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Abstract: In this study, a new covariance presetting scheme is presented to overcome some drawbacks of the
high maneuvering target tracking problems by using the Fuzzy logic method for evaluating the elements of the

covariance matrix presetting. This scheme includes an estimation part that uses a modified Kalman filter and
a fuzzy logic part to improve the tracking performance of the high maneuvering targets. The result 1s compared
with the conventional covariance matrix presetting method. Simulation results show a superior performance of
the proposed covariance presetting when a target either moves with high maneuver or with constant velocity.
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INTRODUCTION

There exist many approaches for tracking a
maneuvering target (Chan et al., 1979, Bogler, 1987,
Bar-Shalom and Birmiwal, 1982; Shiryayev, 1963). For
example, equivalent noise that its basic assumption is: the
maneuver effect can be modeled by a white or color noise
process, mput detection and estimation that estimates
acceleration as an unknown control mput and then
estimates the state using the estimated input, switching-
model that consist of two classes of models: maneuver
and nonmaneuver model; tracking is done by a filter that
uses one model (maneuver or nonmaneuver) at one time.
Singer (1970) modeled target acceleration as a random
process with known exponential autocorrelation. This
model 15 capable of tracking a maneuvering target, but the
performance of the estimation is reduced when target
moves at a constant velocity. In (Nordsjo and Dynamics,
2005), have developed an Extended Kalman Filter
combined with an algorithm for recursive estimation of the
measurement noise variance and the variance of the target
acceleration. An input estimation method was presented
at (Khaloozadeh and Karsaz, 2004) using augmented state
technique and standard Kalman filter to estimate the
parameters of a maneuvering target. The results indicate
that the above technique is degraded when targets move
with high maneuver. To improve the results in high
maneuver state, Khaloozadeh and Karsaz (2006) has
presented a matrix covariance presetting method but it's

degraded when targets move at constant velocity.
Recently, fuzzy logic was applied to maneuvering
target tracking with intelligent adaptation capabilities
(Lalk, 1994; McGinnity and lrwin, 1998).

In this study a new fuzzy tracking algorithm is
proposed for high maneuvering target. High maneuvering
targets are modeled using jerk modeling approach
(Karsaz ef al., 2007). To reach high performance tracking
for igh maneuvering target, a new fuzzy covariance
presetting method is proposed.

MODELS OF UNCERTAINTY

The basic uncertainties models (Schweppe, 1973) to
be considered in this study are the Bayesian and Fisher
models which have used in (Khaloozadeh and Karsaz,
2004). Theses models are specific cases of the state space
structure-white process.

The Bayesian models are one of the most important
and common used models of uncertainty. In Bayesian
models, uncertainty are modeled by random variables
and/or stochastic processes with completely specified
either probability distributions or completely specified
first and second moments. The complete definition of the
Bayesian, discrete time model for linear systems 1s
summarized now.

Xin +1)= F(n)X(n) + G{n)w{n) (1)
z(n) =H(m)X{n)+ v(n)
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Where:

X(n) = State

zZ(n) = Observation

v(n) = White observation uncertainty
w(n) = White system driving uncertainty
X(0) = Initial condition

Ri(n) n, =n,
0 n;, # 1,
E{x(0x" (@)} =y, E{x(0)}=0, E{wm}=0, E{vi}=0

Q@) n=n,

0 n, # 1o,

E{v(n,)v" (n,)} :{ . E{w(n)w'(n,)} = {

In many applications, the input disturbance, wi(.) can
be modeled as being completely unknown. A model where
w(.) 18 completely unknown 1s a type of Fisher model. Of
course, conceptually such Fisher models have to be
handled in a different fashion from Bayesian models
where wi(.) is viewed as a random vector with known
covariance matrix Q(.). For some applications the Fisher
modeling of w(.), can be viewed as the limiting Bayesian
case, where, Q(.Jesl.

FILTERING OF THE BAYESIAN MODELS

The desired form of the filtering solution is a
difference equation (recursive relationship) expressing
X(n+1|n+1) interms of X{n|n) on z(n+1).

