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Abstract: A new general two-stage algorithm 13 originally proposed to reduce the computational effort for
maneuvering target tracking in mixed coordinates. The augmented state Kalman estimators, which are based
on the jerk modeling, are computationally expensive. The conventional input estimation techniques assume
constant acceleration level and there are not covered a generalized input modeling. In this research, an
mnovative scheme 1s developed to overcome these drawbacks by using a reduced state Kalman estimator with
a new structure, which is optimal for general conditions. In addition, the proposed scheme is an unbiased
filtering algorithm applied in mixed coordinates based on the pseudo linear measurements.

Key words: Pseudo linear measurements, optimal reduced state Kalman estimator, input estimation, augmented
state Kalman estimators, maneuvering target tracking

INTRODUCTION

The general state estimation problem n a stochastic
linear system with unknown input variable, is solved by
the well-known augmented state Kalman estimator
(AUSKE) or full state method. The AUSKE solves the
problems by mncluding the mput parameters as a part of an
augmented state to be estimated (Khaloozadeh and
Karsaz, 2005; Mehrotra and Mahapatra, 1997). However
reduced state methods do not augment the state and
usually yield a better performance (Mookerjee and Reifler,
1999). The AUSKE suffers from complexity of
computational effort and numerical problems when state
dimensions are large. The input detection and estimation
(IDE) algonithi was first developed by Chan et al. (1979)
using a simplified batch least square data. Although TDE
approach is attractive since it intends to relax restrictive
assumptions about mput dynamics modeling, it suffers
from a major deficiency, being that little prior knowledge
is available for dynamics estimation (Li and Jilkov, 2002).
For example we can cite (Wang and Varshney, 1993) used
the IDE approach in the Maneuvering Target Tracking
(MTT) problem. In Wang and Varshney (1993), the
predicted states for the maneuvering target are related to
the corresponding states without maneuvering assuming
constant mput or constant acceleration (CA). Therefore,
the performance of the estimation 1s reduced when target
moves with non-constant acceleration. According to Lee
and Tahk (1999) the unknown input defined as a sum of

elementary time functions. Although this input modeling
1s more general than the constant-mput model of the
onginal IDE algorithm, the performance 1s reduced if there
is any input dynamics.

Friedland (1969) introduced a method of separating
estimation of the wnknown mput from the dynamic
variables and Blair used this method m the MTT problem
(1993). The basic idea was to decouple the Augmented
Kalman Filter (AKF) into two-stage filters in order to
reduce computation and memory requirements (Hsieh and
Chen, 1999, 2000, Kawase et al., 1998; Qiu et al., 2005).
Recently, Hsieh and Chen (2000) derived an Optimal Two-
Stage Kalman Estimator (OTSKE) for a general case to
reduce the computational complexity of the AUSKE. The
two-stage filtering method, suggested for MTT problem
by Blair (1993) suffers from two major drawbacks. These
drawbacks stem from assuming constant acceleration and
nput term assumed to be observable from the
measurement equation (Hsieh and Chen, 1999; Quu ef af .,
2005). An alternative solution to overcome theses
drawbacks for MTT problem introduced by Karsaz et al.
(2007a).

In real world applications, target motion is usually
modeled in Cartesian coordinates. However, in most
systems, measurements of target position are available in
terms of range and azimuth with respect to sensor
coordinates. There are two major approaches to overcome
this problem in target tracking. One method is touse
a linear Kalman filter with measurements converted
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into Cartesian coordinates called Pseudo-Linear
Measurements (PLM) (Karsaz et al., 2007b; Lerro and
Barshalom, 1993, Longbin et al, 1998). The other
approach 1s to use nonlinear methods referred to as
Extended Kalman Filter (EKF) or unscented Kalman filter
(UKF) (Lin et al., 2002; Tulier and Uhlmann, 2001). Easy of
unplementation and reduced computational effort for the
filter are two unportant advantages of the PLM method
compared with the nonlinear methods (Karsaz et al.,
2007b). Recently, neural networks and fuzzy logic
schemes have been used for maneuvering targets with
mtelligent adaptation (Duh and Lin, 2004; Lee et al., 2004,
MeGinnity and Irwin, 1998).

