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Abstract: In this research, a new approach to an optimal design of strictly Non-blocking Multistage Recursive
(NMR) interconnection networks and then a CNMR (Cles NMR) is introduced. Tn designing strictly non-
blocking multistage interconnection networks the three factors: number of switching elements or crosspoints
(Cyp), maximum number of crosspoints or switching elements on signal transfer path (P,;) and maximum number
of connection may tolerance while passing from mput to output (3,,), play a significant and unportant role as
far as hardware cost, fault tolerance, scalability and routing complexity. These factors are computed and
displayed through applying mathematical formula and equations of multistage interconnection networlks
crossbar, benes, clos, NMR and CNMR. These factors are indicated to be more optimal values mn proposed of
NMR and CNMR than other multistage interconnection networks with the values being O (NvN), O (log,vN)
and a constant value respectively. Therefore, as a result of decreasing the complexity of internal connections
and the number of crosspoints or switching elements which are needed in signal transfer path, this network can
be used in the multistage intercommection network switches of circuit switching and packet switching with the

various sizes.

Key words: Crosspoints, strictly non-blocking multistage interconnection network, clos, crossbar, benes

INTRODUCTION

Optimizing the strictly non-blocking multistage
interconnection networks has served as one of the
extensive research areas after the introduction and
publication paper of clos (Hwang et al., 2003; Clos, 1953).
These networks have been selected because of their
econormical, regularity, cost effectiveness and technicality
characteristics (Liotopoulos and Logothetis, 2000), as well
as, modularity, scalability, measurability, fault tolerant,
high efficiency, having multi-passage tracking and routing
(Liotopoulos, 2001 ). In Vaez and Lea (2000), a multistage
Banyan architecture was proposed that has much
maximum number of crosspomnts on signal transfer
path and number of crosspoints. Tree-Hypercube
(Almobaideen et al, 2007) and Mesh-Hypercube
(Al-Mahadeen and Omari, 2004), are two types of this
networks used extensively in telephone switching and
optical fiber networks. They are also used for data
communication between memory components with the
least propagation delay in parallel processing systems
and multiprocessors (Ngo, 2003).

A multistage interconnection networle can appear in
various forms such as a strictly non-blocking, wide-sense

non-blocking, rearrangeable non-blocking and blocking
network (Hwang and Liaw, 2000). If a pair of inputs and
outputs can always be connected without any
considerations, the network is called strictly non-
blocking. If a routing mechamsm and modification 1s
required to connect each pair of input and output, the
network is called wide-sense non-blocking. A
rearrangeable non-blocking network refers to the one in
which to connect each mput and output pair, a
modification n the arrangement and rerouting of other
input and output pairs must be applied. If a pair of inputs
and outputs cannot be connected under any conditions,
the network 15 called a blocking network (Yang and Wang,
2005). The dominating conditions in different types of
interconnection networks are discussed in form of
theories in (Chang et al., 2004). The complexity criteria of
multistage interconnection mnetworks (Coppo et af.,
1993; Gragopoulos and Pavlidou, 1997) are determined
and evaluated according to three factors of C, Py
and S,,.

Definition 1: C refers to the number of crosspomts or
Switching Elements (SE,) in multistage interconnection
networlks which is equal to the hardware cost of network.

Corresponding Author: K H. Esmacel Zeinali, Department of Computer Engineering, Islamic Azad University, Qazvin, QIAU,
Iran Tel: +98-912-381-1731 Fax: +98-281-3670122
3453



J. Applied Sci., 8 (19): 3453-3459, 2008

Definition 2: P, refers the maximum number of
crosspoints or SE, on signal transfer path multistage
interconnection networks which indicate the delay
propagation in multistage intercormection networks.

Definition 3: S 15 the maximum number of connections
that may tolerance while passing from input to output
multistage interconnection networks.

The Cy, Py and 5, are equal in Crossbar and Benes
networks and are computed according to O(N*), C(N) and
0 (N), respectively (Salehnamadi and Fesharaldi, 2002).
These factors in clos network are calculated and set as
O (NVN), O (vNyand O (vN), respectively. However, it will
be shown that these factors enjoy an optimal conditions
in NMR and eventually, in CNMR are equal to O (NvN)
and O (log,/N) and a constant value, respectively. The
rest of the study is organized as follows:

First, the abovementioned factors are studied and
computed in crossbar, benes and clos multistage
mtercommection networks. Afterwards, the design of
proposed NMR and CNMR interconnection networks is
discussed and the mentioned factors are analyzed. Then
the evaluation and comparison of the results are
described. Finally, the findings are discussed.

