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Application of UNO Scheme for Steady and
Transient Compressible Flow in Pressure-Based Method

MH. Djavareshkian and M. Farnak
Department of Mechanic Engineering, Tabriz University, Tabriz, Iran

Abstract: A pressure based implicit procedure to solve the Huler equations on a nonorthogonal mesh with
collocated finite volume formulations 1s described which uses pressure as a working variable. The boundedness
criteria for this procedure are determined from Uniformly high order accurate Non Oscillatory (UNQ) schemes,
which are based on characteristic variables and are applied to the fluxes of the convected quantities directly,
including mass flow rate. The developed scheme is applied to the computation of steady transonic and
supersonic flow over a bump mn channel geometry for various Mach number as well as to the transient shock
tube problem. Also the results of steady supersonic flow over a ramp are presented. Then the results are
compared with data predicted by TVD schemes based on characteristic variables.
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INTRODUCTION

The capturing of sharp gradients associated with
shock waves and contact discontinuities has been the
subject of much research and development. In shock-
capturing approach the governing equations of inviscid
flows (Buler equations) are cast in conservation form and
any shock waves or discontinuities are computed as part
of the solution.

From an historical point of view, shock-capturing
methods can be classified into two general categories:
viz., classical methods and modern shock capturing
methods (also called igh-resolution schemes). Modern
shock-capturing methods are generally upwind based
1n contrast to classical symmetric or central discretization.
Upwind-type differencing schemes attempt to discretize
hyperbolic partial differential equations by using
differencing biased in the direction determined by the sign
of the characteristic speeds. On the other hand, symmetric
or central schemes do not consider any information about
the wave propagation in the discretization

No matter what type of shock-capturing scheme is
used, a stable calculation in presence of shock waves
requires a certain amount of numerical dissipation, in
order to avoid the formation of unphysical numerical
oscillations. Tn the case of classical shock-capturing
methods, numerical dissipation terms are usually linear
and the same amount is uniformly applied at all grid
points. Classical shock-capturing methods only exhibit
accurate results in the case of smooth and weak-shock
solution, but when strong shock waves are present in the

solution, non-linear mstabilities and oscillations can arise
across discontinuities. In other word, classical shock-
capturing methods have the disadvantages that
unphysical oscillations (Gibbs phenomenon) may develop
1n the vicimty of strong shocks.

Modern shock-capturing methods have, however, a
non-linear numerical dissipation, with an automatic
feedback mechanism which adjusts the amount of
dissipation in any cell of the mesh, m accord to the
gradients in the solution. These schemes have proven to
be stable and accurate even for problems contaming
strong shock waves. Some of the well known classical
shock-capturmg methods iclude the MacCormack
method, Lax-Wendroff method and Beam-Warming
method. Also, there are many methods of modern shock-
capturing schemes that between of them can be referred
to TVD, ENO and UNQ schemes.

The first is higher order Total Variation Diminishing
(TVD) schemes that first proposed by Harten (1997). The
TVD schemes are designed to posses their total variation
dimimishing property for scalar hyperbolic conservation
laws and constant coefficient systems of hyperbolic
conservation laws.

One of the disadvantages of TVD schemes is that
they be switched to the first order schemes in
discontinuities. So they smeared the shocks and other
discontinuities.

Recently, some researches have been accomplished
in the devising of various lugh resolutions bounded
schemes that based on the Total Variation Diminishing
(TVD) techmque and mostly they are oscillation free.
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Druguet and Zeitoun (2003) used different MUSCL-TVD
finite volume schemes to study the mfluence of the wedge
trailing edge comer angle of the numerical methods and of
the viscous effects on the shock wave reflections and on
the hysteresis behavior. Sohn (2005) presented a new
type of Eulerian MUSCL scheme and oscillation free
algorithm based on TVD method. In his method, the inter
cell flux is computed from difference approximation of
characteristic equations.

