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Abstract: The aim of this study is estimation of monthly pan evaporation using artificial neural networks and
support vector machines. In the current study, the meteorological variables mcluding air temperature, solar
radiation, wind speed, relative humidity and precipitation were considered monthly. The R? of ANNs and SVMs
models were obtained 0.940 and 0.936, respectively; whereas the Mean Scuare Error values (MSE) were 1265.22
and 40.98, respectively. Both ANNs and SVMs approaches work well for the data set used in this region, but

the SVMs techmque works better than the ANNs model.
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INTRODUCTION

There is a continuous exchange of water molecules
between the atmosphere, land and subsurface water,
however, the hydrologic defimtion of evaporation and
evapotranspiration is generally limited to the net rate of
water which is transferred from the land to the
atmosphere. Evaporation and evapotranspiration are the
indicative change of the moisture efficiency for the basin
under study and their quantities can be used to estimate
the streamflow discharge in a river basin. Evaporation is
an element of hydrologic cycle, which can be generally
estimated by the indirect methods such as mass transfer,
energy budget and water budget methods. One of the
direct methods for evaporation measurements is the
pan evaporation. The Pan Evaporation (PE) 15 widely
used to estimate evaporation from the lakes and reservoirs
(Bruton et al, 2000, Finch, 2001, Irmak et al, 2002,
Eslamian and Feizi, 2007). Many researchers have tried
to estimate the evaporation through the indirect
methods using the climatic variables, but some of these
techmques require the data which can not be easily
obtained (Sudheer et al., 2003, Keskin and Terzi, 2006,
Rosenberry et al, 2007, Kisi and Ozturk, 2007). The
evaporation process 1s strongly nonlinear m nature, some
researchers should emphasize the estimation of relatively
accurate evaporation in the research field using modeling
techniques (Lindsey and Farnsworth, 1997; Xu and Singh,
1998; Bruton et al, 2000). Sudheer et al (2002)
mvestigated the prediction of Class A PE using the neural
networks model. They used the neural networks model for
the evaporation process using proper combinations of the
observed climate variables such as temperature, relative

humidity, sunshine duration and wind speed for the
model. Kisi (2006) used proper
combinations of the observed climatic variables such as

neural networks

air temperature, solar radiation, wind speed, pressure and
relative hurmdity for the neuro-fuzzy model to estimate the
daily PE. An uncertainty analysis based on the neural
networks model can be ascribed to not only the modeling
process but also to the limited data used for the training
performance of the neural networks model. Kim and Cho
(2003) performed the uncertamty analysis for the
prediction of the flood stages by the neural networks
model using time-delayed patterns in a small river basin,
Republic of Korea and Kim and Kim (2008) carried out an
uncertainty reduction for flood stage forecasting using
the Elman discrete recurrent newral. The aim of this study
18 estimation of monthly pan evaporation using artificial
neural networks and support vector machines.

MATERIALS AND METHODS

Artificial neural networks: Artificial Neural Networks
(ANNs) have emerged as one of the useful artificial
intelligence concepts used in the various engineering
applications. Due to their massively parallel structure and
ability to leam by example, ANNs can deal with nonlinear
modeling for which an accurate analytical solution 1s
difficult to obtain.

Artificial Neural Networks consist of the large number
of processing elements with their mterconnections. ANNs
are basically parallel computing systems similar to
biological neural networks. They can be characterized by
three components: nodes, weights (connection strength),
an activation (transfer) fimetion.
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ANNs modeling is a nonlinear statistical technicue;
it can be used to solve problems that are not amenable to
conventional statistical and mathematical methods. In the
past few years, there has been constantly increasing
interest in neural networks modeling in different fields of
hydrology engineering.

The basic unit m the artificial neural network 1s the
node. Nodes are comected to each other by links known
as synapses, associated with each synapse there is a
weight factor. Usually neural networks are trained so that
a particular set of inputs produces, as nearly as possible,
a specific set of target outputs.

