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Abstract: In this study, a method for dynamic modeling of a five-link seven degree of freedom (DOF) biped
robot has been developed. The method, which 15 based on neural networks, considerably reduces the
complexities in solving the dynamic model equations of the biped robot. Seven neural networks have been
synthesized in order for modeling of the seven DOF of the robot being the coordinates of the torso center of
mass, the torso angle and the left and right knee and thigh angles. In order for generating data for neural
network training, the robot dynamics while walking on a non-smooth two-dimensional surface has been has
been considered. The input sets of the trained neural networks consist of four applied torques in addition to
the last sample time value of each output. These fed-back outputs not only account for the system second order
dynamics but also help on compensating the surface non-smoothness very well. Evaluation results are
representative of high performance and much lower complexity of the trained networks with respect to the

nonlinear second order robot dynamics model.

Key words: Biped robot, dynamic modeling, neural network, surface model, center of mass

INTRODUCTION

With the recent development of advanced humanoid
robots, legged robots have become one of the main topics
m advanced robotic research (Hitomi ef af., 2006,
Mousavi et al., 2008; Mousavi et al., 2007). Projects
addressing legged robots usually study the stability and
mobility of these mechamsms mn a range of environmental
conditions for applications where wheeled robots are
unsuitable. One of the main interests in this area is getting
the robot to remain stable as it walks m a straight line,
especially when the walking surface is not necessarily
smooth (Lope et al.,, 2003). There are two approaches for
achieving this purpose. The first, called static balance,
aims to maintain the projection of the Center of Masses
(COM) of the robot inside the area mnscribed by the feet
that are in contact with the ground. The COM represents
the unique point in an object or system which can be used
to describe the system's response to external forces and
torques. The second method, also referred to as dynamic
balance, uses the Zero Moment Point (ZMP), which 1s
defined as the point on the ground around which the sum
of all the moments of the active forces equal zero (Lope,
2003; Vukobratovic et al., 1990). If the ZMP 1s within the
convex hull of all contact points between the feet and the
ground, the biped robot is stable and will not fall over
(Huang et al., 2001; Furuta et al., 2001). Due to their
multivariable, high order, nonlinear and time-variant

dynamics modeling and control of biped robots 1s not a
straight forward task and so is an open problem, yet
(Mousavi ef al., 2008; Mousavi and Bagheri, 2007). While
precise control strategies need to employ the robot
dynamics in on line control strategies (Kong ef al., 2008,
Zhou and Meng, 2003; Hurmuzlu et al, 2004
Beigzadeh et al., 2008; Hitomi et al., 2006), solving highly
complex and nonlinear dynamics equations of the biped
robot model 13 not computationally-efficient (Kong ef af.,
2008). On the other hand, solving the control problems
regardless of the robot dynamics may degrade the robot
control performance, especially when there exist some
kinds of disturbances such as ground surface un-
smoothness.

Based on the above discussions, development of an
easy-to-use dynamic model which considers both the
nonlinear properties of the biped robot as well as surface
model seems very helpful. Therefore, in this study,
dynamic modeling of a five-link robot in effect of joint
torques and surface non-smoothness has been
considered. Regarding the high performance of neural
networks in modeling nonlinear complex systems
behavior, here they have been employed as the modeling
tool. For this purpose, proper model mputs has been
chosen via a systematic approach and then the
underlying neural networks for modeling the position of
the center of mass of the torso and the robot joint angles
being the torso angle and the left and right knee and thigh
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angles has been trained. Tn order for generating data for
neural network training, the robot dynamics while walking
on a non-smooth two-dimensional surface has been has
been considered. The input sets of the tramned neural
networks consist of four applied torques in addition to the
last sample time value of each output. These fed-back
outputs not only account for the system second order
dynamics but also help on compensating the surface non-
smoothness very well. So, the objective of the study is
the development of method for dynamic modeling who 1s
representative of lhigh performance and much lower
complexity of the trained networks with respect to the
nonlinear second order robot dynamics model.