The solution of the filtering problem is the Kalman
filter with equations:

X(n+1|n+D=FmXm|n)+Kn+Dlzm +1) - Hn + DF@X (n| n)]
Kn+D=Zn+1n+DH (n+DR™ (+1)
Zo+1n+1)=Z(n+1{n)—Zn+1nH (0 +1)
[Rin+D+Hmn+DEZm+1 mHn+ DT Hn + 1D Z(n +1|n)

Z(n +1n) = FMZn [ mF' () + GO Q)G (n)

Z(0]0) =y, X(0]0)=0 (2)

where, K(N) is the Kalman gain and notation X(n+1|n)
denotes the prediction at the (ntl)th sample point
given the measurement up to and including the nth
whilst Xn|n) denctes the estimation at the sample
point given the measurement up to and including the
nth. XE(njn) 1s

Z(ntljn) the error covariance matrix of the one-step

the error covariance matrix and is

prediction.

Maneuvering targets are difficult to track with
Kalman filter since the target model of tracking filter
might not fit the real target trajectory (Kawase ef al.,
1998).

TRACKING ALGORITHMS

Some researches in detection and quick detection
have been explored in the references (Bar-Shalom and
Birmiwal, 1982; Shiryayev, 1963). It 1s assumed that the
target moves in a plane, which is the two-dimensional
case, such as a ship. The state and the measurement
equations for non-maneuvering model 15 given by:

Xin +1)= F(n)X(n) + G{n)w{n) (3)
z{n) = H{n)X(n) + v(n)

where, X =[x x y y[ is the state vector. F is the state
transition matrix, G 1s the plant noise system matrix and
w (n) is the plant noise, assumed to be white with variance
o; . The expression for G and F as functions of the update
time T (T 1s the time mterval between two consecutive
measurements.) are:

T2 T 0 0
00 T2 T

- o o =
= |
S =S o
- H o <

H is the measurement matrix and v(n) is the measurement
noise, assumed Gaussian with covariance matrix R. The
matrix H 1s given by:

1000
H=
{0010}

The input estimation approach for tracking a
maneuvering target 1s proposed by Chan ef al. (1979). In
this approach, the magnitude of the acceleration 1s
identified by the least-squares estimation when a
maneuver 1s detected. The estimated acceleration is then
used 1in conjunction with a standard Kalman filter to
compensate the state estimate of the target.

In imput estimation techmiques the maneuvering
model treats the acceleration as an additive term:

X(n+1)=FX(n)+ Cu{n)+ Gw(n) (4

There are several methods to estimate and predict the
states of maneuvering target (Bogler, 1987; Chan et al.,
1979, Wang and Varshney, 1993; Bar-Shalom and
Fotman, 1988) but the
performance of these techmques are degraded when

results demonstrate the

targets move with high maneuver.
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In Khaloozadeh and Karsaz (2004), an algorithm was
proposed to develop a maneuver detection model, which
detects the maneuver effectively. There considered the
additive maneuver term u (1) as a deterministic signal in
the maneuvering Eq. 4, then we deal with two mixed
uncertainties, w(n) as a stochastic plant noise and u(n) as
an unknown but bounded additive maneuver term where
Cis:

T
oo {TZ 2T 0 0}
00 TH2 T
Also in Khaloozadeh and Karsaz (2004) the additive
maneuver term 1(n) is introduced as a new state and the
maneuvering model Eq. 4 was converted to a non-

maneuvering model with an augmented state equation in
the form of the standard Bayesian model with Eq. 1 and 2

as:
{X(n + 1)} {F C}[X(n)} {G}
= + win)
uln+1) 0 I un) 0
z(n) =H(m)X(n) + v{n)

T _|F ¢ |G
X gl = [X(0) um)] ,FAug{O J,GA%{O}

Define a posterior measurement z(n+1),

zZin+ 1) =HXm+1}+vin+1)=
H{FX(n) + Cu{n) + Gw(n)}+ v(n +1)

X(n))} +HGwn)+vin+1) =

z(n+1y = [HF HC]L(H (6)

H,.=[HF HC]:;V,, =HGw(n)+vin+1)

Using this algorithm one can estimate X and u
simultaneously with the standard Kalman filter by using
the equations:

g+ 1) =F, K, (n)+ G, win)
Zygm=zn+h=H, X, (m+V, (n)

