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Introduction of a Hybrid Method for Determination of
Operating Reserve in the Well-Being Framework
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Abstract: In this study a hybrid method for determimng of operating reserve in the well-being framework 1s
mtroduced. The new framework and optimization method are respectively based on fuzzy and genetic. The
probability of being in the risk state and the probability of being in the healthy state constraints are considered
as soft limits in the proposed framework. Genetic Algorithm (GA) is used for solving fuzzy well-being Unit
Commitment Problem (UCP). Using total operating cost of generating units plus a penalty function which is
determined by the fuzzy risk and healthy probabilities, a fitness fimction 1s determined. The proposed method
has been applied to the TEEE reliability test system to examine its applicability and effectiveness.
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INTRODUCTION

Operating reserve 1s used m electric power systems
to respond to unforeseen load changes and sudden
generation outages and a wide range of techniques
have been used to determine operating reserve
requirements (Fotuhi-Firuzabad et al., 1999b). Usually,
operating reserve requirements are determined using
deterministic criteria or rule-of-thumb methods. The most
common deterministic criterion dictates a reserve margin
equal to the size of the largest umt or to some percentage
of the peak load (Billinton and Fotuhi-Firuzabad, 1994).
For example in Spanish and Ontario power system,
reserve 1s determined equal to some fraction of the peak
load and to the largest on line generator, respectively
(Bouffard and Galiana, 2004). Due to their sunplicity of
concept and ease of applying, the deterministic criteria
methods have widely used in practice. The basic
weakness of the determimstic criteria 1s that they do not
consider the stochastic nature of system behavior and
component failures. In the probabilistic techniques, the
stochastic nature of system components is incorporated
and a comprehensive evaluaton of system risk 1s
provided. The first major probabilistic techmque for
operating reserve assessment, known as the PTM method,
was proposed in 1963 (Billinton and Allan, 1996). This
method evaluates the probability of the committed
generation just satisfy or failing to satisfy the expected
demand during a specified time into the future, known as
the lead time.

A major task for a power system operator is to make
rapid on-line decisions based on the available information.
This information should be easy to understand and
interpret, because more realistic and understandable
information will help the operator make an appropriate
decision. On the basis of the PIM method, the system
operator can make a decision regarding the required
capacity based on the calculated risk, the forecast load
and the specified risk criterion. Although, PTM technique
considers stochastic nature of the power system, but it
has not been employed widely in practice. Difficulty in
interpreting the risk index and the lack of system
operating information contained in the use of a single risk
value are the two most important reasons for this.

A well-being approach is introduced in (Billinton
and Fotuhi-Firuzabad, 1994) to overcome these difficulties
by incorporating system operating states in operating
Deterministic  criteria  and
probabilistic indices for monitoring system well-being
are combined in (Billinton and Fotuhi-Firuzabad, 1994). In
the previous treatment of well-being framework
probability indices are considered fix (Billinton and
Fotuhi-Firuzabad, 1994; Billmten and  Fotuhi-
Firuzabad, 2000, Fotuhi-Firuzabad et af., 1996, 1999,
Fotuhi-Firuzabad and  Billinton, 1999; Fotuhi-
Firuzabad, 1999). This may result in an overestimated
solution and consequently lhigher operating
Operating limits, such as system reserve requirement, 1s
often imposed to enhance security and does not represent
a physical bound (Mantawy, 2004). In other words,

reserve assessment.

Ccosts.
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reserve requirement and reliability indices constraints are
soft constraints. Fuzzy set theory provides a natural
platform to model fuzzy relationship such as Very Good,
Not Bad and se on. Numbers of application of fuzzy set in
power  system  operation are  presented  in
(Attaviriyanupap ef al., 2004; Mantawy, 2004).