Feed-Forward Propagation Neural Networks (FFNIN): The
most commonly used ANNs model 1s the two-layer feed-
forward ANNs. In feed-forward propagation neural
networks architecture, there are layers and nodes at each
layer. Each node at input and inner layers receives input
values, processes and passes to the next layer. This
process 1s conducted by weights. Weight 18 the
connection strength between two nodes. The numbers of
neurons in the input layer and the output layer are
determined by the numbers of mput and output
parameters, respectively. In the present study, feed-
forward artificial neural networks are used. The model is
shown in Fig. 1.

Support vector machines: A support vector machine uses
a linear model to separate the sample data through some
nonlinear mapping from the input vectors into the high-
dimensional feature space. The linear model constructed
i the new space can represent a nonlinear decision
boundary in the original space. SVM aims at finding a
special kind of linear model, the so-called optimal
separating hyperplanes. The training points that are
closer to the optimal separating hyperplane are called
support  vectors, which determine the decision
boundaries. In  general
linearly separated, SVM uses the nonlinear machines to
find a hyperplane that mmimizes the number of errors on
the training set. Consider a training set D = {x, v;}"._, with
input vectors X, = {X', ..., 3"} ¢ R"and target labels

cases where the data is not

Y1 € {_1 s + 1 } .
SVM binary classifier satisfies the following
conditions:
y@wTex)+bz2l)  i=L..N (D

where, w represents the weighting vector and b is the
bias. The nonlinear function @ (0): R" - R™ maps the input
vectors mto a high-dimensional feature space. From Eq. 1,
it can be seen that it is possible for multiple solutions to

Fig. 1: Feed-forward artificial neural networks with two
layers

separate training data pomts. From a generalization
perspective, it is the best to choose two bounding
hyperplanes at opposite sides of a separating hyperplane
w! @ (X)) b = 0 with largest margin 2/(lwlf). However,
most of the classification problems are linearly non-
separable cases. Therefore, it is general to introduce slack
variables £, to permit misclassification. Thus, the
optimization problem becomes as follow:

ﬂfjg,g(%wTw +CYE) 2

w(wCED+B2I-E )
S { 530 =1,

N (3)

where, C 1s the penalty parameter of the error term. The
solution of the primal problem 15 obtaned after
constructing the Lagrangian. Then, the primal problem
can be converted into the following QP-problem.

Maxa(eTo:—%o:TQ(x) (4)
g Jisestinl N (5)
- Zix 2% =0

where, ¢, is Lagrange multipliers, Q; = yy,® (3" @ (X).
Due to a large amount of computation, mner product 1s
replaced with kernel function which satisfies Mercer’s
condition, K(x.x) = (X)" @ (X). Finally, we get a nonlinear
decision function m primal space for linearly non-
separable case

v =san(Y | ayk(xx)+b) (6)
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Four common kernel function types of SVMs are given as
follows:

Lmear kernel
Polynomial kernel

kix, x) =% x

Ck(x, %) = (YT x+ 1)
Radial basis kernel : kix, x) = exp (-Y]|x; - x|
Sigmoid kernel s k(x, x) = tanh (YX', x, +1)
where, d, re Nand Y € R are constants.

