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Applications of Noether’s Theorem to the Equations of Motion of Inclined Sagged Cables
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Abstract: Noether's theorem is the principal systematic procedure for finding conservation laws for the
complicated systems of differential equations that derived by the variational method. The non-linear equations
of motion of inclined sagged cables are studied by Lie group method. The infinitesimal generators, which are
the mam tool for this theory, are calculated. After applying the mfimtesimal criterion of mvariance to linear
combination of these generators, the family of all vanational symmetries are derived and then used to find
conservation laws for the equations of motion of inclined sagged cables by using the Noether's theorem.
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INTRODUCTION

In the study of differential equations, conservation
laws have many significant uses. An important problem 1s
how to find conservation laws for given differential
equations. Emmy Noether, 1918 was the first to combine
the methods of variational calculus with the theory of Lie
groups and to formulate a general approach for
constructing conservation laws for FEuler-Lagrange
equations when their variational symmetries are known.
"Noether proved the remarkable result that for systems
arising from a vanational principle, every conservation law
of the system comes from a corresponding symmetry
property. For example, invariance of a variational principle
under a group of time translations implies the
conservation of energy for the solutions of the associated
Euler-Lagrange equations and invariance under a group
of spatial translations implies conservation of momentum
(Olver, 1993). A thorough study of the Noether's theorem
with many references can be found in Olver (1993).
Numerous examples and applications of the Noether's
theorem are presented in Ibragimov (1994). Algorithm of
finding an admitted Lie group is demonstrated in
Meleshko (2005). Chatanin et af. (2008) applied Lie group
theory to the non-linear equations of motion of inclined
unsagged cables to construct invariant solutions to the
problem. In this study, the Lie group theory is applied to
the non-linear equations of motion of inclined sagged
cables. By using the Noether's theorem, conservation of
energy for the solutions of the associated Euler-Lagrange
equations 1s obtained.

MATERIALS AND METHODS

Physical model and equations of motion: The
configuration (%%) in the global coordinates (X.Y)
describes the position of the inclined sagged cable as
shown in Fig. 1. The angle 0 shows the inclination of the
cable with respect to X axis. After the disturbance of an
external excitation, the cable configuration is changed into
the dynamic configuration which 1s displaced from the
initial configuration. The displacement vectors n X and Y
directions are represented by  a(x{)and ¥(x1),
respectively. The horizontal span Xy 15 fixed and the
cable's vertical span Y 1s varied to attain specified values
of 6.

In deriving the equation of motion by the virtual
work-energy principle the cable is considered to be
perfectly flexible, homogeneous, linearly elastic with
negligible torsional, bending and shear ngidities.
Therefore, the stramn energy 1s due only to stretching of
the cable axis. The total strain of the cable at the displaced

Fig. 1: Configurations of an inclined sagged cable
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state, with assumption of moderately large vibration
amplitudes, can be expressed as follows:

E:e+(1+§i’2)_1[ﬁ'+y’"'+%(ﬁ'2+?’2)} (1)

In this study, the imtial stram e 15 assumed to
have a small value and is neglected. The prime (') 1s
used to denote differentiation with respect to X From
Sriml ef al. (2004) and Rega et al. (2004), the governing
equations of motion are:

E Uy + ¥,V + ¥V, + 30,0, + V0,V + (2)
puy =l +— =0
PY U Ve T V0V, + VY,

B[ Yotk Yl YoV, + VYLV, U,

PV Ve T3 3 3 1 ST 0
oy, 3y, +5YXXVX Ty, +5 Yol
(3
Where:
e y:l= L L
XH XH XH XH
t feH — - EA
t=— |7 p=l+¥3 E=22
o \w P Y H

is the horizontal component of the cable static tension T,
w, i the cable weight per unit length, g is the gravity
constant. Here, the curve that defines shape of the cable
is

yzifﬁ
Xy

This non-linear system describes the coupled
longitudinal and vertical displacement's dynamics and is
valid also for slightly sagged horizontal cables if one
assumes T, = H rendering p = 1. Tt contains quadratic and
cubic nonlinear terms due to the cable's axial stretching
even in the absence of initial sag (taut string case). A
method for solving the non-linear equations of motion for
horizontal and inclined elastic sagged cables by using a
numerical techmque 13 demonstrated mn Srirul ef af. (2005).

