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Abstract: This study is devoted to studying the (2+1)-dimensional ZK-BBM (Zakharov-Kuznetsov-Benjamin-
Bona-Mahony) wave equation in an analytical solution. The analysis is based on the implementation a new
method, called Exp-function method. The obtained results from the proposed approximate solution have been
verified with those obtained by the extended tanh method. It shows that the obtained results of these methods
are the same; while Exp-function method, with the help of symbolic computation, provides a powerful
mathematical tool for solving nonlinear partial differential equations of engineering problems in the terms of

accuracy and efficiency.
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INTRODUCTION

In the recent decade, the study of nonlinear
partial differential equations (NLEEs) modeling physical
phenomena, has become an important toll. Seeking exact
solutions for (NLEEs) has long been one of the central
themes of perpetual nterest in Mathematics and Physics.
These solutions may well describe various phenomena in
physics and other fields and thus may give more insight
mto the physical aspects of the problems. In this aspect,
nonlinear wave equations in mathematical physics play a
major role in various fields, such as plasma physics,
fluid  mechamcs, optical fibers, solid state physics,
optical fibers, chemical kinetics and geochemistry
(Bemyamin et al, 1972; Ablowitz and Clarkson, 1991,
Rosenau and Hyman, 1993; Hereman et al, 1985,
Kadomtsev and Petviashvili, 1970, Zakharov and
Kuznestov, 1974, Li et al, 2003, Malfliet, 1992,
Malfliet and Hereman, 1996, Monro and Parkes, 1999). But
it is well known that except a limited number most of them
do not have any precise analytical solutions. So, to solve
these nonlinear equations other methods are needed,
however, i recent decades numerical methods have well
used to analysis the nonlinear partial equations such as
(24+1)-dimensional ZK-BBM (Benjamin-Bona-Mahony)
equation. Long with the numerical methods, the semi-
exact analytical methods have been improved, for
instance inverse scattering method (Ablowitz and
Clarkson, 1991), Hirota’s bilinear method (Hirota, 1971),

homogenous balance method (Wang, 1996), homotopy
perturbation method (He, 2005; Ganji and Rafel, 2006;
Tolou et al., 2007), vanational iteration method (He, 1999,
2000, 2004; Ganji and Rafei, 2006), asymptotic methods
(He, 2006), non-perturbative methods (He, 2006), tanh-
function methed (Zayed et al, 2004; Wazwaz, 2007,
Zheang and Xia, 2006a; Zhang, 2007b), algebraic method
(Hu, 2003, Zhang and Xia, 2006b), Tacobi elliptic function
expansion method (Liu et al., 2001; Zhao et al., 2006),
F-expansion method (Zhang, 2006, 2007a) and so on.
Recently, He and Wu (2006) proposed a straightforward
and concise method, called Exp-function method, to
obtam generalized solitonary solutions and periodic
solutions of NLEEs. The solution procedure of this
method, by the help of Matlab or Mathematica, 13 of utter
simplicity and this method can be easily extended to all
kinds of NLEEs.

In our previous study we unplemented the HPM and
VIM to BBMs equations (Fakhari et af., 2007, Tari and
Ganji, 2007). Those show the applicability, accuracy and
finally efficiency of both VIM and HPM. The Benjamin-
Bona-Mahony equation (Benjamin ef al., 1972) described
by the following:

utu -, = 0 (1)
This equation has been proposed as a model for

propagation of long waves where nonlinear dispersion is
incorporated.
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Also we implemented HPM to the fifth-order
Korteweg de Vries (KdV) and generalized Hirota-Satsuma
coupled KdV equations (Rafei and Ganyi, 2006) which
again approve the accuracy and efficiency of proposed
method to this type of equation. The spatially one-
dimensional KdV equation;

utauu,-u,, =0 (2)
is a model that governs the one-dimensional propagation
of small amplitude, weakly dispersive waves and plays a
major role in the solitons concepts. The term soliton
coined by Zabusky and Kruskal (He, 2006) who found
particle like waves which retained their shapes and
The balance between the
nonlinear convection term uux and the dispersion effect
term 1, in the KdV Eq. 2 gives rise to solitons. The
K (n, n) equation (Rosenau and Hyman, 1993):

velocities after collisions.