CROSSBAR, BENES AND CLOS MULTISTAGE
INTERCONNECTION NETWORKS

Here, the three factors C,, P, and S,, are studied and
computed 1in crossbar, benes and clos multistage

interconnection networks.

Crossbar mnon-blocking multistage interconnection
network: Crossbar strictly non-blocking multistage
mterconmection network with N number of input and M
number of cutput 15 shown in Fig. 1.

Considering M =N, the three factors of Cy, Py and Sy
are computed as follows:

Cy = N*N = N*
P, = N+N-1 = 2N-1
S, = Min (N, N)-1 = N-1

Benes non-blocking multistage interconnection network:
Figure 2 shows a Benes non-blocking multistage
mterconmection network with N number of input and M
number of output. This network is called Benes N.

The three factors of C,, P, and S, are computed as
follows:

Cyy = N/2* 2% 24 2FN/2¥N/2HN/2% 2% 2 = N 244N
Py = (2+2- 1 HN/2HN/2-1)H2+2-1) = N+5
Sy = Min (2.2)-14+Min(N/2,N/2)-14+Min(2.2)-1 = N/2+1

f —1n 12 B[C™ 1M
§' 2 22 23 [ 77 T 2M
8 4 I I I T
P
= i i i i

] ] ] ]
k_Nl N2 N3 [ ™ T NM
| | | |
. -
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MNo. of output

Fig. 1. Structure of a crossbar network with N input and

M output
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Fig. 2: Structure of a Benes non-blocking multistage
interconnection network with N input and output

First stage Sccond stage Third stage
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Fig. 3: Structure of a Clos three-stage interconnection
network C (n,, r;, m, 1, 1)

Clos non-blocking three-stage interconnection network:
This type of network is shown in Fig. 3 as C (n,, r,, m,
I, 1)

This network consists of N number of input and M
number of output while it has r1 number of n,*m switches
inthe first stage, m number of r*r; switches in the middle
stage and 12 number of m™*n, switches 1 the third stage.
If N equals M, then n, = n, and 1, = r,. Therefore, we will
have in the first stage r number of m*n switches, in the
middle stage m number of r*r switches and in the third
stage r number of m*n switches. In the optimal case,
N =n,n=r and m = 2n-1 will assure the strictly non-
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blocking character of the network (Holmberg, 2008).
Therefore, the three factors of Cy, Py, and Sy are computed
n this type of network as follows:

Cy=r1*C,., Tm*C.+r*C_., = r*n*m+tm*r*r+*m*n =
r*m*(2n+tr)

Cy = n*(2n-1)*(2nn) = 3n**(2n-1) = 3N*(2/N-1)

P, = P, tP.+P ., = (ntm-1)+H(r+r-1{m+n-1) = 2n+2r +
2m-3

P, = 4n+2(2n-1)-3 = 8n-5 = 8/N-5

Sy = S S48, ., = Min(nm)-1+Min(r,r)-1+Min(m n)-1 =
n-1-+r-1+n-1

Sy = 3n-3 = 3(vN-1)

NMR.,; NON-BLOCKING MULTISTAGE
RECURSIVE INTERCONNECTION NETWORK

Having a recursive structure and breaking down a
problem into a group of smaller problems are of great
umportance in extensive and complex network designs.
Therefore, a  strictly  non-blocking — multistage
interconnection network N*M can be designed in a
recursive way through strictly non-blocking multistage
mterconnection networks of N*M/2 or N/2*M or
N/2*¥M72 and by using 1*2 and 2*1 switches. This strictly
non-blocking multistage recursive  interconnection
network N*M 1s named as NMR . In special cases, 1if the
number of mputs equals the number of output (N = M),
the network is called a non-blocking multistage recursive
interconnection network of N or a NMR,;. To prove that
the intercormection multistage network 1s strictly non-
blocking, the following theorems are discussed.

Theorem 1: A strictly non-blocking multistage
interconnection network N*M can be constructed by
shuffling and exchanging the mputs of two strictly non-
blocking multistage interconnection network N*M/2 with
the outputs of N number of 1*2 switches (Fig. 4).

