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Flastic Analysis of Discontinues Medium using Mesh-Free Method
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Abstract: In this study, a truly mesh-free method 15 inplemented for the elastic analysis of discontinues media.
The media is divided into separate parts which are comnected to each other by the nterface layers. The
displacement field in each part is constructed by the radial basis point interpolation method, enriched by the
polynomial terms. The final system of equations is derived by the substitution of the displacement field into
the weak form of the govemning equation. The dependency of the method on the background mesh has been
taken care of by stabilized nodal integration. Based on derived equations a computer code is developed and
some cases are investigated The results of analyses show that the nodal integration improves the accuracy
of results in comparison with the Gauss method. The stability of proposed method is also guaranteed by the

suitable choice for shape parameters and the radius of supports.
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INTRODUCTION

Contact problems are very common and hence
important in mechanical and c¢ivil engineering. Anytime
there 18 an interface between two materials, there is a
discontinuity and the usual analytical methods used in
continues solid mediums fail. Strong discontinuities can
be solved easier by numerical methods than analytical
ones. Conventional engineering numerical methods such
as Finite Element (FEM) and Finite Difference (FDM) are
based on element or mesh and hence may give rise to
problems related to mesh distortion. To address these
1ssues many mesh-free methods or element-free methods
have been developed in the past few years. To name a
few: the Smoothed Particle Hydrodynamics (SPH) method
(Libersky and Petschek, 1991), Element Free Galerkin
(EFG) method (Belytschko et al., 1994), Reproducing
Kemel Particle Method (RKPM) (Liu et al., 1995), Local
Petrov-Galerkin Method (LPGM) (Atluri and Zhu, 1998)
and Pomt Interpolation Method (PIM) (Liu and Gu, 2001).
Detailed descriptions and discussions on these mesh-free
methods can be found in, for example (Liu, 2003).

There has been a great deal of research into the
implementation of the Radial Basis Point Interpolation
Method (RBPIM) in many engineering problem solutions.
The RBPIM has the following advantages:

¢ The shape function has the Kronecker delta property

# The moment matrix used in constructing shape
functions is always invertible

¢  The linear consistency is guaranteed by using the
RBPIM basis functions enriched with the linear
polynomials

The generation of discrete system of equations in the
RBPIM, like the majority of mesh-free methods, 1s based
on Galerkin procedure. Gaussian mtegration 1s commonly
used in Galerkan mesh-free methods for the integration of
weak forms and thus a background mesh 15 needed to
perform integration. However the misalignment of the
local supports and the mtegration cells may deteriorate
the accuracy of results. Dolbow and Belytschko (1999)
investigated this problem and suggested the bounding
box technique for the construction of the integration cells
which match the shape functions supports. Due to the
complexity involved m Gaussian integration, attempts
have been devoted to explore stabilized nodal integration
methods for Galerkin-based mesh-{ree methods.

The source of mstability in nodal mtegration 1s the
vamshing of the first derivatives of the shape functions
at the nodes. Since the strain energy term in the weak form
consists only the first derivatives of shape functions,
nodal sampling does not adequately reflect the energy of
the short-wavelength mode and its contribution to the
stiffness

matrix i severely underestimated. This

instability is manifested by spurious short wavelength
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modes. Randles et al. (1999) used the idea of computing
derivative away from the centroid of the support domain
and proposed a stress point method to improve accuracy
and to reduce spurious oscillations in SPH. Bonet and
Kulasegaram (1999) mtroduced an integration correction
to stabilize the nodal integration method and to eliminate
the spurious modes in SPH. Beissel and Belytschko (1996)
stabilized the nodal mtegration of Galerkin mesh-free
methods by adding the square of the residual of the
equilibrium equation to the potential energy. The
stabilization term includes second derivatives of shape
functions and thus the least squares term serves to
stabilized nodal integration. Although, the addition of
stabilization term improves the accuracy of solution for
the problems with spurious near-singular modes, for
problems that do not contain unstable modes in their
original solution, this addition actually deteriorate the
accuracy. A stabilized conforming nodal integration for
Galerkin mesh-free methods was proposed by Chen et al.
(2001). They identified that for linear exactness mn the
Galerkin approximation, the shape functions have to be
linearly consistent and the nodal integration must satisfy
mtegration constraints. They proposed a strain
smoothing stabilization technique to stabilize the nodal
integration. The basic idea is to replace the strain at a
specific pomt with the average strain in a Voronoi cell that
contains the point. Divergence theorem is then used to
replace the area, or volume integration around the point
by a contour integration of the Voronoi cell boundary.

