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Exact Solutions for Thermal Stresses in a Rotating Thick-Walled
Cylinder of Functionally Graded Materials
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Abstract: In this study, thermal stresses in a hollow rotating thick-walled cylinder made of functionally graded
material under internal and external pressure are obtained as a function of radial direction to an exact solution
by using the theory of elasticity. Material properties are considered as a function of the radius of the cylinder
and the Poisson’s ratio as constant. The distributions of the thermal stresses are obtained for different values

of the powers of the module of elasticity.
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INTRODUCTION

By using the continuous change in the physical and
the mechanical properties of a material, it is possible to
prevent from the fracture in composite materials, which
causes stress concentration and yield in such materals.
These materials which possess gradual change m their
material properties are known as Functionally Gradient
Materials (FGM). The problems of rotating annular disks
or cylinders have been investigated under various
assumptions and conditions. This is a topic which can be
readily found in most standard elasticity books (Boresi
and Chong, 1999). Obata and Noda (1994), through the
application of a perturbation approach, mvestigated the
thermal stresses i an FGM hollow sphere and in a hollow
circular cylinder. Assuming that the material has a graded
modulus of elasticity, while the Poisson’s ratio is a
constant, Tutuncu and Oztwk (2001) investigated the
stress distribution in the axisymmetric structures. They
obtained the closed-form solutions for stresses and
displacements in functionally graded cylindrical and
spherical vessels under internal pressure. Based on
approximate solutions of temperatures and thermal
stresses, the optimization of the material composition of
FGM hollow circular cylinders under thermal loading was
discussed (Ootao et al., 1999). Applying the Frobenius
series method, Zimmerman and Lutz (1999) found a way
round the problem of the uniform heating of functionally
graded circular cylinder. Another general analysis of one-
dimensional steady-state thermal stresses m a hollow
thick eylinder made of functionally graded material was
obtained (Jabbari et al, 2002). An analysis of the
thermomechanical behavior of hollow circular cylinders of

functionally graded materials was presented (Liew et al.,
2003). They worked out a solution based on the solutions
obtamed by a novel limiting process that makes use of the
solutions of homogenecus hollow circular cylinders,
without resorting to the basic theory or the equations of
non-homogeneous thermoelasticity. Tam and Wang
(2004) studied heat conduction m circular cylinders of
functionally graded materials and laminated composites.
They focused on the end effects and by means of matrix
algebra and eigenfunction expansion, the decay length
that characterizes the end effects on the thermal filed was
assessed. An accurate method for conducting elastic
analysis of thick-walled spherical pressure vessels
subjected to internal pressure was devised (You et al.,
2005). It 18 necessary to point out that two kinds of
pressure vessel are considered: one is made up of two
homogeneous layers near the mner and outer surfaces of
the vessel and the other functionally graded layer in the
middle; the latter consists of the functionally graded
material only. Jabbari et al (2007), making use of the
generalized Bessel function and Fourier series solved the
temperature and Navier equations analytically and offered
a general theoretical analysis of three-dimensional
mechanical and thermal stresses for a short hollow
cylinder made of functionally graded material. Given the
assumption that the material 1s 1sotropic with constant
Poisson’s ratio and exponentially varying elastic modulus
through the thickness, Tutuncu (2007), obtained power
series solutions for stresses and displacements in
functionally-graded cylindrical vessels subjected to
internal pressure alone. Argeso and Eraslon (2008)
assuming the different states of material properties
including Poisson’s ratio v, modulus of elasticity E, the
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vield strength oy, the coefficient of thermal expansion
and the conductivity  k,

thermoelastic response of cylinders and tubes.

thermmal assessed  the

MATERIALS AND METHODS

The thermal stresses distribution in a hollow rotating
thick-walled cylinder in the plane strain condition will be
calculated. Consider a thick-walled FGM cylinder with an
inner radius a and an outer radius b, subjected to an
internal pressure P; and external pressure P, that are
axisymmetric and rotating at a constant angular velocity
w about its axis. The cylindrical coordinates (r, 0, z) are
chosen so, that r and z are the radial and axial coordinates,
respectively.

The material properties are assumed to be radically
dependent. The module of elasticity, thermal conductivity,
linear expansion coefficient and density through the wall
thickness are assumed to vary as follows:

E=FE," ()
ke = lett (2)
o= o 3)
P = por’ 4

where, E, k, ¢ and p are module of elasticity, thermal
conductivity, linear expansion coefficient and density. K,
ky, a, and p, are the material constants and [, £, 1 and vy
are the power law indices of the material.