Proof: Let’s assume that [y, = {1, 2,...,N} and
Ouy = {1, 2,..., M} are, respectively, the inputs and
outputs set of a strictly non-blocking multistage
mterconnection network N*M. Also, let’s assume that
Lo = Ly = {1.2,... N}, Oy = {1, 2.0, M/2} and Oy =
M2+ M/242, . MY are, respectively, the inputs and
outputs set of two strictly non-blocking multistage
mterconnection networks of N*M/2. As the outputs of N
number of 1*2 switches connect to the mputs of two
strictly non-blocking multistage interconnection networks
N*M/2 according to a shuffle-exchange pattern, each
mput 1 € Iy, can connect through one of the N switch 1*2
to one of sets [, or Ly, and through one of thetwo

4 3

N*M/2

N No. of intput
A
-
Y

M No. of output

o wem2 [
£ ) network L]
— N
\, /

Fig. 4. Strictly non-blocking multistage recursive
intercomection network N*M constructed from
1*2 switches and N*M/2 networks

| Ly
— 1
N*M2
H network | §

N No. of intput
A
—

M No. of output

- N*Mm .
3 network H
— M [
\ )
Fig. 5: Strictly non-blocking multistage recursive

intercomection network N*M constructed from
N/2*M networks and 2*1 switches

strictly non-blocking multistage interconnection networls
N*M/2 to any output j € Oy non-blocking in any given
time. As a result, any 1 € I, input can connect to each
1 € Oy, output without any blocking.

Theorem 2: A strictly non-blocking multistage
interconnection network N*M can be constructed by
shuffling and exchanging the outputs of two strictly non-
blocking multistage interconnection network N/2*M with
the inputs of M number of 2*1 switches (Fig. 5).

Proof: Let’s assume that L, = {1, 2,..., N} and
Ouy= {1, 2,... M} are, respectively, the inputs and cutputs
set of a strictly non-blocking multistage interconnection
network N*M. Alsc, let’s assume that [, = {1.2,... . N/2},
Liggy= IN/2+1, N/2+2, . N} and O 0= Oy = {1, 2, M}
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Fig. 6 Strictly non-blocking multistage recursive
mtercormection network N*M constructed from
1*2  switches, N/2*M/2 networks and 2*1
switches

are, respectively, the mputs and outputs set of two
strictly non-blocking multistage interconnection networks
of N/2*M. Bach input 1 € I, can connect through one of
the strictly non-blocking multistage interconnection
networks N/2*M to one of the two O,y or O,y In any
given time. On the other hand, as the outputs of the two
strictly non-blocking multistage mterconnection networks
N/2*M are connected to M inputs switches 2*1 in a
shuffle-exchange pattern, any element of O, or O,y can
connect to any output j € Oy, through a 2*1 switch
without any blocking. Therefore, any 1 € Ly, input can
connect to any j € Oy, cutput with no blocking.

Theorem 3: A strictly non-blocking multistage
interconnection network N*M can be constructed by
shuffling and exchanging the inputs of four strictly non-
blocking multistage interconnection network N/2*M/2
with the outputs of N number of 1*2 switches and its
outputs with M switches 2*1 (Fig. 6).

Proof: Considering Theorem 3, in a number of stages and
in a recursive mode this network can be converted into a
strictly non-blocking multistage recursive interconnection
network k*p and simple switches 1*2 and 2*1, assuming
that the values of N/k and M/p are exponents of number
two. In other words, the network NMR,,.,, 18 converted
mto a number of switching elements 1*2 and 2*1 and
number of k*p networlks after some stages.

Definition 4: An NMR,.,; networl, which is converted to
a  strictly  non-blocking  multistage  recursive
interconnection network k*p and simple switching
elements 1*2 and 2*1 after multiple of stages 1s called
NMR yenge

Here, the three criteria Cy, Py and S in NMR e
networks are studied and calculated, using the following
theorems.

These factors (C, Pyand S, are assumed as Cy., Py,
and 8., in strictly non-blocking  multistage
interconnection network of k*p.

Theorem 4: In NMR,.,, strictly non-blocking multistage
recursive interconnection network the value of C., is
equal to:

Cro = K (Mp-1)+HM/P)*Cyy

Proof: According to Theorem 1, this network is
constructed by shuffling and exchanging the mputs of
two strictly non-blocking multistage interconnection
network k*M/2 with the k outputs of 1*2 switches.
Therefore, C.y is equal.

Cor = k+2C 0y = K2k 2C00) = kK+2k+4C 0
Cror = kH2kH4(kH2C, 0000 = k2K 8C
Crogr = K2kt +(2i-1)*1<;+(2i)*ck*p =k*(2-1)H2)*C,

Assuming that M/p = 2' or p = M/2"
Cron = K" (M/p-1HMP)* G

Theorem 5: In NMR,;,, strictly non-blocking multistage
recursive interconnection network the value of Cy., is
equal to:

Cup = PRI O Cr,

Proof: According to Theorem 2, this network 1s
constructed by shuffling and exchanging the outputs of
two strictly non-blocking multistage interconnection
network N/2*p with the p inputs of 2*1 switches.
Therefore, C,., is equal.