In this study, the conventional RBPTM, enriched with
polynomial basis functions is implemented for the elastic
analysis of discontinues medium. The mterface layers
between different materials are defined by the concept
of linkage element. The stabilized nodal integration
technique has been used to integrate the weak form of
equations.

RBPIM ENRICHED WITH POLYNOMIAL BASIS
FUNCTIONS

A field function u(x) can be approximated using both
radial and polynomial basis as:

u(x)= SR, (x)a, + 3P, (x)b, =R" (x)a+P*(xjp (1)

1 ]

where, n 18 the number of field nodes n the local support
domain for point x; the vector R(x) is defined as:

R (0] (2)

Where:
R, (x)=R(5) (3)

18 the radial basis functions and
L= [(Xk - X)z + (Yk - y)2 }E (4)

15 the distance between the point x and field node X,;
vector P(x), where:

P(x) =[P, (x),P, (x)....B, (x) ]| (5)

15 the vector of polynomial basis functions i 2D space
x' =[x, ¥] and m is the number of terms of polynomial
basis functions. Vectors a and b, where:

a=[a1,a2,...,a“]T (6)
b=[b,,b,....b, | )

are, respectively, coefficients for R(x) and P(x). The radial
basis functions are used to guarantee the invertability of
moment matrix and the polynomial basis functions are
used to ensure the linear consistency of generated shape
functions. The coefficient vectors a and b are determined
by enforcing Eq. 1 to be satisfied at all the n nodes within
the local support domain. By the lengthy but
straightforward procedure given by Liu (2003) we have:

u{x)=2(x)U, (8)

Where:
U, =[u.u,,..., un]T &)

is a vector of nodal displacements of the nodes in local
support domain and

(I)(x)=[(p1 (x). ;%) p, (X):I (10)

containg RBPIM shape functions for the n local nodes in
which @,(x) is as follows:

n m

i (X) = 2R (x)Su + 2B (x)Sy, an

i i
where S, 1s the (1, k) entry of matrix S, where:

Sa =Rl\_/1[-R1\_/l[PMSb (1 2)
and S, is the (j, k) entry of matrix §, where:

S, =(PIRP,)'PIR;] {13
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The moment matrices R,; and P, are consisted of row
vectors R'(x) and P'(x) (1= 1, 2,...,n), respectively.

There are many types of radial basis fimctions. In this
study the multi-quadratic form 1s used as:

R(r‘)=(r‘2+(:2)q (14)

where, ¢ and ¢ are shape parameters, which are needed to
be determined by numerical tests.

VARTIATTONAL PRINCIPALS FOR
DISCONTINUOUS PROBLEMS

Generally, the total potential energy fumetional for a
discontinuous media is expressed as:

II=1I, + 1L + II, (15)

where, I, and II; are the elastic strain energy of a solid
media and mterface layer, respectively and II; is the

potential energy related to external forces. These
functionals can be defined as:
I, = J!%STG(}Q (16)
H‘:‘!%sfcxdﬁ (17)
M, =-[U"Tdr - [jU'bd0 (18)
Q Q

where, € and 0 are, respectively, the strain and stress
tensors of solid domains and €, and o, are the stram and
stress tensors of interface layers between solid domains,
respectively. b is the body force vector, U is the vector of
degrees of freedom, Q is the problem domain, B is the
length parameter along the interface layer, T is the
prescribed surface traction and I' i1s the boundary along
which the surface traction 1s imposed.