MATERIALS AND METHODS

A. Five-Link Biped Robot Dynamic Model

Biped robot dynamics: The biped robot considered in this
study is a two-dimensional biped consists of five links
which are connected with frictionless joints (Haavisto and
Hydtyniemi, 2004). The identical legs have knee joints
between the shank and thigh parts and one rigid body
forms the torso. Figure la shows the model structure and
variables used. As the system can move freely m the
x-y-plane and contains five links, it has seven degrees of
freedom. The corresponding seven coordinates are
selected according to Fig. 1a as:

q=[XD v, & B By Y YR]T (1)

The coordinates (x,, v,) stands for the position of the
center of mass of the torso and the rest of the coordinates
describe the joint angles as:

LI . Torso angle
¢ Poand p; : Leftandright thigh angles
¢ v andyy : Leftandright knee angles

The link lengths are denoted as (1;, 1, 1,) and masses
as (m,, m,, m,). The centers of mass of the links are located
at the distances (1;, r;, 1,) from the corresponding joints.
The model is actuated with four moments:

M= [M,, Mg M,, MRZ]T 2

Two of them acting between the torso and both
thighs and two at the knee jomts (Fig. 1b). The walking
surface 1s modeled using external forces:

F - [FLX FRy FLX FRy]T (3)

that affect the both leg tips. When the leg should touch
the ground, the corresponding forces are switched on to
support the leg. As the leg rises, the forces are zeroed.

X-axis

coordinates

Fig. 1: (a) Biped model and constants,
(X5, ¥,): the position of the center of mass of the
torso, ¢ torso angle, B and Py left and right thigh
angles, v, and vy left and right knee angles,(1,, 1,,
1,): the link lengths, (m,, m,, m,): the link masses
and (r,, 1}, r,): the distances of centers of mass of
the links from the corresponding joints and (b)
external forces, M = [M,, My, M, M_,|": actuating
moments and F = [F, Fo F, Fp " walking surface
external forces (Haavisto and Hyotyniemi, 2004)

Using Lagrangian mechanics, the dynamic equations for
the biped system can be derived as:

Alq)q=b(q.q.M.F) (4)

Here, A(q) ¢ $®"7 is the inertia matrix and
b(q.4,M,F) e ®™* is a vector containing the right hand sides
of the seven partial differential equations. The closed form
formulas for both A and b are listed in Appendix A
(Haavisto and Hyotyniemi, 2004).

Ground contact forces model: The ground surface is
modeled as a set of points (x, y) that are connected with
straight lines. Figure 2 shows a sketch of one leg in touch
with the ground. A new coordinate system (x’, y*) is now
defined so that its origin is the next ground point to the
negative x direction of the leg tip. The axis x” is aligned
tangential to the ground swface and y* equals the surface
normal direction as shown in Fig. 2. When the leg tip
touches the ground at the point (x3.0), normal and
tangential forces are applied to it. The normal force
dynamic is calculated as (Haavisto and Hyotyniemi, 2004):

F, = -k v5 —b ¥, (5

where, Yo is the current (negative) leg tip in y’ coordinate,
k, the ground normal elastic constant and b, the normal
damping ratio. Additionally the normal force is limited to
positive values to prevent the leg sticking to the ground.
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Fig. 2: The leg tip touches the ground i point (%5 O
(grey) and penetrates it. The current position of the
leg tip is (%5 ¥5) (black). F, and F, are the
tangential and normal touching  forces,
respectively. Note that the penetration is
exaggerated for clarity (Haavisto and Hydtyniemi,
2004)

In the tangential direction the force F, acting is
caused by friction. The static friction force is determined
similar to the normal force calculation (Haavisto and
Hydtyniemi, 2004). Now the nomimal value, however, 1s
the initial touching point X;:

F,=—k, (x}, -x,)— b %/, (6)

where, k, and b, are the ground tangential properties. If
the required force exceeds the maximum static friction
force

Ft,max = Han (7)
1, being the static friction coefficient, the leg starts to
slide. In that case the tangential force is:

Fo= (8)

where, , is the kinetic friction coefficient. The stored
value of X; is contimuously set to the corresponding leg
tip ¥z position during the sliding. After the normal and
tangential forces are computed, they need to be projected
to the original coordinate system (x, y) to attain the
dynamic model mput forces of Eq. 3.

