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Abstract: The objective of this research was to develop a methodoelogy for calculation based on the networks
of neurons for the calculation of axial dispersion in the fixed beds of linings parallelepipedic. Tn a first stage the
results of the axial dispersion obtained on the fixed beds of linings parallelepipedic by the neuronal method was
compared with the results resulting from the literature. Tn a second stage the performances of this method was

showed and the computation results was modelled, m the form of mathematical models similar to those

proposed by study many researchers, so that one can validate present results with those obtained by

researchers, under the same operating conditions.
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INTRODUCTION

Many methods  enable to calculate axial
dispersion in the fixed beds, most of them are interested
only in classical analysis. Certain studies
models fairly performant, but few neuronal methods were

established for the
However, such methods could be very useful when

suggest

axial dispersion estimation.
one wishes to envisage axial dispersion in complex fixed
beds.

In practice, one does not use the networks of
neurons to carry out approximations of known functions.
More often than not, the problem which comes up is as
follows: one has a set of measurements of variables of a
process of nature unspecified (physical, chemical,
economic) and result of this process; it is supposed that
there 1s a deterministic relation between these variables
and this result and one seeks a mathematical form of this
relation, valid in the field where measurements were
carried out.

In other words, one seeks a model of the studied
process, starting from the examples that one has. Once
this phase is finished, the network of neurons black box
15 integrated in already existing software and make it
possible to deal with problems, where the classical
systems of data processing appear weak (Dreyfus, 2005;
Haykin, 1999).

EQUATIONS OF THE MODEL OF FLOW PISTON
‘WITH DISPERSION

Table 1 shows the three significant models of flow of
Distribution of the Residence Time (DRT) with dispersion
in the fixed reactors of fixed beds.

The major problem of the solutions is the boundary
conditions which were largely discussed by Bischoff and
Levenspiel (1962), Choy and Perlmutter (1976), Deckwer
and Mahlman (1976), Gill (1975) and Parulekar and
Ramkrishna (1984).

The process of moiture in the reactors 1s due
mainly to the differences of speeds of the fluid elements,
to the actions of local mixture due to the mobile of
agitation, to the secondary swirls along the loop of
circulation, to the phenomena of turbulent diffusion and
molecular diffusion. All these effects can be characterized
overally by a longitudinal or axial scatter coefficient. This
coefficient represents the degree of retro mixture in the
fluid and depends on the properties of the fluid, on the
mode of flow and on the shape of the reactor (Levenspiel,
1999). Whereas axial dispersion in the fixed beds results
mainly from the superposition of two mechamsms:
molecular diffusion due to the gradient of dominating
concentration for the low speeds of flow and the
turbulent diffusion (geometric or mechanical dispersiomn)
generated by the fluctuations of the speed of the fluid
within the porous medium. Therefore it dominates strong
speeds.
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Table 1: Significant models of flow of drt with dispersion in the reactors of fixed BED

Authors TLabel of the model

Corresponding equation
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Aris and Amundson (1957) and Sundaresan et al.
(1980) proposed a theory based on the concept of cells of
mixture to explain the phenomenon of axial dispersion
(high Reynolds numbers). They show the criterion of
interstitial Peclet thus:

pe, = (4)

NEURONAL METHOD FOR DAX CALCULATION

Few works were published on the use of the neuwrons
networks for the estimation of degree of mixmg of a fluid
crossing a porous medium laid out m fixed-bed. To our
knowledge F Larachi it is the only one which developed
two neuwronal approaches to predict the axial scattering
coefficient: the first approach (Piché et al., 2002) concerns
the diphasic reactors with fixes bed by using the number
of Boldenstein:

u
Bo-

aF.Dax

with an average absolute relative error (AARE) not
exceeding 24%. The second approach (Belfares et al.,
2001) concerns the reactors for a column with pellets by
adopting the Peclet number:

u,..d
Pe= 18wy
( o

by using a bank of data and with a maximal AARE of 20%.
The two approaches do not show the effect of the
neuronal parameters on the AARE obtained by the
network.