Modeling for SVM: Model selection and parameter search
play a crucial role in the performance of SVMs. However,
there 1s no general guidance for selection of SVM kernel
function and parameters so far. In general, the Radial
Basis Function (RBF) is suggested for SVMs. The RBF
kernel nonlinearly maps the samples mto the high-
dimensional space, so it can handle nonlinear problem.
Furthermore, the linear kernel is a special case of the RBF.
The sigmoid kernel behaves like the RBF for certain
parameter; however, it 1s not valid under some parameters.
The second reason 18 the number of hyper parameters
which influences the complexity of model selection. The
polynomial has more parameters than the RBF kernel.
Finally, the RBF function has less numerical difficulties.
While RBF kernel values are 0<K; <1, polynomial kernel
value may go to infinity or zero when the degree is large.
Tn addition, polynomial kernel takes a longer time in the
traming stage and is reported to produce worse results
than the RBF kemel in the previous studies (Huang et af.,
2004; Tay and Cao, 2001). The linear kernel SVM has no
parameters to tune except for C. For the nonlinear SVM,
there are additional parameters, the kernel parameters ¢ to
tune. Improper selection of the penalty parameter C and
kernel parameters can cause overfitting or underfitting
problems. Currently, some kinds of parameter search
approach are employed such as cross validation via
parallel grid-search, heuristics search and inference of
model parameters within the Bayesian evidence frameworlk
(Gestel et al ., 2005; Hsu et al., 2004, Min et ol., 2006). For
median-sized problems, cross-validation might be the
most reliable way for model parameter selection. In v-fold
cross-validation, the training set is first divided into v
subsets. In the ith iteration (i = 1,2,. . . , v), the ith set
(validation set) 1s used to estimate the performance of the
classifier tramned on the remaming (v -1) sets (framing set).
The performance is generally evaluated by cost, eg.,
classification accuracy or Mean Square Error (MSE). The
final performance of classifier is evaluated by mean costs
of v folds subsets. In grid-search process, pairs of (C, ¢)
are tried and the one with the best cross-validation
accuracy is picked up. In this study, it is preferred a grid-
search on (C, ¢) using 10- fold cross-validation for the
following reasons. Firstly, the cross-validation procedure

1 3497-3302, 2008

Tried each pair (C,Y)
Dividing training data

Cross
validation
via grid-

Estimate
cost of 3-th set
om v-1 sets

Estimate Estimate
cost of 1-th set|| cost of 2-th get
onv-1 sets on v-1 sets

Estimate performance of classifier

| Training classifier with best (C,Y)|

| Simulation |

Fig. 2: Overall procedure of modeling SVM

can prevent the overfiting problem. Secondly,
computational time to find good parameters by grid-
search 1s not much more than that by the other methods.
Furthermore, the grid-search can be easily parallelized
because each (C, ¢) 1s mdependent. While other methods
are 1terative process, which might be difficult for
parallelization. We use LIBSVM software to conduct
SVMs experiment. The overall procedure of modeling
SVM is shown in Fig. 2.

The adequacy of the ANNs and SVMs evaporation
models were evaluated by estimating the coefficient of
determination (R), defined based on the evaporation
estimation errors as:

pr-fE ()
EI]
Where:
E, = 211 (El(pan) _Ei(mean))z (8)
E= Z; (Ei(pan) - El(simula(ed))2 (9)

where, B, and B . are monthly pan evaporation
measurement and ANNs model evaporation, E...

Mean Absolute Error (MAE): Mean absolute error can be
defined as the average value of the absolute of
differences
evaporation values. A low MAE implies a good model
performance. A perfect match between the calculated and
observed evaporation values would yield MAE = 0. Mean
absolute error can be calculated from the following
equation:

between the calculated and observed
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Table 1: Characteristics of studied regions

Table 2: Statistical analysis of the pan evaporation for the training

BRasin Elevation Latitude Logtitude Record performance
characteristics  (m) o) (E) length Best networks Training Cross validation
Esfahan 1550.4 32°37 51040 1992-2005 Epoch No. 2000 2000
Ardestan 1252.4 33923 52°23' 1984-2005 Minimum MSE 0.005494 0.005126
Kashan 982.3 33059 51°27 1987-2005 Final MSE 0.0054946 0.005126
Naein 1549.0 32°51" 53°8' 1992-2005
Natanz 1684.9 33°32 51°54' 1992-2005 Table 3: Statistical analysis of the pan evaporation for testing performance
Performance PE
len . _ (1 0) MSE 1265.220
MAE=—3%" | 7,00 -v(x) | NMSE 0.061
n MAE 27.180
Min. Abs. Error 0.030
Root Mean Square Error (RMSE): Root mean square ;{ax' Abs. Error 133- gzllg

error is a measure of the hydrologic model. RMSE can be
defined as the square root of the average value of the
squares of the differences between the calculated and
observed evaporation values. A low RMSE 1implies good
model performance. A perfect match between the
calculated and observed evaporation values would yield
RMSE = 0. Root mean square error can be calculated from
the following Eq. 11.