7

Since v(n) and w(n) are uncorrelated, we can obtain
the new covariance matrix of the measurement noise
V() for the augmented state equation as:

R, = B{V,, Vi) = E{HGw(n) + v(n+1))

(HGw(m) + v(n+ 107} = HGEfw(n)w(m'}

G'HT + E{vin +v(n + T}

R, = E{V, V] } = E{HGw(n) + v(n+1)) (8)
(HGw(m) + v(in +1)"} = HGEfw(n)w(n)"}

GTH" +E{v(n + Dvin+ D"}

= R,,, = E{(V, )V, _(n)} =HGQE'H' +R

In Karsaz et al. (2007 ) another augmented state model
that also estimates the jerk of a maneuvering target has
been proposed to increase the performance of tracking
algorithm. In this case the maneuvering model 1s:

Xn+D)=FX(m+C_u, [m)+Gw(n) (9)

In Eq. 9 the new input u,{n) 1s consist of acceleration
and time-derivative of it and C__, 1s as follows:

T/2 0 T/6 0

T 0 TH2 0
=l 0o TH2 0 T/
0 T 0 T2

Therefore the tracking algorithm changes to

new ™ “new

Zm=zn+)=H )X  (n)+ VAug(n)

X, o+D)=EF X _(m)+G_ win) (10)

Where:
X = [X) u) um]
1 0 T 0
F C,, 01 0T
F,, = ; F=
0 F 001 0
00 01
G
Gmw{ }; H,, =[HF HC,,]
04x4

The covariance matrix of the measurement noise 1s the
same as the earlier one:

R = B{V, (V] (n)}=HGQG™H" +R

fug

In this study, we apply the above algonthm to
estimate the parameters of a maneuvering target and a
fuzzy covariance presetting method to increase the
tracking performance.

ANEW FUZZY COVARIANCE PRESETTING
METHOD

Nevertheless great efforts at above proposed
methods, still there 13 a weakness for estimating high
maneuver target parameters. In Khaloozadeh and Karsaz
(2006) 1t has been explamed that the weakness 13 because
of the fast primary convergence rate of Kalman filter, in
other words estimation error covariance matrix S(INN)
becomes small after some samples and it causes the
algorithm not to be able to reach the optimal point. To
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overcome this problem, there is a conventional method
(Goodwin and Sin, 1984) that increases error covariance
matrix when the matrix magmtude becomes smaller than
the critical limit, with this formula:

2NNy =k, = 37(0[0)

where, kg is a constant coefficient that is bigger than one.
Tt causes the estimation error covariance matrix X(N[N)
becomes larger than critical limit, then the kalman filter
doesn't lose the target dwection and tracks the high
maneuver target successfully. As it was mentioned
before, kf is a constant coefficient in (Khaloozadeh and
Karsaz, 2006). k;will be changed during the target moves,
for getting better results.

Here, it was present a new fuzzy logic algorithm to
determine how much the covariance matrix must be
changed (determine the value of k) and when. Finally we
compare the performance effectiveness of these methods
(Khaloozadeh and Karsaz, 2006) and fuzzy method.

The proposed fuzzy logic method calculates
coefficient k; with use of two features as mputs of fuzzy
systerm:

¢+  Magnitude of error covariance matrix: This is the
norm of L(N|N) matrix

* Magnitude of jerk: This 1s the nomm of time-
derivative of acceleration matrix

The output of fuzzy system 1s coefficient k; that
changes L(N|N) matrix:

S NN D =k, SN N

The first input determines magnitude of error
covariance matrix that must be change for avoidance of
fast convergence and the second input indicates
acceleration rate. When magnitude of error covariance
matrix is low and the acceleration rate is high lg; should be
high. The basic idea 13 used in the fuzzy inference rules 1s:
If the acceleration changes with a large vanation, the error
covariance matrix must become large.