In this study a hybrid method is proposed for
operating reserve determimng m the well-bemng
framework. In the proposed framework the probabilities
of being 1n the risk and healthy states are considered as
soft limits. A fuzzy well-being unit commitment is solved
using Genetic Algorithm. At first, probabilities of being in
the risk and healthy states are fuzzified. Then, fuzzy
penalty function corresponding to each chromosome of
generation is calculated. Finally, fitness value is
determined using total operating cost of generating units
plus penalty function. Algorithm is repeated until the
stopping criterion 1s met. The proposed method 1s applied
on TEEE-RTS and test results are also presented. This
results show the out-performance of the proposed method
with respect to the crisp well-being unit commitment
(CWBUC) from the reliability and cost point of view.

MATERIALS AND METHODS

The concepts of PIM method for solving unit
commitment problem are illustrated by Billinton and Allan
(1996). In this probabilistic method, the system
performance is identified as being in either the comfort or
at the risk domains for a given load and committed umnits.
This is a pure probabilistic method and doesn’t give any
mformation about the degree of the system comfort. To
solve this problem, a well-being framework as shown in
Fig. 1 is introduced by Billinton and Fotuhi-Firuzabad
(1994), which includes deterministic considerations mto
the probabilistic mdices for momtoring system well-being.
The definitions of these three states are as follows
(Billinton and Fotuhi-Firuzabad, 1994):

*  Healthy: A system operates in the healthy state
when it has enough reserve to withstand the
determimstic criterion, 1.e., any single umt outage

¢+ Marginal: A system operates in the marginal state
when 1t does not have sufficient margin for
withstanding specified deterministic criterion

*  Atrisk: A system operates in the risk state when the
system load is greater than or equal to operating

capacity

According to the above definitions, the total system
state probabilities can be expressed by Eq. 1 as follows:

PytPytPr=1 4]

Fig. 1. System well-being states and their mteractions n
this framework

where, P,+P,; and Py are probabilities of the system being
in the healthy, marginal and at risk states, respectively.
The operating criterion which can be used m the umnit
commitment, are satisfying an acceptable risk level,
satisfying an acceptable healthy level or both. Selecting
an operating criterion depends on the required reliability
level. If a single criterion is adopted, the goal is to satisfy
the following constraint:

Pr<SRL (2)

The above relationship means that, the generating
units are committed so that the probability of system risk
1s not greater than the Specified Risk Level (SRL), which
18 determined by the system operator. If multiple criteria
are adopted, the following constraints should be satisfied:

P,<SRL and P,>SHL (3)

The above conditions mean that, generating units
should be committed such that, not only the probability
of the risk is smaller than SR, but also, the probability of
the healthy state 15 greater than Specified Healthy Level
(SHL). These criteria are determined by the system
operator.

Fuzzy well-being framework (proposed framework): In
the crisp well-being framework, the minimum value of the
probability of being in the healthy state and the maximum
value of the probability of being in the risk state are crisp
values. In the proposed framework, these constraints and
also objective function are considered as fuzzy values. In
order for considering the amount of fuzzy constraints
satisfaction in the umt commitment problem, a penalty
factor fimction 13 also introduced. This penalty factor 1s
added to the operating cost, which 13 an objective
function 1n the unit commitment problem. The value of
penalty factor depends on the degree of the satisfaction
of fuzzy constramts. The genetic algorithm 1s used to
solve the combinatorial optimization problem of the
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proposed fuzzy well-being unit commitment problem. The
genetic algorithm test allows the acceptance of any
solution at the beginning of the search, while only good
solutions will have higher probability of acceptance as the
generation number increases.

A general fuzzy system has basically five
components, fuzzification, application of the fuzzy
operator (AND or OR), implication, aggregation and
defuzzification. The first step is to take the inputs and
determine the degree to which they belong to each of the
appropriate fuzzy sets via membership functions. The
probability of risk and the probability of healthy are input
variables for proposed framework that proper membership
functions should be defined for them. In the proposed
framework AND operator has been chosen as the fuzzy
operator. Zero-order Sugeno mference 15 used for
umnplication. In the Sugeno inference method aggregation
and defuzzification is done simultaneously and the final
output of the system is the weighted average of all rule
output. In our framework, each rule is weighted by its

firing strength which has been calculated using product
method.