Kim and Kim (2005) derived a new multi dimensional
limiting function for an oscillation control in multi
dimensional flows through the analysis of conventional
TVD limiters. Also, they developed multi dimensional
limiting process (MLP) with the multi dimensional limiting
function. Mandal and Subramanian (2008) explored a
novel technique of obtaiming high resolution, second
order accurate, oscillation free, solution dependent
weighted least-squares (SDWLS) reconstruction in finite
volume method. They explamed an approach to verify
TVD criterion of the SDWLS formulation for different
choice of weights. They proposed a link between the
solution dependent weights for weighted least squares
formulation and various independently proposed limiter
functions. Lian ef al. (2008) proposed an improved r-factor
algorithm for TVD schemes on structured and
unstructured  grids within a finite volume method
framework for numerical approximation to the convective
term. Kumar and Kadalbajoo (2008) presented a general
procedure to construct a class of sinple and efficient high
resolution total variation (TVD) schemes for non linear
hyperbolic conservation laws by introducing anti-
diffusive terms with the flux limiters. Sokolov ef al. (2006)
generalized a TVD principle for a special case of piece-
wise uniform grids, 1.e., adaptive Cartesian grids.

Also, there is various Essentially Non-Oscillatory
schemes (ENO) that first proposed by Harten et al. (1997).
This scheme based on piece wise interpolating functions
reinstructed in form of polynomials. The ENO scheme do
not have a Gibbs like phenomenon © (1) at
discontinuities, yet they many occasionally produce small
spurious oscillation on the level O (h) of the truncation
error. Titarev and Toro (2005) proposed to use second
order TVD fluxes, mstead of first order monotone fluxes,
in the framework of finite volume weighted essentially non
oscillatory (WENO) schemes. They called the new
improved schemes the WENO-TVD schemes. Shen et al.
(2006) proposed a finite compact (FC) difference scheme
requiring only bi_diagonal matrix inversion by using the
known high resolution flux. Introducing TVD or ENO
limiters in the numerical flux, they developed several lugh
resolution FC-schemes of hyperbolic conservation law,
mncluding the FC-TVD, third order FC-ENO and fifth order
FC-ENO scheme. Capdeville (2008a) proposed a new
WENO procedure to compute multi-scale problems with

embedded discentinuities, on non umform meshes. He
adapted this procedure for the non linear weights to
maintain the theoretical convergence properties of the
optimum reconstruction. Also  Capdeville (2008b)
proposed a new WENO procedure to compute problems
containing both discontimnties and a large disparity of
characteristic scales.

Other examples of modern shock-capturing schemes
include, Flux-corrected Transport scheme introduced by
Boris and Book (1997), Monotomc Upstream-centered
Schemes for Conservation Laws (MUSCL) based on
Godunov approach and mtroduced by van Leer (1997)
and Piecewise Parabolic Method (PPM) proposed by
Colella and Sekora (2008). Another important class of high
resolution schemes belongs to the approximate Riemann
solvers proposed by Roe (1997) and Shu and Osher
(1989).

Uniformly high order accurate Non Oscillatory
schemes (UNO) is another non oscillatory shock
capturing methods for the approximation of hyperbolic
conservation laws. These schemes share many desirable
properties with total variation dimimshing schemes, but
TVD schemes have a most first order accuracy, in the
sense of truncation error, at extrema of the solution. But
in uniformly second order approximation, which is non
oscillatory in the sense that the number of extrema of the
discrete solution is not increasing in time. This is
achieved via a non oscillatory piece wise linear
reconstruction of the solution from its cell average, time
evolution through an approximate solution of the
resulting imtial value problem and an average of this
approximate solution over each cell.

So far, the UNO scheme has been used in density
based algorithm. This umposes a restricion on the
applicability of the methodology and precludes its use in
multipurpose computational fluid dynamics procedures
that can be applied to incompressible as well as
compressible  flows.  Alternatively  pressure-based
methods offer the capability of handing both of these
classes of flow m umfied mamer. The objection of this
paper is to implement an Uniformly high order accurate
Non Oscillatory schemes (UNO) with characteristic
variables based flux limiters into a pressure based finite
volume method that solves the Euler equations.