The varational (weak) form of Eq. 15 can be written
as:

811 = [[(82) Ded + [ (8z,) Ddp - [[ (3U) hda - [ (5U) Tdr=o

=] r

(19)

where, D and D, are the elasticity matrixes of medium and
mnterface layer, respectively.

Using the stress-strain relation, the discrete form of
equations can be written as:

: 3389-3397, 2008
Geolr:eﬂyncde . L e ././ of A
A 4 ® © Interface layer

hI‘

Fig. 1: Interface modeling

KU=F (20)
Where:
K = [[B'DBdQ+ [B/DB, dp 20
=] [
F= [[o'bd0+ @' Tdr (22)
Q r

where, @ and B are, respectively, the shape functions and
the gradient of shape functions matrices. Using the
generated shape functions, @ and B can be constructed
as in conventional FEM. Matrices B, and D, are related to
the interface layer. The rest of this section is devoted to
the expression of the nterface modeling using mesh-free
method.

The interface layer is considered as two parallel
planes with an insignificant distance from each other. A
series of springs are assumed between the planes. The
springs are resistant to the relative normal and tangential
displacement of planes. The stiffness of springs into the
unit area (stiffness coefficient) along normal and
tangential directions are k, and k,, respectively. As shown
in Fig. 1, pont P 18 considered between the planes of the
interface layer to determine the strain-displacement
relationship. The width of interface (h) is much less than
its length (L), hence the stram in the n direction in the
interface can be assumed to be constant. The relative
displacement of point P can be related to the
displacements of point A and B on the top and bottom
planes as follows:

5=[5, 8] =Us U. (23)
where, &, and 8, are the normal and shear relative
displacement of point P, respectively and U, and U, are
displacement vectors of pomts A and B in local
coordinate n-s, respectively. Using the coordmate
transform matrix (C) the displacement vectors can be
written as:
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U=€U (24)

On the other hand, the displacements of points A and
B can be related to the displacements of the nodes in the
support domain of those points (Fig. 1). So, we have:

ﬁA = @AHgA (25)
Us = Quue

where, @, and @; are the shape function matrices of the
nodes in the support domamns of pomt A and B
respectively and u,, and ug are the displacement vectors
of the nodes in the support domain of A and B,
respectively.

Considering Eq. 23-25 we have:

3=BU, (26)
Where:
B=[-CO, C®y] (27)
U7 = [y e | (28)
Defining the strain tensor in the interface layer as:
a={fe &) (29)

where, 7, and €, are the shear and normal strain,
respectively, we can have:

i

g = lﬁ (30)
h

and by combination of Eq 26 and 30 the strain-
displacement relation in the interface layer can be written
as follows:

& -LBU (31)

Congidering the strain tensor definition in the
mterface layer, the stress-stramn relation in elastic analysis
can be written as:

0,=D; (hs) =D8 (32)
Where:
Gi:{‘t Gn}T (33)
k. 0
| 34
D, [0 kj (34)

where, T and o, are shear and normal stress in the
interface layer, respectively.

STABILIZED NODAL INTEGRATION

As noticed before, the source of instability in nodal
integration is the vanishing of the first derivatives of the
shape functions at the nodes. Therefore attempts have
been made either to calculate the derivatives away from
the nodes or to derive the formulations m which the
derivatives are not manifested. Chen et al. (2001 ) used the
latter technique and proposed a strain smoothing as
follows:

~h

2 (%)= [e2 ¥ (xx-x,)dO (35)

where, = is the strain obtained from displacement by
compatibility

oo L 0 A (36)
ool ey

and ¥ is a distribution function which is chosen as:

L xe )
WG x-X ) =9 AL r (37)
0 Xel)

where, A; i3 the area of the representative domain of
node L obtained from the Voronei diagram. Combination
of Eg. 8 and 35-37 and applying the integration by parts
gives:

&(x )= 2 Bi(x,)U (38)
IeGy
where, G; 1s a group of nodes mn which their associated
shape function supports cover node T.. In two
dimensional space we have:
g =[50 (39)
U =[U,.u, ] (40)
b (XL) 0
Bi(x,)=| 0  bu(x,) (41)
BIY(XL) le (XL)
B (x,) = [ @ (x)n, (x)dr (42)
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by (x,)= jq)I (x)n, (x)dr (43)

1

A

As shown in Fig. 2, T 1s the boundary of Voronoi cell
which contains nede L. n, and n, are, respectively, the x
and y components of vector n (outward vector which is
normal to boundary of Voronoi cell). Note that in Eq. 41
no derivatives of shape functions are mvolved in
evaluating the smoothed gradient matrix at the nodal
points. Considering the Eq. 41 and the nodal integration
method, Eq. 21 and 22 can be rewritten as:

NP

K, =B (x,)DBi(x,)A, + K (44)
L=1
NP NFh —
E =2 o )bA + 2 (x) TS, (45)

where, NP 1s the number points in the local support
domain of Node L, NPb 1s the number of pomts on the
natural boundary, S, are the weights associated with the
boundary points that can also be obtained from the
Voronol diagram and K' 1s the stiffness matrix of the
mterface layer (second term m Eq. 21).

To calculate Eq. 42 and 43, any numerical integration
method can be used, for instance by applying a two-point
trapezoidal rule for each segment in Fig. 2, Eq. 42 and 43
can be written as:

lM

{%(Xi")ﬂﬂ’i#+%

- 1 5
br(x )=—
s =2 2

L M=1

(x5t %} (46)

= 1 & ayow I
ny(XL)—A_Z cpl(xL )nYL?

L M=1

nks
e (x]" )i} %} (47)

'-_-_-l

M
[

Fig. 2. The Voronoi cell contains node T. (Chen et al.,
2001)

where, N, is the total number of segments of Voronoi cell
contains node L, x}" and x""' are the two end points of
boundary segment I and 1 is the length of I, n
and njj are, respectively, the x and y components of the

outward surface normal of T}'.
NUMERICAL STUDY

Example 1: Bimaterial bar: Consider a bimaterial bar
(Q = ©,UQ,) as shown in Fig. 3, with length T. = 2 m,
height h = 8 m with material moduli E, and Poisson ratio v,
n €, and E,, v, in €, The material constants were chosen
so that there is no singularity at the edge of the interface;

this condition £t — £z is for plane stress. Hence, B, and v,

[ERV

2

are, respectively, 20 MPa and 0.2 and E, and v, are,
respectively, 40 MPa and 0.4. The interface I'; is located
in the middle of specimen. For mixed boundary problem
withu, = Oaty = 0Oand ¢ = aty =hand no body force,

the exact displacement solution 1s:

o h
E—y Osysz
u (y)=4"_ _ (48)
(o h oh h
—|y-— [+t — —<y<h
E, 2, 2E 2

As shown in Fig. 4 three mesh-free models with 30, 90
and 306 nodes in which the distances between nodes are
1, 0.5 and 0.25 meter respectively, are considered. The
shear and normal stiffness coefficients of nterface are
determined by the following equations:

E*E;
2 (49)

QUEE

Y o
11114t te4444

Q,
E.v

n

pd

Q
E,v

v

PAVAYAYAYAY

Fig. 3: Bimaterial bar

3393



J. Applied Sci., 8 (19): 3389-3397, 2008

A oToTe
glojojo| ¢
4 o 4 9l|lo|o|o| @
glojojeo|e
4 o L glo|0o|o| ¢
glo|ojo| ¢
4 o L [ AR AR-AN
[ AR AR-AN
glojo|o| @
4 o L dlojojo|¢
glo|o|o|¢
4 o L lo0|0|0| ¢
glojojole
4 o 4 glojojole
Plojo|o| @