Membership function for probability of risk: The fuzzy
set of input for probability of risk is divided into five
fuzzy values. These values are: risk is very low (RVL), risk
1s low (RL), nisk 18 medium (RM), risk 1s lugh (RH) and risk
18 very high (RVH). In Fig. 2 the parameters R, R,, R;. R,
and R, are determined from the followmng
relationships:

R =R,-a

R, = Required risk

R,=R,+a (4
R,=R,+2a

R,=R,+3a

where, ¢ is determined by the system operator.

Membership function for probability of healthy: The
fuzzy set of mput for the probability of healthy 13 divided
into five fuzzy values. These values are: healthy is very
low (HVL), healthy is low (HL), healthy is medium (HM),
healthy is high (HH) and healthy is very high (HVH). In
Fig. 2 the parameters H,, H;, H., H, and H; are determined
from the following relationships:

H, =H,-3p

H,=H,-2p

H,=H,-p (5)
H, = Required healthy

H;=H,+p

where, [} is determined by the system operator.

n(Risk)

F 3

RVL RL RM RH RVH

» Risk
R, R, R R R
@)
p{Healthy)
F 3
HVL H. HM HH HVH
H W B H H ey

(B

Fig. 2: (A) Membership function of the probability of risl,
(B) Membership function of probability of healthy

Penalty factor: Penalty factor 15 used to guide the solving
of the fuzzy well-being optimization problem. Membership
function of the probability of healthy and membership
fumction of the probability of risk are used to calculate the
fuzzy penalty factor. For this purpose zero-order Sugeno
implication has been implemented based on the decision
matrix of Table 1 and according to Table 2. The final
output of system which is the so-called penalty factor is
then calculated as the weighted average of the fired rules
outputs. In this stage, each rule is weighted in accordance
with the production of the membership value of its inputs
{(product methed). Finally, using the following equation,
total cost of the committed units 15 computed.

Total cost = (1+ Penalty factor)<(Operating cost of
committed units) (6)

Applying genetic algorithm: Genetic algorithms are
widely used in science, business and engineering
(Belkadi et al., 2006, Borji, 2008; Farshadnia, 2001;
Hashemi ez al, 2008; Kangrang and Chleeraktrakoon,
2008; Rabi, 2006; Reyes-Garcia et al., 2008; Tlelo-Cuautle
and Duarta, 2008; Ustun, 2007). Coding of chromosomes,
fitness function, selection, crossover, mutation (Haupt
and Haupt, 2004) and stopping criteria are the main steps
of genetic algorithm. These steps have been applied for
present optimization problem via following steps:
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Table 1: Decigion matrix of fuzzy rules

Fuzzy value  Fuzzy value of probability of risk

of probability

of healthy VL L M H VH
VL VL VL VVL VVL VVL
L L L VL VVL VVL
M G L L VL VVL
H VG G L VL VVL
YH YVG YG G L VL

V: Very; H: High; L.: Low, M: Medium; G: Good

Table 2: Output membership function values
Fuzzy output VVL VL L G VG VVG
Output value 1 0.6 0.3 0.1 0.05 0.0

¢+ Coding of chromosomes: A chromosome should
contain mformation about the solution that it
represents. The most common way for coding 1s a
binary string, which is used in this study. The
solution in well-being framework is represented by a
vector of N dimension. Each column of the vector
determines the ON or OFF status of each generating
unit

+  Fitness function: The fimess function, which 1s used
in this study, is the summation of total operating cost
plus production of the total operating cost and
penalty factor which 1s determined by fuzzy risk
membership function and fuzzy healthy membership
function

*  Selection: In this study a roulette wheel selection
method is used for selecting parents to produce the
next generation. The size of the section in the
roulette wheel 1s proportional to the value of the
fitness function of each chromosome

¢+  Crossover: Two points crossover is used for
creating new generation from the selected parents.
Two crossover sites are produced randomly and the
data of the two parents between these sites are
swapped