It could be assumed that:

£= m1B )]
n=m,p (6)
Y = msf N

where, m,, m, and m, are constant. In the current study, a
range of -2<p<2 1s employed which consists of all the
values which has widely been used in the research
mentioned above.

To show the effect of inhomogeneity on the stress
distributions, different values were considered for p.
Since, the variation of Poisson’s ratio, v, for engineering
materials is small, it 1s assumed constant.

Tt is assumed that plane strain €, = 0. The radial strain
g, and circumnferential strain g, are related to the radial
displacement u by:

o o du (8)
dr
- (9)

The equilibrium equations in the absence of body
forces reduce to:

dG,+U,—Ga = _pred (10)
dr r

where, 0, and 0, are the radial and circumferential stress
components, respectively.

In the steady state case, the heat conduction
equation for the one-dimensional problem in polar
coordinates simplifies to:

L (11)
or ke or )=0
Boundary condition of temperature 1s as follows:

k%;r:ha(T—Ta) on r=a (12)

«%:hb(vn) on r=b (13)

where, T, and T, are temperatures of the surrounding
media, h, and h, are the heat transfer coefficients and
subscripts a and b correspond to swrfaces r=a andr =h,
respectively.

The general solution of Eq. 11 with considering
relation of thermal transfer coefficient Eq. 2 and boundary
conditions into Eq. 12 and 13 is:

T-T,

T= e P4
1 1 1 1
knmlﬁ(ﬁa + m) + (W - pr)

T T. . . (14)
kDmlﬁ(ﬁ+ ﬁ) +a ™, - b

1 1 | il
kUmIB(E+E)+a .

with considering special case in which there 13 no heat
transfer taking place between the inner surface and outer
surface with the surrounding medium and that the surface
temperature at the inner and outer surfaces prescribed as
T,and T,, respectively. Thus:

= 1 —my —my - my 15
L LA e S (15)
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Applying Hookes law, the equations for radial and
circumferential stresses would be:

o, = ArPe + A rfe, + A iRk g et (16)
g, = Atle + Arfe, + ArtTmimal g plima (17
where, A, A, A, A, A.and A, are
_ E,(1-v)
P+ u)l-2v)
A, - Eu
1+ vy -2v)
_ Eyo, (T, — Ta)(a-b)mﬂS (1 8)

T 0- 2007 -0
Byt {a™PT, —b™PT,)
A, =(1-2vA,
A, =(1-2vA,

Using Eq. 1-10 and Eq. 16-18, the Navier equation in term
of the radial displacement is:

r (ci;—];+ B+ l)r(j?u +(np-Du =B, @ L B ok g phenab
(19)
where, n= IL and B,, B, and B; are
B __ P {1+ vX(1 - 20)
b E,(1-v)
B, = GPd—m, +my )1+ v)(T, - T, )(aby™*
! (1 —v)(b™ —am™F)
B, = o P+ m, (1 + vY(™FT, — 2™ T,) (20)

(1- U)(bmm _ amlﬁ)

Equation 19 is the non-homogeneous Euler-Caushy
equation whose complete solution is:

u=Critmsbh o PPk Cpteeb L Crf e O (21)
where, f, f;, C,. C, and C, are:
£ o —ﬁ+,/[32 —4np+4
LA Ll e
2
¢ :—[3—\“32—4n[3+4 (22)
2
2
G - B
e G+mp+f)5+mp+1L,)
C = B,
(- mB+mB-f)5 - mpB+mpB-£,)
5 (23)

C, = :
B+mp-£)3+m,p-1,)

By substituting Eq. 21 into Eq. 8 and 9 and results in
Eq. 16 and 17, the stresses are obtained as:

o, = CIA (5+m,B- P+ A, """ + C,[A{5S+m,p-m,f)
FA PO L O LA G my P+ A PR
CJAL + AT + CIAFL, + A I a4 g plomrmab o g pleeab

(24)

Sy =G [A;(5+m,B-P)+ A, ][.4+m3[§ +C[A(5+m;B-m,f)+
Aol L CTA (34 m,B) + A, Jrr el 4
C,[AL + AT + C AL, + A JrPET 4 g plmmrmab o g plseab

(25)

To determine the constants C, and C; consider the
boundary conditions for stresses given by:

-P. o

r=a it Y

== (26)

H

By substituting the boundary conditions Eq. 26 mto
Eq. 24, the constants becomes:

. _ 8485 ~8:8s

o, = 2185 ~ 885
4= » =
21848285

8184 B28:

(27)

where, the parameters of g, g, g5, & g and g, are as
follows:

g = (Alfl + A2)aﬁ+frl

g:= (A1f2 + A2)aﬁ+frl

g = (A1f1 + A, )bwfrl

g8, = (A1f2 + Az )bp”rl

g = _C1[A1(5+ mzﬁ_ ﬁ)‘*’ Az ]a“mZFS - Cz[Al (5 + 1’1’12[3— mlﬁ)
+A, ]a4+ﬁ+(m;—ml)[§ -C[AG+mP)+ A, ]"fl“a)fm])ﬁ -
Al _ g gk _p

g, =-ClAG+mpP-B+ A b —C[A 5+ mPB-mfP)+
A2 ]b4+[5+(m;—m1)[5 _ C3 [A1(3 + lTl2 ) + Ag ]b2+(1+m2)[5 _
Agbtlfmﬁmz)[& _ A4b<1+mzm _ Pu

(28)

RESULTS AND DISCUSSION

Here, the exact solution obtained from the previous
part of the study will be followed up by an example. A
hollow thick-walled cylinder with the internal radius of
a =100 cm, the outer radius of b =115 cm 1s considered,
which 1s rotating around the z-axis at the constant angular
velocity of w = 10rad sec™". The medulus of elasticity, the
thermal coefficient of expansion and density at internal
radius, respectively, have the values of E, =200 GPa,
o;=11.7(1079/°C, p;=7810kg m~. Tt is also assumed that
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Fig. 1: Distribution of temperature versus radius
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Fig. 2: Distribution of radial displacement versus radius

the Poisson’s ratio, U, has a constant value of 0.33. For
boundary conditions, the mternal and external surfaces
of the cylinder are taken to be under the pressure of
P, = 40 MPa, P, = 0 MPa, respectively. In addition, the
temperature of the internal and the external surfaces are
considered constant as T, = 15°C, T, = 5°C. Furthermore,
it is assumed that m, = m,=m, = 1. In Fig. 1-7, the changes
are shown according to the different values for B in the
radial direction within the range of ~2<p<2.

The vanations of the temperature in the radial
direction for different values of the P are shown in Fig. 1.
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Fig. 3: Distribution of radial stress versus radius

Fig. 4: Distribution of circumferential stress versus radius

The Fig. 1 shows that with increasing P, the temperature
decreases. The radial displacement along the radius i1s
shown in Fig. 2. There is a decrease in the value of the
radial displacement as P increases. Figure 3 and 4 show
the distribution radial and circumferential stresses in the
radial direction. As [ 1s increases, so does the magnitude
of the radial stress. For p>0, the circumferential stress
increases as the radius increases whereas for p<0 the
circumferential stress along the radius decreases.
Given that P =0, the circumferential stress remains
nearly constant along the radius. For the purpose of
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Fig. 5. Distribution of equivalent stress versus radius for
b/a=1.15
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Fig. 6 Distribution of equivalent stress versus radius for

bfa=12
studving the  stress distribution  along  the
cylinder radius, the Von mises effective stress

5= %[(Ur ~5,) +(5,~6,) +(c,—c,T° 1s plotted in the

radial direction for various and b/a and [ values.
Figure 5-7 are plotted for b/a = 1.15, 1.2 and 1.25,
respectively. Tt must be noted from Fig. 5 that for p = 1 the
effective stress remains almost uniform along the radius
of the cylinder. As Fig. 6 and 7 suggest, with increasing

T L) T L)
1 1.05 1.10 1.15 1.20 125

Fig. 7. Distribution of equivalent stress versus radius for
bifa=1.25

b/a ratios, the curves related to f = 1 produce an almost
uniform distribution for the effective stress.

CONCLUSION

In the present study, by the application of the
elasticity theory, thermal stresses are obtained for an FG
rotating cylinder. Tt is assumed that the material properties
change as graded in radial diection to a power law
function. The wvalues of £ 1 and v are taken as
coefficients of the value of p. Change in value of p may or
may not bring about changes in these coefficients,
depending on the value of m,, m, and m, Numerical
results show that value of B has a great effect on the
thermoelastic stresses. This solution could be the most
general solution for such problems. The findings of this
study can be used to find optimum values of B, £, 1 and
v which can, in turn, be used to minimize and uniform
stresses and prevent from yielding.
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