MATERIALS AND METHODS
Governing equations: The basic equations which describe

conservation of mass, momentum and scalar quantities,
can be expressed in Cartesian tensor form as:

ap, o) o (1)
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The stress tensor and scalar flux vector are usually
expressed in terms of basic dependent variables. The
stress tensor for a Newtoman flud 1s:

ou
T, =-P3, 72H_6u 3, +p au, +—L (4)
) 3V, e

The scalar flux vector is usually given by the Fourier
type law:

Q- r{i‘j’} )

1

Discretization: The discretizations of the above
differential equations are carried out using a finite volume
approach. First, the solution domain is divided into a finite
number of discrete volumes or cells, where all variables
are stored at their geometric centers. The equations are
then integrated over all the control volumes by using the
Gaussian theorem. The development of the discrete
expressions to be presented 1s affected with reference to
only two face of the control volume, namely e and w, for
the sake of brevity (Fig. 1). For any variable ¢ (which may
now also stand for the velocity components), the result of
the integration yields:

n+1

sy (P~ (po)”
At

+ B9, ~Fody =D, (05" - 63" ) -
i (6)

e

Ic I,
Dw(qf;‘ ¢"“)+s 5y
IE

w

And contimuty equation will be:

Fig. 1: Finite volume and storage arrangement
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With multiplying Eq. 7 in 5% and minus of Eq. 6:

pn ¢;+1_¢; [ n+1
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And for two dimensional flow:
Ps ((ﬁ;“ B ¢I;) D_ yC n+l D n+l
SvT+(IE 1T - EE ) - (19 +15 - Fd )+ 9)
(17 +15 - E0p" )~ {17+ - B¢ ) =8 v
By substituting convected flux with equivalent flux,

the components of matrix of coefficients will be positive
and the matrix will become diagonal:

(10)

That IV is the convected flux in upwind scheme.
Equation 11 will be obtained with substituting Eq. 10 in
Eq &

nfantl  oan
AN (%At %) {1241 - (12 - 1) - B ) -
(184157 (157 16 ) R )+ (12 + 127 - (15 1) - B -
(IF 417 (7 -I7) - Fg" )= 8,3v
(1)

With a little change 1t will be acquired:

o A —¢fé) p 1

k') -(1

IgaU - Fw(i)?‘l ) +

At
(IE-&-ISU q)"*l) ( FIV - ¢n+l) (12)
v (177 - 10)= (1 - 1) (2 -12) {157 1)
hd(
With above assumption, the fmal form of the

discretization is as:
app = g 0p + 8y by +aydy +agh, + bdc + S';p (13)

That:
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ag =D, +max(-F,,0)

ay =D, + max(F,.0)

ay =D, +max(-F,,0) (14
a, =D, +max(F,,0)

8p = 8p T8y, 8y,

Depending on flow direction, the b, for x direction
should be calculated as:

F.¢, —f, - F f,
el eq)p e W¢'W+ w fW*fE+IﬂHX(FE,O)¢)p* 15
« Fb, —f, —Fbp +1, (15)
max(F,,0)dy, + min(F,,0)0,

Convective fluxes: The numerical dissipation term in TUNO
scheme, similar to another high resolution scheme, has a
non-liner dissipation term. This non-liner dissipation term
includes two limiters that are shown in this study with g
and P. P 1s applied to limit characteristics values difference
on cell surfaces and then this values are used for
calculating of g as another limiter. As will be seen, for
each cell face, the values related to the three points have
been interfered and therefore the accuracy of this scheme
will be of second order.