B. Modeling with Artificial Neural Networks (ANN’s):
Regarding the high performance of neural networks in
modeling nonlinear complex systems behavior, here we
have employed them as our modeling tool. Here, we
shortly review the basics of neural networks and then
switch to the developed models and their performance.

Fig. 3: (a) Internal structure of a neuron and (b) Example
of a three-layered feed forward neural network

The fundamentals of ANNs: Neural networks are highly
interconnected simple processing units designed in a way
to model how the human brain performs particular task
(Cataldo et al., 2007; Haykin, 1999). An ANN is composed
of a number of mterconnected neurons which are
arranged in a few layers, called input, lidden and output
layers. The output of each node is a weighted sum of its
inputs added to a constant term called bias (Fig. 3).

Modeling with neural networks involves two steps: These
two steps are Training and testing. In training, a proper
ANN is constructed via some different stages. At first,
proper mputs should be selected. This stage 1s the most
important stage which 15 usually done through nput-
output linear/nonlinear correlation analyses and probably
the experiment of the ANN developer about the
underlying system. The selected mputs and the output of
the network are then normalized to feed them to the
networlk. The next stage is to choose the numbers of
layers and nodes of each layer as well as the transfer
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functions of the each neuron. This stage is normally a trial
and error stages which 1s repeated until the best
performance of network is achieved. Final stage in training
includes in learning of the chosen network. A learning
process in the neural network constructs an input—output
mapping, adjusting the weights and biases at each
iteration based on the minimization of some error measure
between the produced and the deswed output. Thus,
learning entails an optimization process. There are
different learning algorithms in the literature (Almeida,
1997). One of most efficient learmng algorithms is the well-
known Levenberg-Marquardt algorithm. This algorithm is
actually a modified Gauss-Newton method that converges
10-100 times faster than the well-known back propagation
algorithm. Newton’s update for minimizing a function
V(X) with respect to the vector * is given by:

Ax=-[vVE ] VVE) 9
where, V'V(%) is the Hessian matrix and YV(X) is the

gradient vector. Assuming that V() is the sum of square
errors, given by:

Vi(R) = ZN', (%) (19)
Then:
VV() = 2T (R)e(x) (11)

VEV(R) = 2N (R)I(E) + 28(%)

where, ¢(X) is the error vector and J(X) is the Jacobian
matrix given by:

. O (R) .
1, (8= o i=1..,

]

where, N 1s the number of data in traimng set and n 1s the
dimension of *. S(X} is:

S(%) = i €, (R)Vie, (D)

Neglecting the second-order derivatives of the error
vector (i.e., assuming that 3(X)=0) and substituting the
resulting Hessian matrix into Eq. 11 and 9 we obtain the
Gauss-Newton update, as:

Ax = [IT@I®] F®e) (12)

The advantage of Gauss Newton over the standard
Newton’s method 1 that it does not require calculation of

second-order derivatives. Nevertheless, the matrix
F(®IE) may not be invertible. This is overcome with the
Levenberg-Marquardt algorithm, which comsists in

finding the update given by:
A= [ FEIE+pI] T®e®) (13)

where, parameter p 1s conveniently modified during the
algorithm iterations. When p 1s very small or rll the
Levenberg-Marquardt algorithm becomes Gauss-Newton,
which should provide faster convergence, while for higher
| values, when the first term within square brackets of
Eq. (13) 13 negligible with respect to the second term
within square brackets, the algorithm becomes steepest
descent (Cataldo ef al., 2007; Saimi and Soni, 2002).