[ Method for calculation by the networks of neurcns ]

[StepnfpreteahmntandexpeﬂmentaldﬂaofDaxaswmplﬂeupnssible]

[ Step of preteatment and analysis of the data ]

¥
rl Step of choice of the parameters of the networks of neurons \
¥ L] [

No. of hidden
layer
No. of neurons per
layer

Function of activation [*]

Algorithm of training [+
No. of iteration

[ Phase of training ]

[ Phase of gencralization and validation ]

[ Dax collection given by the network of neurons ]
v
[ Anslyze and comparison ]

[ ‘Validation of the model ]

Fig. 1: Method for calculation of Dax by the networks of
neurons

METHODOLOGY OF CALCULATION

The principle of calculation by the networks of
neurons of axial dispersion in the fixed beds is shown in
Fig. 1.
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Table 2: Experimental correlations obtained by Comiti and Renaud (1989), on plates laid out fixed-BED

Nature of the porous Equivalent diameter Porosity Kinematics viscosity 8peed in empty Equations of correlation
medium (plate) dp (cm) € v (e’ sec™h) Uy (cm sec™) Dax (cm? sec™))
First porous medium Dax=357U,%
Dax _opo e
Polystyrene 0.129 0.46 1.03x10? 2.7%1073<10=0.60 v 1
Pe, = 0 049K 2™
Second porous medium Dax =1.49173%
Da% _ 3 gsner
PVC 0.221 0,35 1.03x1072 6.4x1073<11=0.62 v i
Pe, = 0 26Ra) "
Third porous medium Dax = 206U, %
Dax _ 092
PVC 0348 0.31 103102 4.6x1073<U,<0.61 = CERa
Pe, = 035Re ™
DATA BASE Biais 1]
The examples used for the training and the validation Vitesse en fut
of the elaborate network of neurons are selected starting vide du fluide U, ()
from the equations of experimental correlation suggested & l:cIl)?ll-avm,lmm : O
" s plaquette 5
by Comiti and Renqud (1 989),. who worked on fixed beds _Enma;]ne du sOLR
packed of parallelepipedic particles at square base of wealk e O
thickness to side (PVC and polystyrene plates) laid out cinematique
du fluide

fixed-bed inside a cylindrical column. Table 2,
recapitulates the experimental values of axial dispersion
obtained by Comiti and Renaud (1989), as well as the
operating conditions.

PRINCIPAL CHARACTERISTICS OF
THE USED NETWORK OF NEURONS

The principal characteristics of the network used and
the type of training can be summarized as follows:

Neurons network architecture: The fundamental
property of the neurons networks is the universal
approximation which can be stated 1n the following way:
Any sufficiently regular limited function can be
approximate uniformly, with an arbitrary precision, in a
finished field of the space of its variables, by a neurons
network comprising a layer of newons hlidden mn a
finished number, having all the same function of
activation and a linear neuron of exit (Cybenko, 1989;
Dreyfus, 2005; Funahashi, 1989). It 1s thus property which
justifies our choice of the network architecture of neurons
to a hidden layer shown in Fig. 2.

Effect of the number of hidden layers: The effect of the
mumber of hidden layers on the precision of the
network 1s shown m Fig. 3. This last gives the
average quadratic error according to the iteration number
of several networks of different architectures. It is noted
that really, the newons network with only one hidden
layer is the most efficient. As an example, after 100
iterations, the average quadratic error passes from 107"
for the network of three hidden layers to 107" for the

Fig. 2: Network of multi-layer neurons for the calculation
of axial dispersion in the fixed beds of plates

network to only one hidden layer with a multiplicative
factor of 1000 Moreover, the only degree of freedom
which remains for the determination of the network
architecture 1s then the number of hidden neurons, which
simplifies the optimization of the network architecture, as
it will be seen later.

Effect of the activation function: The state of neuron
depends on the various forms which can take the function
of activation (Dreyfus, 2005). The influence of the
activations functions currently the most used in the
literature is shown in Fig. 4. However, it was noted that
the exponential sigmoid function for the neurons of the
hidden layer and a purely linear function at exit is the
configuration best adapted and which gives the results of
most efficient training and generalization. With an average
quadratic error of training of 107" since the 60*™ iteration.
The analytical treatment of the curves of Fig. 4, for small
iteration numbers, show a great fluctuation of the average
quadratic error, this whatever activation function are
used. That is due to the arbitrary choice of the initial
values of weight and skew by the algonthm of traimng.
This variation is quickly attenuated and stabilized when
it is about the function of exponential sigmoid activation.
It 1s the reason for which this latter was retained.