For a non orthogonal mesh, conservative variable
vector and convected flux vector in surface of e 15 shown
by Q and F* regularly which { is the normal vector of

surface.
Q=(p.pupv.,pE)’ (16)
F*=(pU°,pU%u+ PGE,pU v + PGg,priH)T a7
GE =Yoo~ Ve (18)
Gy == (%~ %) (19)

That u, v, P, H are velocity in direction of x, velocity in
direction of y, total pressure and enthalpy, respectively
and:

U= UG =uGs +vG; (20)

And convected flux in an arbitrary surface of e would
be calculated as:

1
Fo=5 FE+ Ff 4+ Roo, | (21)

where, R,¢, is a non-liner dissipation term, based on the
characteristic field decomposition of the flux difference.
The quantity R, stands for the right eigenvector matrix,
while ¢, is a vector containing the components of the anti
diffusive flux terms. According to Yee ef al. (1999) a
spatially upwind formula for the
components of ¢, is given by:

second order

1
ool e vl v o, @
2 2 2

1
Yy

The eigen values of the Jacobin matrix are denoted by
a. The spatial increments of the characteristic variables «
are obtained by:
ol =R, (ufE fui,) (23)

e

It should be mentioned that characteristic varables
is preferred to other type of variables because they
generate small gradients m discontinuities. Mulder and
van Leer (1985) and Lin and Chieng (1991), who carried
out extensive numerical experiments found that at least for
one dimensional flow, the best accuracy was obtained
using the Riemann variables (characteristic variables).
This can perhaps be explained by the fact that only one of
these variables will undergo a small change through a
wave or a contact front, whereas large changes take place
in conserved or primitive variables.

For v one can take (Yee et al., 1999),

1 w(al)(er —gp o
Yle = ) 7

(oc‘f) +E

(24)

(-

where, € is an arbitrarily small number such as 10°”. The
function ¥ is required to prevent non physical solution
such as expansion shocks and introduces a small amount
of viscosity. Following the suggestion of Harten and
Hyman (1983), it 1s taken as:

yiz)= (6 + zz) (25)

And 3= L
16
The most important factor in Eq. 22 is the flux limiter,
g, which determines the accuracy and TVD property of
the scheme. For the present study, the MINMOD limiter

due to Harten (1997) 1s used, thus:
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g, = MINMOD(s ;)
. 1

Sp =0, 75[3&
8, =0y +% B
B. = MINMOD (By..By ) (26)

Bw = MINMOD (By;,Bp )
BW = Oy — Oy
BP =0, — Oy,

BE =0l — Oty

Where:

MINMOD(x,y) = sign(x).Max(O,mian

,ysign(x)}) (27)

Also, other limiters such as superbee (Roe, 1986) 15 used:

Sl
J

(28)

1

1
s

1

J+§

o

Tz

g; _S.ma{o,minP Sad 1}min

Where: g— sgn[o:‘ IJ
I

2
The superscript !/ denotes the various characteristic
variable.

Solution algorithm: The techmque used 1s the SIMPLE
scheme for the steady state problems presented herem.
The adapted SIMPLE scheme consists of a predictor and
comrector sequence of steps in each iteration. The
predictor step solves the implicit momentum equations
using the old pressure field. Thus, for example, for the u
component of velocity, the momentum predictor stage can
be written as:

u*=H{u*-DVP’+§, (29

where, H contains all terms relating to the surroundings
nodes and superscripts® and 0 denote mtermediate and
previous iteration values, respectively. Note that the
pressure gradient term in now written out explicitly; 1t is
extruded from the total momentum flux by siumple
subtraction and addition. The corrector step equation can
be written as:

u**=H(u*)-DVP*+§, (30)
Hence, from Eq. 29-30,

u* *fu*:fDV[P* *fP*)
or (31)
Su=-DVép

Now the continuity equation demands that
V(p*u**)zo (32)

for steady state flows. For compressible flows, it is
essential to account for the effect of change of density on
the mass flux as the pressure changes. This is accounted

for by linearizing the mass fluxes as follows (Karki and
Patankar, 1989)

p*u**~ plu*+p”Su+u*sp (33)

p*u**aplu*—p'DVep+ u*[jp}Sp 34
P

where, Eq. 31 is invoked to eliminate du and &p is related
to &p by the appropriate equation of state. Substitution of
Eq. 34 into 32 yields a pressure correction equation of the
form

A_Bpr =A;8ps + A, Opy + AL SPL +ALSpL+5, (35)

where, 5,18 the finite difference analog of V(p°u*), which
vanishes when the solution is converged.