Evaluation indices: As stated earlier, for the evaluation of
the ANN’s performance, a testing set containing new
input data that it has never seen before is applied to the
trammed network. The performance of the trained network
15 then evaluated by comparison of the network output
with its actual value. There are some statistical evaluation
indices which are commonly used to judge about an
ANN’s performance. Let A, and P, be the actual and
network output, respectively, related to ith input vector,
where N 1s the number of pomts n the testing set. Then
the evaluation indices are defined as (Pao, 2007):

*  Root Mean Square Error (RMSE):

’Z(P, -A) (14)
RMSE = ‘:‘T

s Mean Absolute Error (MAE):

-y E -4 (15)
N

¢ Mean Absolute Percentage Error (MAPE):

4P -A
MaPE - -3 AL 00 (16)
NZ A

¢+ Modified mean absolute percentage  error
(Modified MAPE): In the relationship in Eq. 16 if the
actual value is large and its prediction becomes small,
the computed relative error will become near 100%.
On the other hand if the actual value 15 small, the
relative error may become very large even though the
difference is small. In this case, the relationship in
Eq. 16 is modified in this manner. At first, the average
of actual output values is computed as:
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and then, the Modified MAPE will be computed as
(Shahidehpour et al., 2002):

] 1 LP -4
Modified MAPE =—3"H——1100%
NS Av

an

RESULTS AND DISCUSSION

Supported by the above mentioned dynamics model
of the biped robot modeling with artificial neural networks
methodology, in this section, the dynamics of the robot
center of mass and the robot joint angles will be modeled
by neural networks. The dynamic equation of robot is
considered as the system model which will be used for
biped robot simulation and data generation purposes.
This model has been implemented in Bipedsim for
MATLB (2008) as well. The developed models are seven
different neural networks which have been synthesized
and evaluated via data sets of length 12000 generated
by({Bipedsim). These data sets simulate walking of the
underlying biped robot while surface smoothness varies
as time goes on for 60 sec and sampled every 5 min.
Figure 4 and 5 show the applied torques and variations of
each parameter for the above mentioned period. In Fig,. 4,
the applied moments have been shown. Figure 5, show
the resulting joint variables, i.e. y,, &, 3, and v,. X,, 3z and
vr has not been shown here, because x; exhibits as a
straight line with constant slope (i.e., it changes with a
constant speed) and [3; and vy, are closely similar to [3;
and vy, respectively.

In order for synthesizing the neural networks for
modeling of each robot output variable, different input
sets as well as different number of layers with different

=201

number of neurons has been considered. Due to
complex nature of the robot dynamics, selection of
proper inputs is a major task. In choosing input sets,
one should note that the robot dynamic is a second-
order one (Eq. 4). Therefore, in addition of the
instantaneous values of applied input toques, some
previous values of robot inputs and/or the underlying
outputs should be considered as the neural networks’
inputs. Considering complexity of the dynamic
equations (Appendix A), up to 2 sample time previous
values of each nput torques and 2 sample-time
previous values of the desired outputs as well as the
combination of them have been proved, in this research.
In this context, from different mnput sets the best
performance of the developed networks have been
achieved when the input sets consist of the applied four
torques in addition to the last sample time value of the
output. This fed-back output not only considers the
system dynamic but also compensate for the surface
non smoothness very well.

The trained networks for different variables are
5-input (4 applied moments and one fed-back output)
neural networks with one hidden layer of 7
neurons and the output layer of one neuron. The
transfer function of hidden layer neurons is chosen

as hyperbolic tangent sigmoid transfer function,
defined by:
Gix) = 2_2 -1 (18)
1+e™*

The transfer function used for the output layer is a
pure linear transfer function. For training the network, the
neural network toolbox of MATLAB (2008) was selected
due to its flexibility and simplicity (Catal3o et al., 2007).
The network was trained by the Levenberg-Marquardt
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20 q(b)
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Fig. 4: Applied nput torques to the biped robot, (a) M, (b) My, (c), M, and (d) M,
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Fig. 6: Neural networks” evaluation results for (a) v,, (b) o, (¢) B and (d) v,

algorithm (Saini and Soni, 2002). However, some other
training methods were tested which amongst, the
convergence rate and the prediction error for the selected
method was the best. From the available data the last 40-
sec data i.e. sets of 8000 data has been used for training

and the remaining data have been used for the network
performance evaluation.