RMSE \/ﬁz (5.0 -y (a1

Study region and data: Esfahan is located at 42°30' to
30°34' N latitude and 40°49' to 30°55' E longitude.
Meteorological data
meteorological stations that were located in east of
Esfahan Province. These stations are Esfahan, Kashan,
Ardestan, Naein and Natanz. Meteorological parameters

were obtained from five

included air temperature, relative humidity, solar radiation,
wind speed and precipitation. Class A pan evaporation
values used as output in the ANNs and SVMs models are
measured monthly. The data used to develop ANNs and
SVMs models included 670 monthly observations.
Characteristics of the studied region and record length
shown in Table 1.

RESULTS AND DISCUSSION

Artificial neural network: In this study, ANNs model
was performed with neuro solution software. Sixty percent
of the total data was randomized for as trainmg data, 20%
of the total data was randomized as testing performance
and 20% was selected for cross validation performance.
ANNs evaporation model with five input variables
(air temperature, relative humidity, solar radiation,
precipitation and wind speed) are considered. For ANNs
model, the number of hidden layers considered after trial
and cross validation 1s two layers and number of ludden
neurons 1s obtamed five neurons and the used functions
for hidden and output layers are log sigmoid.

Table 4: The sensitivity of the pan evaporation to the five meteorological

variables
Sensitivity PE
Temperature 8.4770
Humidity 0.3676
Precipitation -2.4860
Wind speed 10.2860
Solar radiation 3.2510

The training performance: In neuro solution software,
60% of the total data was randomized for training data.
This software does not need for standardized input layer
and training data was used ordinary in this performance.
According to Table 2, the best network with 2000 epoch
has MSE = 0.0055,

The test performance: The testing performance applied a
cross-validation method m order to overcome the over
fitting data. The cross-validate method is not to train all of
the training data until MSE was reached to the minimum
amount, but 18 to cross-validate with the testing data at
the end of each performance. The correlation coefficient
and MSE values were used to judge the performance of
ANNSs for data. Actual and predicted values of efficiency
were also plotted. Table 3 shows that for cross validation,
the values of MSE, MAE and R? were 1265.22, 27.18 and
0.940, respectively.

Sensitivity of the pan evaporation to meteorological
variables: From Table 4, 1t 13 clear that increasing in wind
speed, air temperature, solar radiation and solar radiation
are sigmficant at 10.286, 8.477, 0.368 and 3.251 level, while
decreasing precipitation 1s significant at the 2.486 level.
Wind speed and air temperature are the most sensitive
variables.

Support vector machines: The R? and MSE values are
used to judge the performance of SVMs for the data set.
One advantage of using SVMs is the use of a quadratic
optimization, which provides a global minimum in
comparison with the local minima with back propagation
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rienral nebar otk due to the use of non-linear optitvizati on,
Eoth AHH s and 3V Ms were applied for caloulating the B
and LIZE using crossvalidation and a percertage split
method for the impat data set comprising differerd
attribites. In this study, the F' and MSE -alues were
obtained 0936 and 4092, respectively, Figure 3 and4
ate shown the actusl and predicted waues of pan
evaporation by ANNz and 3V 5, that showed fitting of
measured and predicted walues of pan evaporation by
AHNM g and 3V s

COMCLUSION

Comparison of the B* and mean squared error values
suggests an improved performance by both AWN s and
SV Lz A possible reason of the better performance by
both ANz and 3V Mz may be irterpreted that they have
a larger munber of user-defined paramieters. Based on
thiz study, both AWNz and 3V approaches work
well for the data set used. The computation cost imvolved
with BVMs is significanfly smaller than the ANNs
algorithin, Base ot the walues of the moean square
errot, the BV z approach works better than the AMNNa
model.
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