Fig. 4: Mesh-free models for bimaterial bar

E +E,

1 (A

where, k, and k, are, respectively, the shear and normal
stiffness coefficients and t 1s the thickness of the mterface
layer which is chosen 0.005 m. For integration, both, the
Gauss and the nodal integration method are used. In
Gauss method a 4x16 background mesh with 16 Gauss
points in each block and in nedal method the Voronoi
diagrams shown in Fig. 4 are employed for integration.
Each mtegration point 1s employed as the center of
circular support domain. To guarantee sufficient and
suitable nodes are covered in support domain, the radius
of the support domain is specially devised with a slightly
adjustable value in the program which is automatically
self-tuned such that at least 15 nodes are selected for
each local support domain.

In order to compare the results of mesh-free analysis
with exact solution, the error indicator in energy 1s defined
as follows:

(e - z-:““‘“)T D (e""-e™ ) d0

)ty

i (51)
f(e T De do

Q

where, D is the elastic matrix, €™ and €™ are,
respectively, the exact and the mesh-free (numerical)
strain tensors. The variation of e, with nodes distances is
shown m Fig. 5 for both methods of mtegration. As it 1s
obvious, the results of nodal integration are much better
than the results of Gauss integration and, they are also in
very good agreement with the results of exact solution

(1.e., maximum value of e, for nodal mtegration is 0.00228).

8.0E-37 _m- Gauss integration
=—— Nodal integration
y
rs
/
6.0E-3 K4
/
7’
;
4
4
/
o 4.0E-3- e
S/
2/
/
- "
2.0E-3 e
0.0E+0 r T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Node distance

Fig. 5: Variation of ¢, with the nodes distances

100 kN

50 kN _l

"r O Typel
W Type2
15m O Interface
0.1 m% [
1.5m 0.05 m
0 lm% [
15m
H b
’Iv 2m 4v

Fig. 6: A column of reinforced elastic material; type 1:
material, type 2: two narrow reinforcement strips
with the thickness of 0.1 m; Interface: layers with
thickness of 0.05 m between materials

The convergence of proposed mesh-free method 1s
also confirmed by decreasing the nodal distance and
consequently increasing the accuracy of results.

Example 2: Reinforced column: Tn this example, an elastic
reinforced column is investigated. The dimensions and
boundary conditions of the problem are shown in Fig. 6.
The elastic modulus of material typel is 3 GPa and its
Poisson’s ratio is 0.3. The elastic modulus and Poisson’s
ratio of material type 2 are 60 and 0.25 GPa, respectively.
Interface layers are considered between different
materials. The normal and shear stiffness of the interfaces

are 10" and 10° kN m ™, respectively.
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Fig. 7. Variation of 1 with respect to the number of
elements

Since, there 1s no exact solution for this problem, the
FEM is used to compare the results with the mesh-free
method. Tt is assumed that by increasing the number of
elements the results of the FEM code gets closer to the
exact solution. By increasing the number of elements, a
parameter is calculated as:

QR -
[V
where, ||.|| stands for Euclidean norm Ui, and U, are

the vectors of displacement for the analysis with P
mumber of elements and the analysis with the initial
number of elements, respectively. At any stage of
analysis that, by increasing the number of elements the
value of 1 remains constant, the results of the analysis
can be assumed to be the best results for the finite
element analysis.

In this example, the computer code SIGMAW has
been used as the FEM code. The reason for the selection
of this software is that it has slip elements and the
interface layer can be modeled easily, also the finite
element modeling 13 the most similar to mesh-free
simulation. By mereasing the number of elements and a
comparison of the results with the initial solution, m is
calculated at every stage of the analysis. Figure 7 shows
the variation of 1 with respect to the number of elements.
According to the Fig. 7, the finite element model with 3420
elements gives the best results.