Cirp = PF2C000m = PH2(p+H2C00) = pH2p+aC30,
Assuming that N/k = 2 or k = N/2i:
Cy = PHNA-DFNA)*C

Theorem 6: Tn NMR,,, strictly non-blocking multistage
recursive interconnection network which is constructed
by k*p strictly non-blocking multistage interconnection
network and 1*2 and 2*1 simple switching elements, the
value of Cipygrg 18 equal to:

Crrmprp = (Cr TRt p)* N MY (K*p)-(N+M)
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Proof: According to Theorem 4 and Theorem 5:

Chimgerg = N*¥(M/p-1HMP)*Coe,

Crrmarg = N*MP-NHM/P)* (P*Nk-1 +HINA)*Cye)
Crimgerg = N¥M/P-NAN*MA-MHN*M/E*p)*C,
Crrmarg = (Cony Hep)* (N M)/ k™ p)-(N+M)

If in a strictly non-blocking multistage recursive
interconnection network the number of inputs equals the
number of outputs, N= M, called NMR 5., then:

Chygergy = (Coag et p)* (N%(k*p))-2N

And also if in an NMR,; network, strictly non-blocking
multistage interconnection networks with the equal
number of inputs and outputs are used (k = p), then:

Chg = (CAH2ZK*NTK)-2N

Theorem 7: In the network discussed in Theorem 6, the
value of Py, 18 equal to:

Prisnagery = PioHogo((N* MY (k*p))

Proof: Ttis proved in a similar way. However, in a specific
condition if N = M, then:

Py ' Pk*p+10g2(N2/(k*P))
Andif k = p, then:
Py = Pit2log,(N/k)

Theorem 8: In the network discussed in Theorem 6, the
value of Syuygr, 18 equal tor

Sz = St

Proof: To determine the factor Sy in NMRy,
network, it should be noted that switches 1*2 and 2*1
have no effect on Sy, since Min (2, 1)-1 =Min (1, 2)-
1 = 0 and therefore, Sy, 13 dependent only on the
value of this parameter in lk*p strictly non-blocking
multistage interconnection network, then:

Sweueen = S

CNMR,,.,; STRICTLY NON-BLOCKING
MULTISTAGE RECURSIVE INTERCONNECTION
NETWORK

Since m clos three-stage interconmection network C,
has an optimal value and NMR,,, network optimizes the

NMR,,.,, NMR,., NMR,.,
1— —1
il 1 s 1
nl—] ' H ' ' '
r rl
1 1
1— —1
H rl H H m i H 2 H
n1— i H i i )
r rl 2 T

Fig. 7: Clos strictly Non-blocking Multistage Recursive
mterconnection network 1 CNMR,py,

values of Py and S,, we can use an NMR g network in
designing a clos strictly non-blocking three-stage
interconnection network. This type of network 1s called
Clos  strictly Non-blocking Multistage Recursive
interconnection network or CNMR ., which is shown in
Fig. 7.

Considering the following lemmas, we analyze and
compute the three factor C, Py and S, in CNMRy,
network.

Lemma 1: [n CNMR,, network, the value of Cy is equal
to:

Cy = [6(C,+2k)/K*NvN-10N

Proof: In order to calculate the value of C, in CNMR 4,
networl, first it must be calculated in Clos strictly non-
blocking three-stage mterconnection network. It will be as
follows:

Cy = r*C L, m*C . F1*C ., = 2r*C o m*C,.,

In an optimum case of Clos strictly non-blocking
three-stage interconnection network, 1 = n = vN and
mz=2n-1. Furthermore, as the number of inputs and
outputs m any NMRy, mnetwork must be an
exponentiation of two, thenm = 2n.

As aresult, ina Clos strictly non-blocking three-stage
interconnection network we will have:

Cy= 20*C, +20*C . =2n*(C ., +C..)
On the other hand, in CNMR,,,, network, an NMR gy,

network 1s used to calculate the values of C..,, and C
According to Theorem 6:

n*2n n*n.

Cn vty = Cugy = (CH2K)*(n*/k%)-2n
Corangy = (G 2k0)* (2rt/kH-3n

According to the above equation:
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Cy = 20 [(CA 2K (20D -3nH(Ct 2K (nk)-2n]
Cyy = [6(CA42K)/K ] *n’-10n?