Effect of the number of neurons: One of the fundamental
unknowns to use the networks of neurons 1s the number
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Fig. 3. Effect of the No. of hidden layers on the performance of traiming of the network of neurons
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Fig. 4: Effect of the function of activation on the performance of training of the neurcns network
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10 === 05 neurons on the hidden layer
] === (6 neurons on the hidden layer
10 === (07 neurons on the hidden layer
- === 08 neurons on the hidden layer
10 |» 09 neurons on the hidden layer
5 \ 10 neurons on the hidden layer
0 = 11 neurons on the hidden layer
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Fig. 5: Effect of the No. of neurons of the hidden layer on the performance of training of the neurons networlk

of neurons on the hidden layer. This one strongly
depends on the complexity of the function to interpolate
and the configuraton of the nputs used during the
training. If this number of neurons 1s too low, the network
will not converge during the traimng, it will have too
many data to leamn and not enough neurons to store it.
On the other hand, if the network has too many neurons,
it will converge quickly, but apart from the pomts of
traimning, the calculated answers will be poor (Boucheron,
1992; Dreyfus, 2005; Lamrim ef al., 2005). It1s difficult to
find criteria allowing the addition or the withdrawal of
neurons in the network. A very fine analysis by groping
shows that the choice of nine neurons on the ludden layer
1s the best adapted number and most the performant to
present problem, as the Fig. 5 confirms it. On the other
hand, the output layer comprises only one neuron, since
the network has only one size to calculate.

The difficulty which remainder 1s to fix the criterion of
comvergence or to stop of the trammng. In this step of
procedure there are two methods: either one fixes the
maximum number of iteration and one leaves with the
program the care to find the global minimum or one fixes
the mimmal error for which the traimng stops. In this case,
after preliminary tests, one noted that the maximum
number of cycles of traimng where the network reaches
the mimimal error corresponds to a value of 200.

Effect of the training algorithm: Once the network 1s
defined, one passes to the phase of trarung durng
which the network will try to leamn one or more rules

{or relations) by successive corrections from its weights
and skew. For that, one imposes to lum couples of mnput-
output (series of training) and one modifies the weights
and skew so that the answer tumed over by the
network converges towards the desired outputs. For
present problem one has chosen the algorithm of
Levemberg  Marquardt, most  usually  used
(Blayo and Verleysen, 1996), more rapid and allowing to
treat in each iteration the whole of the couples mput-
output (Fig. 6).

Effect of the initial values of the weights and skews: The
traiming 1s made several times, because the quality of the
interpolation strongly depends on the nitial values of the
weights and skews of the network, catched chancy by the
traiming algorithm. Figure 7 shows the effect of the choice
of the mitial values, by carrying out the traiming of the
network several times, one notices that the performances
differ from a test to another.

Generalization phase: In this phase, one applies to
present network of newrons a new sample of examples
where the AARE does not exceed 1%,

TEST ON THE REQUIRED
PERFORMANCES

Figure 8 gathers the results of axial dispersion
obtained by the neuronal method, it shows the existence
of three classes of axial dispersion relating to the three
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10 Retro propagation of Newton BFGS
100 Retro propagation of conjugate gradient of Powell-Beale
Retro propagation of conjugate gradient of Fletcher-Powell
- Retro propagation of conjugate gradient of Polak-Ribiere
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Fig. 6: Effect of the training algorithm on the training performance of the neurons network
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Fig. 7: Effect of the choice of the initial values of the weights and skews of the network on the training performance of
the neurons network
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Table 3: Comparison between the models of Comiti and Renaud (198%) and the models suggested by using the neuronal method

Model of Comiti (1989)

Suggested model

Average relative variation (ERM) in (%)

First porous medium Dax =3 571°% (5)  Dmx=3.5030% (8)
Uo in cm sec™ and Dax in cm? sec™! Uo in cm/s and Dax in cm?/s 0.34
Dax_ooarer® (6)  DaE_y5 gnypel ® 0.33
i8] v
Pe, =0.049 Re™ (7)) Pe,=0.05Re™ (10) 0.58
Nothing 5Pe, =002 + 0.006 Re™" an e
o o 0053 Re!" (12) 2.03
Nothing Y1+ 009k
Second porous medium  Dax =1.49U1% (13)  Dax=1493U7" (16)
Uo in cm sec™! and Dax in cm? sec™! Uo in cm sec™ and Dax in cm? sec™ 0.07
Dax_ g g (14) D= _ g gyopeoms an 0.53
i8] i8]
Pe, =0.26 R'™ (13)  Pe, =0.261ReY (18) 0.55
Nothing 5Pe, =0.02 +0.084 Re " 6L N —
Nothing _ 0303Rg™ (20) 0.52
L0 179Re™
Third porous medium  Dax =2.06 U0 * (21)  Dax=2.06300" 24
Uo in cm sec™ and Dax in cm? sec™! Uo in cm sec™ and Dax in cm? sec™ 0.05
Dy goper (22) D= _, gooper 25) 0.04
i8] i8]
Pe, =035 Re!™ (23)  Pe,=0375Re™™ (26) 7.14
Nothing 5P, =0.02 +0.108 R [0 N—
Nothing _ 0.555ReM” 28) 6.97
' 1+0528Re’”
2 4x10~" -0 Deax calculated by the neurcnal mthod 2.5%107
(for polystyrene dp = 12.9x10™" m and €= 0.46) ) H  Dax calculated by ihe neuronal method
—8—Dex calculatz by the neuronal method — Dax desired given by comiti
o (for PVC dp =221x10° m and o~ S
] £=0.35) g =~
H _, .| m—Dex calculate by the "
= 1.6x10 neuronal mthod (for hvi
& PVC dp = 3.48x10" & 15107
H e=0.31) g
E' E 1.0x1071]
& 8.0x107*7 =
[ ]
g 3 5.0x1077
0.0 r r ' r 0.0 ————— —— _
0.0 2,0x107 40107 6.0%10~ 0.0 50x107  1.8x10° 1.5%107  2.0x10° 2.510