The evaluation results of synthesized neural
networks have been shown in Fig. 6-8 and the evaluation
indices have been brought in Table 1. Figure 6 shows the
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Fig. 8 Cumulative distribution function of the absolute modeling errors shown in Fig. 3, for {(a) y,, (b) @, (c) B, and

(d) yo
Table 1: Evaluation indices for different ANN models
Data set
Index ¥a o By Rl
MAE 1.1168¢-4 6.9002¢-4 0.0020 0.0019
RMSE 1.4316e-4 8.8097¢-4 0.0025 0.0025
Modified MAPE, (%) 0.0081 1.3053 0.9453 0.9433

networks” outputs in comparison with the actual data,
while Fig. 7 and 8 show the absolute errors and their
cumulative distribution functions, respectively.

As it is obvious from these figures, the biped
robot dynamic has been very well modeled by the
synthesized neural networks. Considering the simple
structure of the developed networks in comparison
with the robot dynamic equations, a major reduction
in complexity are concluded. The evaluation results
in Table 1 also emphasized the accuracy and
high performance of the developed neural
networks.
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CONCLUSION

Employing the highly complex and nonlinear
dynamics of the biped robots for their control/trajectory
planning is a cumbersome task both in researches and
practical implementations. On the other hand, try to solve
the problems regardless of the robot dynamics may
degrade the robot control performance especially where
there exists distwbances such non-smooth ground
surface or in case of robot dynamic mismatches. Based on
these discussions, development of an easy-to-use
dynamic model which considers both the nonlinear
properties of the biped robot as well as the disturbance
model seems very helpful. Therefore, in this study,
dynamic modeling of a five-link biped robot in effect of
jomt torques and surface non-smoothness has been
considered. Simplicity and high precision are the
characteristics of the developed model, which is based on
neural networks. In order for generating data for neural
network traiming, the robot dynamics while walking on a
non-smooth two-dimensional surface has been has been
considered. networks
synthesized mn order for modeling of the seven DOF of the
robot. The wmput sets of the tramed neural networks
consist of four applied torques in addition to the last
sample time value of each output. These fed-back outputs
not only account for the system second order dynamics
but also help on compensating the surface non-
smoothness very well. Evaluation results are
representative of high performance and much lower
complexity of the trained networks with respect to the
nonlinear second order robot dynamic model.

Seven neural have been

APPENDIX A
The dynamic moedel of the biped has the form:

A{Q)] = b{q,q,M.F) (AL)

The structure of the biped and the parameters used
are shown in the Fig. 1. The vector ¢ contains the
generalized coordinates, F the ground support forces and
M the jomnt moments. As the system has seven degrees of
freedom, there exists also seven partial differential
equations. In the following, the exact formulas of the
inertia matrix A(q) and the right hand side wvector
b(q.4.M.F) are presented (13). A(q) 15 a 7x7 symmetric
matrix with its upper triangular elements as:

A, =my+2m, +2m,
A,=0

Ay = -2(m; + m,)r cos(or) — (Im,, + myr; ) cos(et— By ) - (Lm, + myr ) cos(er— By )
—mr,[cos(et— B + ) + cos{o— Py + vz )]

A, =({m, +mr1)cos(a— )+ m,r cos(a— B+, )

A = m, + m Yeos(o— Py )+ m,L, cos{e— By, + g

Ay =-myr cos{a— Py +7,)

Ay =-myr cos{o— By +v5)

A, =0

A =my +2m, +2m,

Agy= 2{my +my)ry sin{e) + (hm, +myg)sin(e— By )+ (Lm, +myr Jsin(c - g )

+mony[sin(e— By + ¥ ) +sin(e— P +75)]

Ay =—(lm, + mr)sin(e— B ) — m,rn sin{e— B + 7,0

A, =—(m, + my)sin(e— By ) - m,r, sin{oe— By +75)

A =mrsin(e— B, +7.)