¢ Mutation: In this study a uniform method is used for
mutation. Uniform mutation is a two-step process.
First, the algorithm selects a fraction of the vector
entries of an individual for mutation, where each
entry has a probability rate of being mutated. Tn the
second step, 1if the produced probability
corresponding to each gene is smaller than the
mutation rate then this gene is mutated

*  Stopping criteria: The algonthm stops when the
mumber of generation reaches the value of
generations or if there is no improvement in the
objective function for a sequence of comsecutive
generations of length stall generations

Summary of the proposed algorithm: In summary, the
proposed fuzzy genetic well-being unit commitment
algorithm can be implemented through the following
steps:

Step 1: Determine the required risk level, required
healthy level, ¢ and B

Step 2: Construct membership functions of the
probability of being at the risk state and the
probability of being at the healthy state using
Fig. 2

Step 3: Create an imtial population of genetic algorithm
randomly

Step 4:  Calculate the operating cost corresponding to
each member in the population

Step 5: Calculate the probability of bemg at the risk
state and the probability of being at the healthy
state for each member in the population

Step 6: Calculate fuzzy penalty factor for each member;

Step 7: Determine fitness function for each member in
the population using operating cost and penalty
factor

Step 8: Sort the population members according to their
fitmess functions

Step 9: Check stopping criteria. If satisfied stop,

otherwise go to the step 10

Step 10: Generate next generation using genetic
algorithm operators (elitism, crossover and
mutation)

Step 11: Gotostep 4

RESULTS AND DISCUSSION

The IEEE-RTS (Billinton and Allan, 1996) has been
used as our benchmark to examine the applicability
of the proposed method. The total system generation 1s
3405 MW and the system annual peak load 1s 2850 MW.
It is assumed that the system lead time is 4 h.

Performance analysis: Table 3 shows system operating
state probabilities with the Crisp Well-Being Unit
Commitment (CWBUC) framework and when the system
is required to satisfy both a specified risk and a specified
healthy probability. Experience of the operator and
conditions under which the system 1s bemng operated are
used for determming misk and healthy probabilities.
Table 4 shows system operating state probabilities with
the fuzzy genetic well-bemng umt commitment (FGWBUC)
framework and with H, =09, R,=0.01, ¢=0.005 and
B = 0.05. From the Table 3 and 4 the out-performance of
the FGWBUC method with respect to the CWBUC is
obvious from the reliability point of view. Using the
proposed method, not only the risk value is smaller than
which is obtained via the CWBUC method but also the
obtained healthy probability is greater than which is
obtained by the CWBUC method. This 1s one of the most
important features of the proposed method.
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Table 3: Unit commitment with the CWBRUC method and a specified risk
of 0.01 and a desired healthy state probability of 0.9

Probability of

Load

level (MW) Health Margin Risk

1140 0.97719573 0.02266299 0.00014127
1425 0.97684725 0.02298005 0.00017271
1710 0.96871937 0.03104789 0.00023273
1995 0.95691649 0.04272104 0.00036247
2280 0.95424218 0.04536093 0.00039689
2565 0.93958229 0.05987774 0.00053997
2850 0.91916923 0.08011214 0.00071863

Table4: Unit commitment using the FGWBUC method and with

H,=0.9,R; =001, =00.005 and © = 0.05

Probability of

Load

level (MW) Health Margin Risk

1140 0.98508513 0.014831379 8.3489426%9e-005
1425 0.96725946 0.032512302 2.28237113e-004
1710 0.98889220 0.011066117 4.16788954e-005
1995 0.95373073 0.045888520 3.80744729e-004
2280 0.96460205 0.035092379 3.05564124e-004
2565 0.91923013 0.080090550 6.79309626e-004
2850 0.91355203 0.085697613 7.5035043%9e-004

Table 5: Comparison of the operating cost for CWBUC and FGWBUC
methods

Operating cost

Load

level (MW) CWBUC ($) FGWBUC ($) Saving (%)
1140 8770.4 7783.6 11.3
1425 13644.0 10170.0 25.5
1710 16953.0 13540.0 20.2
1995 20192.0 17839.0 11.7
2280 24578.0 21975.0 10.6
v2565 33477.0 26830.0 20.0
2850 34611.0 32511.0 6.1

Table 5 shows the total operating cost with the Crisp
Well-Being Unit Commitment (CWBUC) and the Fuzzy
Genetic Well-Being Unit Commitment (FGWBUC)
methods. Tt is obvious that the FGWBUC is superior to
the CWBUC from the operating cost point of view. The
saving of the total operating cost i1s varied from 6.1 to
25.5%. The average of saving in the total operating cost
for these ranges of load 15 15.8%. Thus 13 the other good
feature of the proposed method.