And considering n = N, then:

Cy = [6(CAH 2 VI *NYN-10N

Lemma 2: Value of P, in CNMR ; network equals to:
Py= 6log,/N-6log k3P, 12

Proof: As in Lemma 1, in Clos strictly non-blocking three-
stage mnterconnection network factor Py 1s as following:
Pu= Puot PPy = Pt Pt P

On the other hand, based on Theorem 7, in an
NMR g0 network the value of Py, equals:

Py = Pytlog,(N*M/k?)

Poragy = Pongy = Bitlog,(2n’/k’) = Pytlog 2+ogn¥k ) =
2log,(nfl)+P+1

Py = Pitlog,(n/k?) = 2log,(wk+P,

According to the above equations, the value of P in
CNMR,y, network equals:

Py = 2log,(0/l+P+1+2log,(nl)+P +2log,(nl+P+1 =
6log,n-6log,lc+3P,+2

Considering n = +/N, then:
P, = 6log,/N-6log k3P, 12

Lemma 3: In CNMR,, network, the value of S, equals:
Sy =35,

Proof: As inLemma 1 and Lemma 2, in order to calculate
the value of factor Sy in CNMRy,, networks, first the
value of this factor must be calculated in Clos strictly
non-blocking three-stage mterconnection network as
follows:

Sy = St S S0 = St S S

'm*n n*in n¥n In*n

On the other hand, according to Theorem 8, in
NMR yyupy network, the value of S, equals S, Therefore
the value of factor 3, m CNMR,, networks, is calculated
as follows:

Sy = 8,458,485, = 38,

DISCUSSION AND PERFORMANCE
EVALUATION

Here, the proposed NMR and CNMR networks are
compared with Crossbar, Benes and Clos multistage
interconnection networks based on the three factors of
Cy, Pyand Sy

Comparing the criterion of Cg According to the
computed equations, Fig. 8 shows the number of
crosspoints or switching elements (C,) in different
networks.

In other words, according to the different values of N
and k, the obtained results can be shown in Fig. 8.

As it can be shown in Fig. 8, the Cy; in the CINMR
network enjoys a more optimal value compared to the
other types of networks.

Comparing the criterion of Py According to the
computed equations, Fig. 9 shows the maximum number
of crosspoints or switching elements existing in the
transferring path (P,;) in different types of networks.

According to the different values of N and k, the
obtained results can be shown n Fig. 9.

x10°
11;_ Crossbar
9-
& NMR,
7-

J 5 Benes

4-
31 Clos
2 “
1 CNMR,,
0= T T T T T T

1664 128 256 384 512 640 768 896 1024

N

Fig. 8 Comparative graph between C, in NMR, CNMR,
crossbar, benes and clos networks

20004 Crossbar
18004
16004
1400
1200
&% 10004 Benes
200
600+
1
400 Clos
200+
O=tr=a== T T 7 7 ¥ T NMRyyy,
1664 128 256 384 512 640 768 B9 1024NI\IRWJ
N CNN]R,,(,,
CNMR,,

Fig. 9: Comparative graph between P, n NMR, CNMR,
crossbar, benes and clos networks
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1160

1000 Crossbar
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800+
700+
600+
"’r 500 Benes
400
3004
200
160 Clos
L o T T T T 0 7 NMRy,
1664 128 256 384 512 640 768 896 1024NMR,,
N CNMR,,,,
CNMR,,

Fig. 10: Comparative graph between S,; in NMR, CNMR,
Crossbar, Benes and Clos networks

As Fig. 9 shows, the Py in the NMR ;) NMR 4
CNMR,,, and CNMR,,, network enjoys a more optimal
value compared to the other types of networks.

Comparing the criterion of Sy According to the
computed equations, Fig. 10 shows the maximum number
of connections passing from mput to output (S,) in
different types of networks.

According to the different values of N and k, Fig. 10
is shown.

As Fig. 10 shows, the S, m the NMRy;q, NMR 4,
CNMR,,, and CNMR,,, network enjoys a more optimal
value compared to the other types of networks.

CONCLUSION

Three criteria of C,, P, and S, play a important role in
the design of interconnection networks. The optimal
multistage interconnection networks is a network with the
and least value of Cy, Pyand S,;, which 1s distributed with
the mimmum overhead and sumpler routing algorithm. The
obtained results indicate that Crossbar and Benes
networks, though being non-blocking and simple n
routing mechanism, have higher factors of C, Py and Sy,
hence higher cost. A Clos network, on the other hand, has
fewer number of C, but the 5, and P, factors are more
costly. While in the proposed networks NMR and finally
CNMR, the three factors of Cy, P, and S have optimal
values of O (NVN), O(log,/N) and a constant value,
respectively. As results, this networks can be used and
applied extensively in parallel processing systems and
high speed telecommunication networlks.
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