A, =mr,sin(e— By + ;)

A= Zlf‘m2 +2(m, + mz)rcf + 2(mlrl2 + mzrzz) + 2(1;m, + my1 )r[cos(P, ) + cos(Py )]

+2m o [cos(By — 1)+ cos(By — vp )]+ 2Imor[ cos(y, ) + cos(yy )]

Agy =~y — (myg? + g’y - (G, + e, e0s(By) ~ myts cos(By — 1)~ Ly, costyy)

gy = —Bmy — (g ey — (e oyt )y cos(Be) — Myt 0os(Ry — ) — LMyt 0s(¥e)

Az =myn[n + 1 cos(PBy — v ) + | cos(y, )]

Ay =myh[n + 1 cos(Py — 1) + 1 cos(ye )]

A, ='m, +(m,i? +m,r)) + 2, m,1, cos(y, )

Ay =0
A, =mr[-1, -] cos(y, )]

Ay =0

Ay = Pmy + (my? + myr?) + 21 my, cos(yg)
A, =0

A =-mr[r, + 1 cos(y,)]

A, =mr

A, =0

A, =mr

and the elements of vector b(q.4.M.F) are:

by = —2¢% (m, + m)g sin(e) + By + B, - mop[¥ + B + & - 2(7,.B, - 1.6+ o]
sin{or— By + )+ (myn + Lmo)] @Bg - B - a)sin(or— Be) + 2y — B - &)
sin(et— B )] - mon[ 72 + B3 + & + 2(7aPy - o0+ felsino— By + ¥e)

b, = -26°(m, + my)r, cos(or) - mur,[¥7 + 7 + & - 207, By — T+ Prev)]
cos(o— By + ¥ )+ By, +Fyy, —mor[ii +BE + & + 2(7By — Fr G+ B0
cos(ct— Py + Vg ) - m{mg + 2m;) + (myg; + Lm,)[(2B, - B - &) cos(er— Br)
+(2B e B - ) cos(a- )]

by = m g L[(f7 — 275y sin(ye )+ (75 — 27, B, ysindy, )] + 1 sin{o)

[E, +E, - 2g{m, +m,}] - | [E, cos(c— B )+ E, sin{o— B )

+E, cos(o.— B )+ F sin{ot — B )] - L[E,, cos(a— Py +75)

—Fy, sin{ot— Py + ¥y )+ E, cos{o— P + v ) - F, sin{o— i, +v.)]

-1 cos(o)(E, + B, ) - gmyn[sin{o— By +7p ) +sin{o— By + ;)]
—mn[(¥ + B - 2076, —poo+Boa)sin(B, - v )+ (¥ + 57

~2¥a B — Fr Gt Bra))siniBy — vo)] —(mygg + mug] (BE - 2B, @ysin(By)
+PB? — 2B, cosin(B )] - s(hm, +myg )sin(e — B )+ sin(e~ . )]

b, =M, +F, 1 cos(ee— By )+ 1 cos(ee— By + v, ) — (B, Ly — gmyl, — gmyr )sin(e: — B, )
— & (g, + Ty )5, sin(By ) — &7 mytr sin(By —v,) —himyr 73 + 205 — B, ), Jsin(y,)
- (E,1, —gmyr)sin(oc— B, +7,)
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b, = Mg, + E 1 cos(e— Pp) + Bl cos(o— Py + ¥ ) — (FR:,Il —gm,], —gmyr)sin(e— Bg)
-at (myg +1,m, )y sin(Bg) — é‘jmarur: sin(Pg —yo) - 11m'zr1[ﬁz + 20— BR )iz Isin(yz)
—(F L, — gmyr sin(e— Be +v2)

b, = M, - E 1, cos(ct— Py + ;) + & mypr, sin(B, - v,) - Lmyr[6f + 20— B, ]
sin(y; ) - (F1; - gmor )sin(e— By + y.)

by =Mz, - Flycos(oe— Py + )+ d’vzmzfnrz sin(Bg —vg) — 11m2r2[c'x2 +2(a— BR)BR]
sin(yg ) — (B 1y — gmor )sin(a— By +vg)
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