Calculation of infinitesimal generators: An infimitesimal
generator X for the problem is written in the following
form:

X= a(x,t,u,v)%+ B(x.t,u,v) @

a a Ii]
aJr y(x,t,u,v)aJr T](X,LU,V)a

The main aim is to determine all functions «, P, ¥ and 1)
that correspond to the one-parameter symmetry groups of
the Eq. 2 and 3. Since the goverming equations form a
system of second order PDE, the second prolongation of
the mnfimtesimal generator is needed. The second
prolongation of X is given by:

a a a a a
pr(z)X X4 Tx SN Yt SN Yxx + Yxt T Ytt
@Ux @Ut auxx auxt altt (5)
o8 O e 8 e 0D
av, av, Ny, vy avy
Where
¥ =D (y-on, —pu)+ou, +pu,, W=D (n-uv, -pv )+ +pv,
¥ =D, (7~ o, —Buj+ o, + Pu,, =D, (N-av, —pv,)+ v, +Bv,,
¥ =D,{y-om, -Pu)+om, +PBu,, 7 =D (n-av, -Ppv,)+av, +pv,
')f“ = Dn(Y’ o, ’ﬁut) o + Py, ﬂ“ =D, (Tl’ oV, —[Svt)Jr oV, + PV
(5"
and
7] 3 3 7] 3
D, =—+u,—+u, —tu,— U, ——+u,, + Uy +..
a‘lx t auxx xt 1
a @ a a a a
+V,—+7V,, + v, + Vo + Vo + Vo +...
o o 1 O,y vy Oy
a a @ @ a fé]
D, =—+u,—+u,—+u, +u,, U, — Uy, +..
a a“]x t ped a‘lxt #
+va+va+va+v a+v 6+v +
t o xt o L trx Wt o [
av X avl X xt 1t
D!=D,(D,), D}=D,(D,)
According to theorem 2.31 Olver (1993):
E (Up + ¥, Vi + ¥V + 30,0, + 7,0,V
prmX PUy 7{uxx + —3( 4 4 ’ JH =0
PTATY U Ve T ¥ UV, VY
F=0
(6)
YU YU YV, 2V, VLY,
prmX PVe = Vg +—5| TU, YV, + UV, +3Y, V.V + =0
3. .2 Lo
S¥u YV T Y.L, YL
2 2
F=0
(7

where, the notation [ . , means that the second
prolongation of X 1s applied to the solutions of Eq. 2 and
3. Substituting expressions (5,5") and (2-3) into Eq. 6 and
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7 and then equating the coefficients of all independent
monomials to zero, we obtain the determining equations.
After solving the determining equations, we get the
functions a =0, B=k, v=kttk, n=Lktt+k,, where
ki,...k; are arbitrary constants. Thus, the infinitesimal
generators have the form:

X=kl§+(k2t+k3) (kt+k,) (®)

o 2

au av

The mfinitesimal generator contains five arbitrary

constants. Consequently, the Lie algebra derived from the

governing equations is spammed by the following five
linearly independent generators:

a
X = X = ta,

X=t—, X= X, =

2 9
a’ av

Conservation laws: Consider a system of the second
order partial differential equations:

F(x,u, U U(z)) =0 )]
where, x = (x, x%,...x") are the independent variables,
u = (U, W,..u" are the dependent variables,

ug =furtandu, ={us} are the first and second order
derivatives, respectively.

Definition: Equation

Di[C(xuug)] =0 (10)
1s called a conservation law for Eq. 9 if it 1s satisfied by all
solutions u (x) of Eq. 9. The vector C = (', C%,...,CY is

called a conserved vector and D, is the total derivative
with respect to x'. Consider a variational integral:

J‘L(Xausu(l))dx (1)

and 1ts Euler-Lagrange equations:

L_ L plLl o w-1..m (12)
du*  ” auf

where, the Lagrangian L of the system involves the
independent variables x = (x', x%...,x"), the dependent
variables u = (uu’...,u™ and the first-order derivatives
ug, = {ur} of uwith respect to x'

Infinitesimal criterion of invariance: The following
condition will be necessary and sufficient for a commected
group of transformations to be a symmetry group of the
variational problem.