Speed in empety: U0 (m sec )

Fig. 8 Values of axial dispersion obtained by the
neuronal method, according to speed empty for
the three porous media

porous media, of plates paclked in the form of fixed beds,
used by Comiti and Renaud (1989) (Table 3).

Figure 9 shows that the computed values by the
neuronal method conform to those obtained by Comiti
and Renaud (1989) with a relative error which does not
exceed 1%0.

MODELING

There are, in practice, two principal models of studies
of the real flows: the mathematical model which appeals,
according to cases, forms fairly simplified of vectorial
relations, it provides an algebraic relation between the

Axiale dispersion: (Dax) ., (m” sec ")

Fig. 9: Performances of the neurons networl used for the
calculation of the axial dispersion of the three
porous media

variables and the semi empirical semi model

{(dimensional analysis and the theory of the models),

which provides information on the links which can

exist between the various variables of the problem. In
order to reinforce this study more, we tried to model the
results obtamed by the method of neurons network, by
using simple models with the same type than those
proposed by Comiti and Renauad (1989), so that the
comparison is significant. Tn this stage and in order to put
in evidence the speed effect n the empty and the nature
of the porous medium on axial dispersion, it is converient
to gather the results of the three porous media in the
Table 3.
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CONCLUSION

Axial dispersion strongly depends on speed in
empty, of the physicochemical characteristics of fluid and
the structural organization of material constituting the
porous medium. The neuronal method adopted for
calculation of axial dispersion resulting from the flow of an
aqueous solution through a porous medium of plate laid
out fixed-bed and using the equations of correlation given
by Comiti and Renaud (1989), 1s proved to be effective
considering the good agreement between the desired
values and the computed values. Its advantage 1s to
simplify the numerical analysis and consequently the
reduction of the computing time. It is always easy to
propose a modeling according to a power full law, but the
difficulty results from the physical sigmficance of the
parameters taken into account; this is not very restrictive
for the industrial applications msofar as each particular
problem appeals to a precise field of flow mode and nature
of porous medium. Then a representation by the
dimensional analysis provides informations on the links
which can exist between different variables connecting
axial dispersion to the physicochemical properties from
the fluid and material constituting the fixed bed of the
porous medium.

However, 1t 1s mteresting to know if the neuronal
method would be able to simulate axial dispersion for
other garnishing. One thus will plan to check the validity
of the method by analyzing the experiments carried out by
other authors on the spherical and cylindrical garmishings.

NOMENCLATURE

. Average absolute relative error
Dp . Dispersion piston

DRT : Distribution of the residence time

EDP : Exchange dispersion piston

G Specific surface of the grain (m™")

Phas . Specific surface of the bed (m™)

Cr . Total concentration of liquid (mole m ™)

Dax : Axial scattering coefficient (m” sec™)

Dir : Coefficient of effective molecular diffusion,
{m*sec™)

Dy : Hydraulic diameter of Kobayaslu (m)

D, (- 6)d

R T T

D, . Molecular  diffusion coeefficient of the
considered species (m’ sec™)

d, . Diameter of the particles (m)

D.. . Radial scattering coefficient

f, . Fraction of the particle of the phase in the liquid
zone

H; . Total height of the bed (m)

N . Transfer unit numbers

R . Radial co-ordmates of the particle (m)

t . Time (sec)

1, . The superficial speed of the liquid through the
porous medium (m sec™")

u, : Speed was empty liquid (m)

z : Axial co-ordinate (m)

£ . Porosity of the bed

Oy . Density of the phase ¢ (kg m™)

e : Dynamic  viscosity  of the phase «
(kg m'sec™)

Indices

D . Dynamic liquid zone

G . Gas

I . Intra particle liquid zone

L : Liqud

S . Stagnant liquid zone

T : Total liquid, combined zones

H : Hydraulic
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