The A coefficients in Eq. 35 take the form (the
expression for A; is given as an example)

Ag =(p3D) 2, (au*]e.[dp] 36)

where, 4 15 a factor whose significance is explained
subsequently.

Because the mass flux at a cell face is computed
directly (via Eq. 21) from nodal values of p! and u, in
Eq. 36 are not readily available. To compute those values,
assumptions concerning the variations of p need to be
made. For example, if upwinding is chosen, then 4 would
take the value of 1 when uis positive; otherwise it would
be zero. Alternatively if a central difference formula 1s
used, then A = 1/2 it 1s important to recognize, however,
that such assumption have no influence whatsoever on
the final solution because they affect only the pressure
correction coefficients and as &p goes to zero at
conwvergence, the solution 1s, therefore, independent of
how those coefficients are formulated; however, they do
influence the convergence behavior. What is important is
how V{pu*) n Eq. 35 1s computed (as this does determine
the seolution) and this 1s based on the UNO principle
outlined earlier.

The structure of the coefficients in Eq. 35 simulates
the hyperbolic nature of the equation system. Indeed a
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closer inspection of expression Eq. 36 would reveal an
upstream bias of the coefficients (A decreases as u
increases) and this bias is proportional to the square of
the Mach number. Also note that the coefficients reduce
identically to their incompressible form in the limit of zero
Mach number.

The overall solution procedure follows the same
steps as in the standard SIMPLE algorithm, with the
exception of solving the hyperbolic like pressure
correction Eq. 33. To ensure convergence of the iterative
process, under relaxation factors between 0.1 and 0.2 for
pressure correction and between 0.2 and 0.5 for the other
variables are employed.

Boundary conditions: At the inlet of the domain, all flow
variables are specified if the flow is supersonic. For
subsonic inlet flow, only three of the four variables need
to be prescribed: the total temperature, the angle of attack
and the total pressure. The pressure is obtained by zeroth
order extrapolation form interior points. At outlet, all of
the flow variables are obtained by linear extrapolation for
supersonic velocities, the pressure is fixed when the
outlet is subsonic. Slip boundary conditions are used on
the lower and upper walls of the bump in the inviscid flow
test cases.

Also, numerical boundary conditions have to be
formulated for the flux limiters. According to Yee (1986)
there are three choices of boundary values for the g
function in Eq. 20. In the present study, the g function
on a boundary face has been approximated by oc:+;;,

2

which has the smallest dissipative value among the three
possible choices.

RESULTS AND DISCUSSION

In the first test, the results of steady transonic flow
with inlet Mach number of 0.675 overa 10% thick bump
for grids 98%26 are calculated. Figure 2 shows the
geometry of the 10% thick bump. In this case, the
superbee limiter is used for both UNO and TVD schemes.
Figure 3a and ¢ show the Mach number and pressure

Fig. 2: Geometry
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Fig. 3: Transonic flow over 10% thick bump, inlet
M. = 0.675, (a) Mach number distribution, (b)
Focus on Mach number, (¢) Pressure ratio, (d)
Mach contour UNO scheme and (e) Mach contour
in TVD scheme