Theorem: A connected group of transformations G is a
variational symmetry group of the variational integral (11)
if and only if:

pr (L ALDIE) = 0 (13

for every infinitesimal generators:

X= 8 (o) () as
Noether's theorem: (Tbragimov, 2006) Iet the variational
integral (11) be invariant under the group with the
generator (14). In other words, let the invariance test (13)
be satisfied. Then the vector field C = (C',C?,...,C") defined

by:

Ci=§‘L+(n“—<§Ju;*):i;, i=1..n (15)

is a conserved vector for Eq. 12, ie., C satisfies the
conservation law D,(C) = 0.

RESULTS AND DISCUSSION

Since the equations of motion of the nclined sagged
cables are derived by the variational method presented in
Srinil et al. (2004), we can apply Noether’s theorem to this
system to obtain conservation laws for the system as
follows:

The Lagrangian of the equations of motion of the
inclined sagged cables is given by:

1 1, (1 g T Y
LKLm(uervf)zEA[K (T+u, ) +{y, +v,) —IJ +ch},
(16)

Where:

h 2
1c:7Jr ¥ and vy, = 2E

%

X, m
1+g u

m 1s mass per unit length and g, 1s the mitial static strain

of the cable centerline. The mfinitesimal generators for the

problem have the form:

X= k1%+(k2t+k3)%+(k4t+k5)%

The Lie algebra comresponding to the governing
equations is spanned by the following five linearly
independent generators:
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X = Xy= X =

12 9
av’ av

The conservation law for the equations of motion of
the inclined sagged cables 1s:

D,(C)+D,{C*)=0

Let the generator X be a linear combination of five
generators X,,2,... %,

X=X+ 2,3+ A3 + 2,3, + A X :klg+(x2t+}\3)£+(k4t+ks)§

The first prolongation of the generator X is given by:

a a a a a
prix — Ma*(%” lz)a+(h4t+hj)a+hza+h4—

t t

Applying the infinitesimal criterion of invariance (13)
to X, we gets:

priX (L) +L{D,&* + D.&' )= prX (L) =0

This gives:

aL aL aL aL
AIE+ (A2t+13)a+(h4t+hj)a+ 125

1

+7L4§V—L =AW it + AW K+ Ak, + Amey, =0
t

It follows that A, = 4, = A, = 0 and we get that the
family of all variational symmetries is given by A, X +1.3(,
where, A, and A; are arbitrary constants.

For the variational symmetries

a a
X +AX =AM —+ A, —
ME 340 "t 13

the associated conserved vectors are given by:

1 1
EA(Hu:«){K T T ﬂ

1 1
EA(Y, +¥, )[; Jisu )+ (v, + v ﬂ

= 7\11({%[1’1([13 +vf)—%EA[lK Q) + (v, +v, ) —1] +ch}
+ (A = Au Y, ) - (A,v, ) (v, )

C =k, —A0,)

+ AV,

If we let A, = O and 4, = 1, the variational symmetry of
translation in time

are obtamned. This gives the law of conservation of
D(C'HD(C = 0, where, the associated
conserved vectors are:

e1ergy,

ciogallo_ 1
© Jeu (v, ev)

2
ct :{%m(uf+vf)—%EA[%,’[l+ux)2+(yX+vx)2 —1] +wcv}—mﬁ(uf+v3)

}[—u( —uu +y. v+ vxv(] s

CONCLUSION

Noether’s theorem is a powerful method for finding
conservation laws for complicated systems of differential
equations arising from variational principles. The
equations of motion of inclined sagged cables were
derived by the variational method m Srinil et al(2004).
Thus, Noether's theorem can be applied to obtain the
conservation laws, which play an important role in the
analysis of basic properties of the solutions of this
system. For each variational symmetry, there 1s a
corresponding Applying  the
infimtesimal criterion of invariance, the researchers find all

conservation law.

variational symmetries. In particular, the variational
symmetry of translation in time is obtained and yields the
conservation of energy law.
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