method and nonparametric normal kemel for Meshed station

Statistic Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.
Dist. LP3 G2 LN3 LP3 LP3 LP3 LP3 G2 LN3 LP3 G2 LP3
MRD 9.10 5.69 5.89 4.39 936 20.89 19.61 17.45 16.30 10.16 9.39 12.12
MSRD 357.97 121.94 85.71 56.80 174.89 867.79 662.70 699.75 391.57 192.84 162.07 646.24
h 4.2837 6.1450 51447 7.3931 5.9479 0.6063 0.3316 0.6111 0.4253 0.8071 1.6466 3.9592
MRD 1548 8.45 3.19 5.60 20.67 19.11 2347 16,79 17.32 13.02 24.14 26.34
MSRED 9.85E3 90742 55.79 268.61 1.88E4 2.71E3 3.20E3 2.01E3 1.46E3 2.21E3 2.11E4 2E4
Table 8: Values of MRD and MSRD for best parametric method and nonparametric normal kemel for Tehran station

Statistic Jan. Feb. Mar. Apr. May Jun. Jul Aug. Sept. QOct. Nov. Dec.
Dist. LN3 LP3 G2 LP3 LP3 LP3 LN3 LP3 LP3 G2 G2 LP3
MRD 7.58 17.76 4.40 15.88 Q.67 14.77 17.02 13.67 21.57 15.08 848 6.30
MSRD 205.89 1384.78  31.89 514.04 284.58 399.61 484.32 282.49 829.63 411.53 215.92 T9.88
h 6.5123 2.4306 7.6822 1.8710 3.3006 0.3984 0.4982 0.6729 0.6102 1.3878 5.1520 3.3869
MRD 10.55 11.85 11.32 4.33 T0.35 17.84 3016 3091 41.07 34.73 5343 3.85
MSRED 2.42E3 6.91E3 1.81E3 21548 1.77ES 3.53E3 7.68E3 9.23E3 1.49E4 2.94FE4 9.99E4 7439
Table 9: Values of MRD and MSRD for best parametric method and nonparametric normal Kernel for Jask station

Statistic Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.
Dist. G2 G2 LP3 LN3 - - G2 - - G2 LP3 LP3
MRD 8.72 15.03 16.55 15.66 - - 1948 - - 26.53 19.56 843
MSRD 182.27 902.65 469.96 37444 - - 502.01 - - 812.13 800.36 264.07
h 7.1522 8.2039 21824 1.8033 - - 1.6488 - - 52562 1.2256 5.9302
MRD 59.51 77.12 36.33 2317 - - 2318 - - 43.40 28.70 40.42
MSRED 1.06ES 9.71E4 1.58E4 3.88E3 - - 1.98E3 - - 1.17E4 7.68E3 3.17E4

For analysis of data by the parametric methods first,
their parameters were calculated by both the methods of
moments and maximum likelihood procedure then, MRD
and MSRD were calculated for all months and all stations.
HYFA program was used for all calculations. Table 5
through Table 9 shows the mimimum values of MRD and
MSRD for the best parametric methods (which are the
methods with lowest MRD and MSRD values).

RESULTS AND DISCUSSION

According to Table 4 and comparing the values of
smoothing parameter calculated from four methods, 1.e.,
ROT, AC, LSCV, ST for Boushehr station, it is evident that
the least values of bandwith results obtained by LSCV
evolve the least values of MRD and MSRD. Also, the
results for other stations in all months are similar to
Boushehr. In general, for all stations, in 82.7%, the least
values of bandwidth resulted from L3CV method, in15.4%
resulted from AC and in 1.9% resulted from SI. These
results differ from the results of Kim and Heo (2002)
because they obtamed the smallest values of the relative
bias for SI smoothing parameter in most cases as
mentioned 1n the mtroduction. However, it should be
mentioned that their conclusion was for flood quantiles
estimation not for precipitation.

Due to the positive skewness character of monthly
precipitation data for all raingauge stations (see Fig. 2 as
an example) and regarding to the Table 5-9 and comparing
the values of MRD and MSRD for all methods, the best
fitted distributions to the data obtained. In accordance to
this comparison, log-pearson type III mn 61.5% of cases,

two parameter gamma in 23% of cases and three parameter
log-normal m 13.5% of cases resulted the first three best
fitness to the data. Other approaches including normal,
two parameter log-normal, Pearson type III, Gumbel
extreme value type T and Gaussian (normal) kernel
function could not fit the data. In all cases the values of
MRD and MSRD for parametric methods are lower
than the tabulated values for the nonparametric normal
kernel and hence the latter method is not a good
approach for frequency analysis of monthly precipitation
in Iran.

CONCLUSION

One of the most common characteristics of the
monthly precipitation in Iran 1s the character of positive
skewness. In general, for all stations, the least values of
the smoothing parameter (h) or bandwidth resulted from
LSCV method (in 82.7%). However, comparing the values
of MRD and MSRD for parametric methods and non
parametric normal kernel function concluded that the
best approach to give the best fitness to the data 1s
log-pearson type IT1. These results obtained from the long
length periods of monthly precipitation for the first time in
the country and therefore, are the unique findings of this
study.
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