3366



J. Applied Sci., 8 (19): 3361-3370, 2008

18

16

14

Mach No

12

10

Fig. 4:
and upper wall

18

Mach No
(o8
I

14

CP

oehb —————-—-— UNO ®
‘\
B "
)\ [
05 J‘ (Y /\
\ [N /AN
- JJ\ I \ [N
| \ ( S
o \
o 041 ) \ | \\ ) N
J \ 1 N \
B N N
/
_______ o _ N Ny
03F N ! AN
N ' <
| N J ~
~ ) ~
N N
021 v
1 1
0 1 2 3
X
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Fig. 5: Supersonic flow over 4% thick bump, inlet M., = 1.65, (a) Mach No distribution, (b) Pressure ratio, (c) Mach
contour in UNO scheme and (d) Mach contour in TVD scheme

coeflicient distribution on the lower and upper walls for
two schemes. Figure 3b shows precisely the maximum
point in Mach number distribution for both UNO and TVD
scheme. This comparison is presented that the shock
predicted by the UNO scheme is better than the TVD
scheme. Figure 3d and e show Mach contour distribution
for UNO and TVD scheme, respectively. In general, the
results nearly are the same in transonic flow.

The second case is supersonic flow over 4% thick
bump on a channel wall. The computations were

performed on a grid 90*30. The results of supersonic flow
with inlet Mach number equal to 1.4 are shown in Fig. 4.
The Mach number and pressure ratio distribution on the
upper and lower surfaces for present scheme are
compared with the TVD (Issa and Javareshkian, 1998)
prediction. The agreement between the two solutions is
remarkable, thus verifying the validity of the UNO scheme
in pressure-based algorithm.

The third case is supersonic flow in the previous case
with inlet Mach number equal to 1.65. Figure 5a and b
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Fig. 6: Supersonic flow over 4% ramp 10%a, inlet M, = 2.0,
(2) Geometry, (b) Mach contour in UNO scheme
and (c) Mach contour in TVD scheme

shows the Mach number and pressure coefficient
distribution on the upper and lower surface for both UNO
and TVD schemes. According to the Fig. 5a, the reflection
of leading edge shock at the upper wall for UNO scheme,
is sharper than TVD scheme. Also for the lower wall,
after reflection shock, near the outlet, Mach number
distribution has been smeared in TVD scheme. In
more accurate view, after reflection shock at the
lower wall, there is a little under shoot for TVD scheme.
Figure 5¢ and d show Mach contour distributi ons for both
UNO and TVD schemes. The results show near the shock,
UNO Mach contour, is more compact and precise than
TVD Mach contour.

The fourth case is supersonic flow over a 10 deg
ramp. The computations were performed on a grid
60*30 (Fig. 6a) andinlet Mach is2.0. The Mach contours
for both UNO and TVD schemes are presented in

Velodly

Density

Mach No

Pressuse ratio

Fig. 7:

3368
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Shock-tube results for an initial pressure ratio
Py/P. = 10 at time t,= 6.0, (a) Velocity, (b) Density,
(¢) Mach number and (d) Pressure ratio
distribution
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Fig. 6b and ¢, respectively. As it can bee seen, the shock
contours for UNO scheme are more compact and precise
than TVD scheme.

The fifth case 1s one-dimensional transient shock
tube problem. Figure 7a-d show the spatial distribution of
velocity, density, Mach number and pressure ratio,
respectively, along the shock tube at a given instant in
time in a shock-tube for an imitial pressure of 10. The
results of computation on a mesh of 100 nodes are
compared with the analytic solution. It can be seen that
the shock is sharply captured and the contact
discontinuity 1s resolved and oscillation 1s not relatively
produced for the UNO scheme.

CONCLUSION

A pressure based implicit procedure has been
described that incorporates bounded high resolution of
discontinuities and 1s, therefore, well suited to all flow
ranging from subsonic to supersonic. The boundedness
criteria for this procedure are determined from TUNO
schemes, which are applied to the fluxes of the convected
quantities, including mass flow. The flux limiter is based
on the characteristic variables. The main findings can be
summarized as follows:

¢  The agreement between the results of the present
implementation of UNO schemes and TVD schemes
is excellent, as it should be

»  The UNO schemes based on characteristic variable

produces  more  smooth  solution  around

discontmuities than TVD scheme
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