ua (U -u', = 0 (3)

Where, in addition to the nonlinear convection term
(u"),, the dispersion effect term (v, 1s genunely
nonlimear as well. The delicate interaction between the
convection with the genuine nonlinear dispersion
generates solitary waves with exact compact support that
are termed compactons. Compactons are defined as
solitons with finite wavelengths. Compactons are compact
solutions that are usually expressed by powers of
trigonometric functions sine and cosine. Unlike soliton
that narrows as the amplitude increases, the compacton’s
width 1s independent of the amplitude.

In modern physics, a suffix-on is used to indicate the
particle property (Wang, 1996), for example phonon,
photon, peakon, soliton and compacton. One of the well-
known two-dimensional generalizations of the KdV
eqtiations is developed, namely the Zalkharov-Kuznetsov
(ZK) (1974) given by:

uAauu+ (Vu), = 0 )]

Where, V? = &*x+ 3*y+0% is the isotropic Laplacian
(Zakharov and Kuznetsov, 1974; Li ef ai., 2003).

The present letter 1s motivated by the desire to extend
these works via implementation the Exp-function method
to a modified form of BBMs equations formulated in the
ZK sense by examination (2+1) dimensional ZK-BBM
problem.

Consider the model describe by the generalized of the
ZK-BBM equation (Wazwaz, 2007).

ututa W)+ b(utu,), =0 5
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To clarify the validity of proposed method, the
obtained solutions are compared with their corresponding
tanh methods.

MATERIALS AND METHODS

TImplementation the Exp-function method: In this study,
we apply the Exp-function method (He and Wu, 2006)
for the solution of the ZK-BBM equations (Eq. 5)
(Wazwaz, 2007).

Using the transformation

u=u(n), m = kx+qy+wt, (6)
Where, k and w are constants. Eq. 5 becomes:
wu+ku3akuu+ b (ki u™tkqu™) =0 {7

Where, prime denotes the differential with respect to
1. The Exp-function method is based on the assumption
that traveling wave solution can be expressed in the
following form (He and Wu, 2006):

) Z:?Canexp(nn) (8)
() Zi:_Pbm exp{mn)

Where, ¢, d, p and g are positive integers which are
unknown to be further determined, a, and b, are unknown
constants. Equation 7 can be re-written 1n an alternative
form (He and Wu, 2006) as follows:

a,exp(en)+...+a, exp(—dn)
a, exp(pn )+ ..+ a_ exp(—q)

u(n) = 9

In order to determine the values of ¢ and p, we
balance the linear term of highest order in Eq. 7 with the
highest order nonlinear term (He and Wu, 2006). By
calculation, obtained:

S exp[{(Tp+e)n]+ ..
¢, exp[8pn]+...

(10)

and

v & exp[(p+3c)n]+.. s exp| (Sp+3¢)m]+... 1)
¢, exp[4pn]+ ... ¢, exp[8pn]+...

Where, ¢, are determined coefficients only for
simplicity. Balancing highest order of Exp-Function in
Eq. 10 and 11 we have:

7pte =2 (3ptc) (12)

This leads to the following result:
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p=c (13)

Similarly, to determine the values of d and g, we
balance the linear term of lowest order in Eq. 7 with the
lowest order nenlinear term.

o dop] (7 +d)n] (14)
.t d,exp[-8qn]

u

and

L et d, exp[—(q+3d)q] _ et d, exp[—(5q+d)n] (15)
ot d, exp[(—élq)n] ot d, exp[(—Sq)n]

Where, d, are determined coefficients only for
simplicity. Balancing lowest order of Exp-Function in
Eq. 14 and 15:

-(7gtd) = -2 (3g+d) (16)

which leads
q=d (a7
Case 1: p=c=1,d=1: We can freely choose the values
of ¢ and d, but we illustrate that the final solution does
not strongly depend upon the choice of values ¢ and d

(He and Wu, 2006). By settingp=c=1andq=d =1 the
trial function Eq. 9 becomes:

a,exp(n)+a; +a_ exp(-n)
)= exp(m) + b, +b_ exp(-n) (18

Substituting Eq. 18 into 7 we have:

%[0736’3“ +CLe M C e+ CrCen + Che’ C3c3"] -0, (19

Where:
A= (en +b,+b e )4 and C, are as below:

2kab , + 2ka,b] +8bwlk’a b | —4bek’a b — 200 — 2ka b,
—2ea,b, + 6aka’b_, - 4bkq’a, b} + 4bkq®a b, — 2ka_
+4beal*a b, — 6aka, al + Gakala b, +8bkq’a,b | —8bek’a |
—8bkq’a_, —6aka’a | + 2ca, b + 2ca,b =0

~bek’a, + 3aka’d, + ka,b, + ma,b, — ca, — bkq'a,
+be>k’a, b, + bkq’a, b, — 3aka’a, —ka, =0

—ka_b; +k’ab_bl + ca b_bl +3aka’b_, —15aka’a,
—6ka_bb  +5ka b’ b, + Sca b’ — 6ca bbb, + @a b’
+ka,b* — wa_b; —bek’a by + besk’ab bl + bkqagb bi
-bkg*a_b; - 23be k’a b?, - 23bkqg’a b’ +18bek’a_b_b,
+5bek’a, byb?, + Sbkq'a, b b?, +18bkq’a_ja b, - Jaka’a b,
+18aka,a;a b | —3akaja b, =0

~4bkq*a,b’ b, +8bkq’a, b’ + 2cma b’ b, + 2ka b’ b,

—4be k*ab* b, + 2ka,b’, —8bkg'a b? —2ea bib
+4bkq’a_b_b? — 2ka_blb_, - 2ka_b® +6aka’ab_
—éaka’ a b, +8bok'a b’ - 6aka’, —2wa b’
—8bwk’a_ b’ + 6aka_alb_, +2ma, b’ + dbewk’a_b_bi=0

~bkg'a b’ b, +bek’a b’ —ea bb’, —bak’a b’ b,
+3aka’ b b_, —3aka’ b, + bkq’a b’ —ka_b,b? +wa b’
+kab®, =0

6wabb_ +6kab_ b, +kabl - wab_ +®ab]-kabl
—ablbe ks b] + bkq'a, bl — bkq*a bl - Sea b,
—beok*ayb? — 3aka; — Ska b, + 23bkqg’ab | + 23bak’agb
+3aka’a b, - Sbkq’a_ b, — Sbek*a_ b, —18bek’a bb_,
+15aka’a b  —18akaaa  —18bkq'a bb  +3akala b, =0

~4ea_b | —4ka b —32bek’a b’ +32bkq’a b,
+32bek’a b —12aka a} - 4ka b} —4ca b

+4wa, bib_, —32bkq’a b’ + 4bek’a bib_, + 4bkq’a b_bi
—4bek?a_b? - 4bkqla_b + 4ka, b®, + 4ea, b?, +12aka’a_b_
+12aka alb  +4ka blb  —12aka’a =0

Solving the system of algebraic equations, we obtain
the following results:

1
a, :—§a1b§ a,=0 b, =b, b, —§b§
20
_ lk+o _l kto (20)
2 kal 2k(ek +q')

Where, a,, by, and k are free parameters.