The objective of this study is to propose a new
partitioned two-stage Kalman estimator which 1s optimal
mn the Mimimum Mean Square Error (MMSE) sense. The
new partitioned dynamic model is proposed for target
acceleration vector based on the augmented jerk model
has been suggested m Mehrotra and Mahapatra (1997). It
15 shown that the maneuver tracking algorithm proposed
in Wang et al. (1993) is a special case of our proposed
method. In addition, the obtained relations are in mixed
coordinates using PLM method. The motivation of our
proposed method 1s the generation of a two-stage
structure to obtain the optimal performance in mixed
coordinates. This proposed scheme is named the
OPSKE PLM. In addition, a computer simulation 1s carried
out for the scenario of a maneuvering target tracking by
the OPSKE PLM and the computation cost are compared
with the AUSKE PLM.

STATEMENT OF THE PROBLEM

In MTT problem the target motion can be best
modeled in Cartesian coordinates. Unfortunately, in most
systems, the target range and azimuth are provided as the
target measurements in polar coordinates with respect to
the sensor location. Tracking in Cartesian coordinates
using polar measurements can be described by the
discretized equation set:

K = AKX+ B U, + WS (1)
Uiy =C U, + er (2)
Zy =h(X )+ V] (3)

where, X, € R* is the system state U, € R*and 7! =R’ are
the nput vector and the measurement vector in polar
coordinates, respectively. Where the superscript p
denotes polar coordinates. Matrices A,, B, and C, are
assumed to be known functions of the time interval k and

are of appropriate dimensions. Matrix C, is assumed
nonsingular and h(.) is a nonlinear function. The process
W:, W' and the measurement noise V§ are
zero-mean white Gaussian sequences with the
following covariances E[W, (W,)'1=Q;3,, E[W; (WY 1=Q;3,,
E[W; (W')]=Q"8,, E[VI(V/)]=R{3,, E[W/(V/)]=0 and
E[W;(VF)]=0, where ' denotes transpose and §,; denotes
the Kronecker delta function. The initial states X, and U,
are assumed to be uncorrelated with the sequences W, Wy
and V{. The initial conditions are assumed to be
Gaussian random variables with E[X,]-X,, B[X,X,]1=P},
E[U,]=0,, E[U,U,1=P", E[X,U,]=P. As we can shown in
Eq. 3 the input vector U, is not observable through the
measurement process, despite the assumption in (Blair,
1993; Hsieh and Chen, 1999; Qiu ef ai., 2005). In MTT
applications we have:

noises

Xk:[xk Vi Y Vi:ll 4
w K &)

where, x_, vi u? and ji denote the position, velocity,
acceleration and jerk of the target along the x-axis,
respectively. Measurements of target position are
reported in polar or sensor coordinates as the range
measurement (Zi) and the azimuth measurement (Z3)
{(Mahapatra and Mehrotra, 2000). Equation 3 for MTT
application is rewritten as:

1 0 \P&*ﬁ

70 -
k {0 1} tan ()
X

k

+VE (6)

where, 7p -

Z;} A% ={Vﬂ and rf :[(5;)2 0 ]The erTorS
o I Lo @y

m range v, and azimuth v are assumed to be
independent with zerc mean and standard deviations ]
and &7, respectively. Therefore, Eq. 3 shows a nonlinear
relation between the measurements in polar coordinates
and system states in Cartesian coordinates.

In MTT problem the target motion can be best
modeled in Cartesian coordinates. This situation a
standard Kalman Filter (KF) can be used accurately.
Tracking in Cartesian coordinates using polar
measurements can be handled in two ways. One method
is to use a linear Kalman filter with measurements
converted to a Cartesian frame of reference. The other
approach 13 to use conventional nonlinear techniques
such as EKF and UKF, which incorporates the original
measurements in a nonlinear equation in mixed
coordinates. In this study, it 1s use a modified linear
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Kalman filter based on PLM. Obtaining the relation
between the measurement noise covariance in polar
coordinates and the measurement noise covariance in
Cartesian coordmates and using PLM techmque for the
standard Kalman filter implementation is discussed in the
following.