To investigate the convergence of proposed method,
three mesh-free models and therr Voronol diagrams are
assumed (Fig. 8). The first model contains 39 nodes which
are 1 m apart from each other. In the second and third

- — o PO
0lojo|o|a|o|d|

dlolo]ofe o|ofo[oo[ole

4 Q 4 g 0 o o p 0] 0]0 0|0 ] O]
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Q|ojo|o|c|0|o

2le]lele|? SEFEEREEE

] L [ 0 0 p o|ojojo|a|o|a
dlolololé telclolelelele
o]oo]alo[o]e

0]0]0]0]4]| 0|04

21°]°j°|? o[o|o[o[o[o]0]

1 o 9 d|lojJo]ol|e o|ojo|o|o|o|o]
q o o o 3 00000 D|C]4

o[o]e[o]o]o]0]
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Fig. 8 Mesh-free models for reinforced column

9-

€, (%)

0 50 100 150 200
No. of nodes

Fig. 9: Variation of e, with respect to the number of nodes

models the distances between nodes decreased to 0.5 and
0.25 m, respectively and consequently 95 and 225 nodes
are generated. The relative error of displacement between
the mesh-free and the FEM is determined by:

5 (UFE.M MM )2

: (53)
Z (UFEM)

€4

where, ¢, is the relative error of displacement, U™ is the
displacement vector in mesh-free method, U™ is the
displacement vector in FEM. Figure 9 shows the variation
of e; with respect to the distances between nodes. It 1s
obvious that by decreasing the distances between nodes,
the relative error is also decreased. This condition
confirms the convergence of the method.

To mvestigate the effect of the size of support
domain on the accuracy of results, the values of e, are
plotted against different values of the radiuses of support
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Fig. 11: Effect of shape patatheters onthe walue of e,

inFig 10. Due to the insdfficient ropn ber of nodes it the
support domaity, the 39 nodes moodel has no results for the
radinses walue lowet than 1.5, Onthe other hand, as it iz
obwous from Fig 10, anincreasze in the manber of nodes
in the support domain (e, increasing the walue of the
radius of support) does not necessarily inerease the
accuracy of temdts.

The effect of shape parameters on the accuracy of
results isinvestigated by computing e, for wari ous values
of ¢ atd g it 225 nodes model at the constant value of
radiug of support (0.7). The results of analysis are shown
in Fig 11. According to this fimwe, the analysis is moore
sensitive to the walue of ¢ than to the walue of o and for
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the walues of ¢ lower thatt 0.5 or upper than 2, the error
increases significantly.

It the last part of this section the effect of nodal
atratigemert o the aceuracy of results is itrvesti zated.
Hence an irvegalar arr sngement of nodesis considered for
225 nodesmodel. Thizmodel andthe Vorono cell of each
node are showninFig 12, The parameter g, 12 caleulated
for differ ent radinzes of support andthe resdts are shown
inFig 13 for regd o and irvegular nodal arrangemerts A
is obwvious from the Fig 13 the distwbance in nodd
atratigemert deteriorates the accuracy of resdts, bt the
dectease ih acowracy is not to the extent to destroy the

stability of the foposed method.
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CONCLUSION

General conclusions of this study can be expressed
as follows:

¢+ A truly mesh-free method is implemented for the
elastic analysis of discontinues medmm. In this
method, the shape functions are constructed by the
radial basis point interpolation method which is
enriched by polynomial basis terms. The integration
15 also performed by the nodal method to elinmate
the dependency of method to the background mesh.

*  The concept of a linkage element is used for interface
modeling and the calculations are just based on the
displacement of adjacent nodes to the interface layer.
So, there 1s no need of enrichments such as
Lagrangian coefficients or penalty method which
increase the complexity of solution.

*+ Comparison of results between two methods of
mtegration showed that the nodal mtegration unpose
less errors to the norm of energy (which is an
indicator for the numerical error in stress and strain)
and hence the accuracy of proposed method i1s
confirmed.

¢ Suitable choice for the values of shape parameters
and the radius of support guarantees the stability of
method. Thus 1s also true for the wregular arrangement
of nodes.
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