Figure 1 shows the membership functions of the
mputs and the output of the fuzzy system. The rules of
the fuzzy system are as follows:

¢ Ifnorm (covariance) is S and jerk is S then coefficient
kpis VS

* If norm (covariance) 18 S and jerk 15 M then
coefficient k; is M

¢ Ifnorm (covariance) is S and jerk is . then coefficient
kpis L

-
=
3

Magnitude of =(NN)
&

ol
=

0 05 10 15 20 25 30 35 40 45 50

(=}

Lo L

Magnitude of jerk
o
i.n

0.0 — T T T— T 3
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Coefficien (k)
I
9
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Fig. 1: The membership function of the fuzzy system

» If norm (covariance) 13 M and jerk s 5 then
coefficient k; 1s VS

o If norm (covariance) is M and jerk is M then
coefficient k; is V3

o If norm (covariance) is M and jerk is 1. then
coefficient k; 1s M

»  Ifnorm (covanance) 1s L and jerk 1s S then coefficient
kpis VS

» If norm (covariance) 15 L and jerk 13 M then
coefficient k; is V3

¢ TIfnorm (covariance) is I and jerk is T, then coefficient
kiis S

The result of proposed fuzzy method 1s: when target
moves with a high maneuver, presetting method is
performed with a large coefficient and when target moves
at constant velocity presetting method is stopped.

SIMULATION RESULTS

The estimation improvement obtained by the
proposed method is shown by the following examples.
The sampling time is T = 0.1 (sec) and the number of the
samples are 2000. Initial conditions are also:

x(0)=10m; v(0)=-10m;

v, (0)=10msec; v, {0)=15m sec'
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actual and estimated Acceleration in X-direction

actual and estimated Acceleration in Y-direction
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Fig. 2: The actual and the estimated acceleration by conventional presetting method, k
target is shown with blue line

.= 1.5, the actual acceleration of
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Fig. 3: The actual and the estimated acceleration by conventional covariance presetting method, k
acceleration of target is shown with blue line

.= 10, the actual

where, m denoted meter and s denoted second. and Karsaz (2006) with k, = 1.5. Figure 3 also shows the

Figure 2 shows the estimated and the actual
acceleration that obtain by the conventional covariance
presetting method which was proposed by Khaloozadeh

estimated and the actual acceleration by the conventional
covariance presetting method (Khaloozadeh and Karsaz,
2006) for k;=10.
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actual and estimated Acceleration in Y-direction
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Fig. 4: The actual and the estimated acceleration by the proposed fuzzy covariance presetting method
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Fig. 5: RMSE of estimated acceleration by conventional covariance presetting method, k,= 1.5
Figure 4 shows the estimated and actual acceleration For better comparison the RMSE index
obtained by fuzzy method that is reported in last part. The (toot mean  square errors)  of estimated

simulation results show that in contrast of Khaloozadeh
and Karsaz (2006), the proposed method prevent of
presetting when the target moves with constant velocity
and start to preset the covariance matrix of the estimation
when there exist high maneuver targets.

acceleration is calculated by running the simulation
ten times at the same initial conditions on position,

velocity and acceleration of target for above
methods. The simulation results are shown at
Fig. 5-7.
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RMSE of Acceleration for ten runs
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Fig. 7. RMSE of estimnated acceleration by the proposed fuzzy covariance presetting method

3636



J. Applied Sci., 8 (20): 3630-3637, 2008

Table 1: The total average error

Error at a Error at a Error at a
Proposed method 0.2644 0.5688 0.6272
[13] Method, k;=1.5 0.3210 0.7436 0.8099
[13] Method, k;= 10 0.3711 0.7716 0.8562

Also, we evaluate the total average error for above
methods and compare them in Table 1. The total average
error is defined as follows:

1 sempiles )
Error at a, = > ey -4
samples
Error at a_= ! mzplas‘(a i )‘
Y samples &7 7
samples
Error at a = {a,—4,)
samples ,Z:;‘

The errors are evaluated for ten runs.
CONCLUSIONS

In this study, a new covariance presetting scheme is
presented to overcome the high maneuverng target
tracking problems. The scheme is consist of Kalman
filtering estimation and the new fuzzy logic presetting
method to increase the performance of tracking
algorithms. The simmulation results show a better
performance than the study by (Khaloozadeh and Karsaz
(2006). If the acceleration changes with a large variation,
the error covariance matrix must become large.
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