It 1s clear that any measurement expressed m polar
coordinates has an exact and equivalent representation in
Cartesian  coordinates.  Therefore  the  pseudo
measurements 7z and z! can easily obtained in each
iteration from existing observation z and 2z} using
classical conversion:

7 =72 cos(z)) (7

7! = 7, sin(z)

Therefore, the measurement equation can take the
following linear approximated form in Cartesian
coordinates as discussed in Karsaz et of. (2007):

7, =HX +L V¢ ()
1 000 zr
H, - Lz = |
where, H, L) o 1 0} . LJ and
- cos(z)) —z; sin(z)) (9)
Bolsin(z®) 7 cos(z)

The converted measurement covariance matrix R, in
Eq. 8 has been calculated:

R, =E{L{ﬂ[v§c vi]L’k}=LkR§Lk (10)
k

For long ranges and/or large azimuth errors a polar to
Cartesian unbiased congistent conversion with correction
for average bias 1s given m Lerro and Barshalom (1993)
and states as:

5.2 ,@

z zycos(Z[l-e™ 1 2] 1)
e )T .o
zZisin(Zl—e® 16 2]

THE AUGMENTED STATE KALMAN ESTIMATOR
BASED ON THE PSEUDO LINEAR MEASUREMENTS
APPROACH (AUSKE_PLM)

One can easily use the AUSKE based on Eq. 1, 2, 8
and 10. Treating X, and U, as the augmented system state
(Hsieh and Chen, 1999), the AUSKE PLM 1s described
by:

sug _ wrhug g AugvyAug
Xk+1|k+1 - Xk+1|k + Kk+1 (Zk+1 - Hk+1g)<k+1\k) (1 2)

XAUg :AngXf‘;g (13)

Hk

K= Pk+1|k (HAug)l [HkAzlng+1\k (HkA:?) R ]71 (1 4)

k+1 k+1
Peae = AkAung\k (AkAug)l +Q, (1 5)
Pk+1\k+1 =(I- KQEFHQ‘:?)P“% (1 6)

Where:

e[ [ 2 %]
Uk Kk (Pk ) Pk

Aug Ak Bk Aug _ Q; Q;u
<A“ ’{om CDH - [, Olml’Qk’LQz“)' QJ

where, the superscript Aug denotes the augmented
system state, 1 denotes the identity matrix of any
dimension and O, 1s a m»*n zero matrix. It is clear from
Eq. 12-16 that the computational cost of the AUSKE PLM
increases drastically with the augmented state dimension.
The reason for this computational complexity 1s the extra
computation of PI* terms in each sample time k (Hsieh and
Chen, 1999). Therefore, if this term can be eliminated, one
can reduce the complexity of computational effort. In this
research, we propose a new optimal two-stage Kalman
estimator without calculating the term of B explicitly.
Therefore, the proposed scheme is developed to reduce
the computational cost in two ways. First by partitioning
the Eq. 12-16 mnto two partitioned subsystems. The other
1s to use a lmear Kalman filter based on the PLM, instead
of using the conventional nonlinear techniques such as
EKF and UKF.

DERIVATION OF THE OPTIMAL PARTITIONED
STATE KALMAN ESTIMATOR IN MIXED
COORDINATES

As mentioned before the conventional IDE
approaches are free from input modeling which is the main
drawback of these methods (I.i and Jilkov, 2002). In
contrast, other conventional augmented techmques,
which overcome this problem, are computationally
expensive. In addition, some of these approaches use
conventional nonlinear techniques such as EKF and UKF
to solve the nonlinear measurement equation in mixed
coordinates. In the view of this fact, the proposed
approach in this study intends to relax restrictive
assumptions concerning the input dynamics modeling
and using a new optimal partitoned Kalman estimator.
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The design of a new modified two-stage estimator in
mixed coordinates are summarized in the following
theorem proved in Karsaz ef al. (2007b). The major
derivation 1s the relation between the measurement
residues of the two different filters. One is the
measurement residue of the input-free filter, which does
not consider unknown input vector and the other is the
measurement residue of the mput filter. Based on the
measurement residues of the two filters, an input
estimation algorithm is derived using the MMSE
technique.

Theorem 1: For the linear discrete-time system given by
Eq. 1, 2 and 8, let a filter minimize the total covariance
BF and P} at each update. Then, the recursive

e+lfle+1 ktllk+l
equations for X, X, and U, are as follows:

k

Ko = ikﬂ\k + My U a7

Xk+1\k+1 = }_(k+l|k+1 + Nk+1Uk+l|k+l (1 8)

where, the state vector of the input-free model is denoted
by X, . The input-free filter is just a Kalman filter based
on the model (8) and (1) by ignoring the input term (1.e.,
U, =0) as below:

Xy = Ky VK Zyy —H X, 0 (19)
Ko = AX (20)

Ky = B HaH P H ) + L RELL T (2D)
P = AP AL + QF (22)

Prapa =0 - Koo H)Pis (23)