Substituting these results into Eq. 18, we obtain the
following exact solution.

kot + g+t 1 bze—[loc+qy+mt)
1

ale( +-a,
. 8
e(kx+qy+mt) + bu + ébée—(kxmymt) (21 )
8a,b,

=a, -

Se[lo:+qy+m) +8b0 +b§e—(kx+qy+mt)
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When k is an imaginary number, the obtained solitary
solution can be converted i to periodic solution (He and
Wu, 2006). We write k = ik, g = ig and @ = iw using the
transformation

ilerayrat) _ (o [kx +qy + mt] +isin [kX +qy + mt] (22)
and
7Y _ cos[kx + qy + wt] - isin[kx + qy + ot ] (23)
Then Eq. 21 becomes
. 8a,b,
1 (3+b§)cos(kx +qy+ot)+8b, + (8*b§)5il‘l (kx + qy+ cat)
(24)

If we search for a periodic solution or compact
solution, the imagmary part in Eq. (24) must be zero, that
requires:

8-b, =0 (25
From Eq. 25 we obtain
b, = 247 (26)
Substituting Eq. 26 in Eq. 24 yields two periodic
solutions:
. 1632s, @7
' 16cos(kx+qy+mt)+16\/5
and
- 1692 (28)

16cos(kx +qy+oat)—16\/§

It can be seen good approximation with the extended
tanh method (Wazwaz, 2007).

Case 2: p=c =2, q = d =2 As mentioned above the
values of ¢ and d can be freely chosen, we setp=c=2
and q = d = 2 then the tnial function, Eq. 9 becomes:

u(n)- a,exp(2n) +a, exp(n)+a, +a_ exp(-n)+a_ exp(-2n)
1 b, exp(-2n)+ b, exp(n)+ b, + b_ exp(—1) + b_, exp(-2n)

(29)
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There are some free parameters in Eq. 29, we set
b, =1, b, = 0 and b_, = 0 for sumplicity, then the tnal
function, Eq. (29) 1s simplified as follows:

4 exp(2n)+a, exp(n)+a, +a_exp(-n)+a_ exp(-2n) (30)
exp(—2n)+b, +b_, exp(-2m)

u(n)

By the manipulation as illustrated above, we obtain

Ip2 2 IRl 2
_lagbi—a _labi-a

2= 4 1, a4y =4, bu =bu b-z 4 ﬂé
_ k+20) :1 k+® =0 a, -0
ka! 2k (ek + q*)
(31)

Substituting Eq. 31 in Eq. 30 yields to the following
solution

21,2 2
e o 18] g
u= SR (32)
2liec+ayrot) 1 (agbE —ﬂ;) -2 (ke +ogrot)
eI b LT
4 a;

It can be proved that the obtained solution (Eq. 29) 1s
equivalent to the solution obtained in case 1.

Case 3: p=c =2, q=d=1: Weconsider the case
p=c=2andq=d=1, Eq 9 can be expressed as:

u(n)= a, exp(2m) +a, exp(n) +a, + a_ exp(-)

- (33)
b, exp(—2n)+b, exp(n)+b, +b_ exp(-n)

There are some free parameters in Eq. 33 we set
b, = 1 for smplicity, by the same mampulation as
illustrated above we obtained:

1

a, =1, a :—gz—; a, =4

2
T (34)
2al Sa)

2 k

a:—mzk _ Her 2 y,=const (i=12)

ka’ k(ek+q')

By Substituting Eq. 34 in Eq. 33 we obtained a
solution that easily proved that this equation is same with
that obtained in case 1.

CONCLUSION

In this survey, our objective has been to show that
exact solution of the (2+1)-dimensional 7ZK-BBM
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(Benjamin-Bona-Mahony) equation can be obtained by
Exp-Function method. The method 1s used to finding the
traveling wave solutions of ZK-BBM nonlinear partial
differential equation. We also found new exact solution
that is not obtained by other existed method. Furthermore,
the method leads to both the generalized solitary
solutions and periedic solutions. The results obtained
from proposed method have been compared and verified
with those obtained by the extended tanh method. The
results revealed that Exp-function method is powerful
mathematical tool for solutions of nonlinear partial
differential equations in the terms of accuracy and
efficiency while systems of nonlinear partial differential
equations having wide applications in engineering.
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