Sensitivity analysis: The probabilities associated with the
system health and margin depends on many factors such
as system lead time, system load and generating umit
farlure rates. The effects of the variations in lead time and
generating unit failure rates on the system operating state
probabilities and total operating cost are considered and
also the performance of the CWBUC and the FGWBUC
under such situations are compared.

The effect of lead time variation: Here, it 1s assumed that
each generation can be represented by a two-state model
which mcludes up and down states. In this case, the
probability of the umt failing during a short interval of
time T can be modeled as:

x1¢*
27 —
@) P
2.6 -
//
2.5 —
8 N /,__..--—-—'"
-EZA- -
2.3+
224 — — CWBUC
—— FGWBUC
S T T S S
Lead time
10
328

1.0 1.5 2.0 25 3.0
Failure rate ratio factor

Fig. 3: (A)The effect of lead time on the operating cost
using CWBUC and FGWBUC, (B) The effect of
failure rate ratio factor on the operating cost using
CWBUC and FGWBUC

P(down) = 17" (7

where, 4 is failure rate. If repairing process is neglected
and AT<<1, then the above equation can be simplified as
(Billinton and Allan, 1996):

P(down)=AT = ORR (Outage and Replacement rate) (8)

For showing the effect of the lead time on the
operating cost, the lead time is varied from 1 to 12 h. The
operating cost associated with the CWBUC and the
FGWBUC methods for load level of 2280 are shown in
Fig. 3A. Tt can be seen that the operating cost increases
as the lead time increases. It is obvious that in this case
operating cost using FGWBUC is so much smaller than
CWBUC.

The effect of generating unit failure rates variation: The
effect of generating unit failure rates on the operating
cost, generating failure rates of each generation is varied
from 100 to 300% of their nominal values and for the load
level of 2280 MW. The effect of the generating failure rate
variation on the total operating cost is given in Fig. 3B.
As seen, as the failure rate ratio factor (failure
rate/nominal failure rate) is increased, the operating cost
associated with both CWBUC and FGWBUC are
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increased, but the amount of the increment for the
FGWBUC method is very smaller than the CWBUC.

In this research for showing the effect of generating
failure rate variation and lead time on the total operating
cost, sensitivity analysis was done. The results showed
that the FGWBUC gives smaller operating cost versus
CWBUC in all cases.

CONCLUSION

In this study a hybrid method for determining
operating reserve in the well-being framework is
presented. The proposed method is based on the fuzzy
genetic well-being framework. In the proposed method,
the probabilities of being in the healthy and risk states are
considered as soft limits. Probability of being in the
healthy and probability of being in the risk are
represented by fuzzy set. A penalty factor for computing
the degree of the satisfaction of reliability constraints is
introduced in this study. For solving the fuzzy well-being
unit commitment problem, a genetic algorithm is used.
Fuzzy genetic well-being unit commitment (FGWBUC)
method is compared with the crisp well-being unit
commitment (CWBUC) method with two different aspects.
These aspects are reliability and operating cost. Using the
FGWBUC not only the obtained risk is smaller than which
is obtained from the CWBUC, but also the obtained
healthy probability is greater than which is obtained form
the CWBUC. Tt is shown that the FGWBUC is superior to
the CWBUC from the operating cost of view point.
Finally, for doing sensitivity analysis the effect of lead
time and also the effect of failure rate of generation on the
operating cost are considered. Out-performance of the
proposed method for wide ranges of variations of these
parameters is noticeable again.
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