The deswed form of the filtering solution for
estimating the unknown vector Uy, are the recursive
equations expressing fjkﬂ‘kﬂ mn terms of fjk‘k and 7, as
below:

k+l

Uk+1\k+1 = Uk+1\k + Kzﬂ[zkﬂ - Hk+1Mk+1Uk+1\k] (24)

Uk+1|k = Ckﬁlqk (25)

u
Kk+1

= 2P;+1|kM;(+1H;(+1[3Hk+1Mk+1P1?+l\kM;(+1H;(+1 + P1<Z+1\k ]71
(26)

P1:J+1|k = CkPkL|‘kclk +QF (27)

Pku+1|k+1 =[I- ZKEJAHkHMkH ]P:n\k (28)

Pl = Hy Pl + L REL, (29)

M., =[AM, +B,ICY,  k=23.M=BC' (30
Ny =[1- Koy H M, (31)

The mnovations Z,,, and Z,, as the measurement
residues of the input-free model and the input model are

defined, respectively:

7., -H X (32)

k+ T CURH M kH[K

N

K+l =

VARV : W S (33)

The extra computation of the cross covariancematrix Poy,.
(which relates to By, ) is the reason for the computational
complexity in the augmented state methods. In view of
this fact, the algorithm has been proposed by Wang ef al.
(1993) is a sub-optimal algorithm where, E{Z,,U,,,}=0.
Therefore, this term eliminated in the OPSKE PLM
which reduce the complexity of computational effort
(Karsaz et al., 2007b).

PERFORMANCE EVALUATIONS

To demonstrate the computational advantage of the
OPSKE PLM over the AUSKE PLM, the number of
arithmetic operations are considered, i.e., multiplications
and summations, as suggested in (Hsieh and Chen, 1999).
The arithmetic operations of a standard Kalman estimator
with state dimension n and measurement dimension / are
shown in Table 1. Tt is clear from the Eq. 12-16 and
Table 1, that the arithmetic operations required for the
AUSKE PLM which has state dimension n+m and
measurement dimension / are M(n+m, /) for multiplications
and S (nt+m, I) for summations and 27 and 2F-2F for
multiplication and summation specially required by R,. So,
the Arnthmetic Operations Required (AOR) for the
AUSKE PLM are:

Table 1: Standard Kalman estimator arithmetic operation requirements

No. of No. of
Variables multiplications, M(n, {) summations, S(n, )
Xk+1|k+1 211‘[ 21‘]1
XK+1\k n’ n’-n
K, n*H2nf+P 220+ F-2nf
P 2’ 2 -
B pu 10 -’
Total 3+ 2220l P+ 2nd I+ ¥ 2nf4F P -n
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Table 2: TInput estimation and auxiliary matrices arithmetic operation
requirements for the OPSKE PLM

Table 3: The OPSKE PLM compared to the AUSKE PLM for different
input vector dimensions m values

No. of No. of
Variables multiplications, M°F(n, m, [) summations, $°F(n, m, {)
Uyt 2mi 2mi
Upyy m? m*-m
K, mA2mPH PP mi mPH2mP+P-2mi
B 2nr 2m’-m?
Pa e m? me+m?-m?
Py 2 -2
:?‘(JH-IDH-I am nm-t
Xeup nm nm
M,, - +nm? mHmnm?-nm
Nyoa m Pm-nm
H, M, nm/ nmi-mi
R, 28 2pB--2f
Total 3mi2m+2mA+2mif+ -mi-m?-m+2m?H
3P M 20 H 2nm+ 2me+ 3P+ +2n% -
2’ +Homd 2ni-P-nt20mtnm?-+nm/

AOR(AUSKE PLM) = M(n + m, 1)+ $(n +m, 1)
=[3(n+ m)* + 2(n + m) 1+ 2 + m)1? + ¥ + (n+ m)? + 2(n + myl] + 2F
3 +m)® + 2(n+m)? 1+ 2 + M) +F —(n+m)? — (n+m)]+ 28 - 212

(34)

Table 2 shows the arithmetic operations of the input
estimation and the auxihary matrices needed by the
OPSKE PLM which has state dimension n, measurement
dimension I and input vector dimension m. The total
arithmetic operations required for the state and input
estimation and auxiliary matrices, by the OPSKE PLM as
shown in Table 2 are:

AOR(OPSKE _PLM) =

M, 1)+ S(n, D+ M (n,m,D + 8 (n,m,) =

[3n® + 2n°l + 2nF + I + n® + 2nl]+

[3n® + 2nl + 2nF + I* - n? —n] (35)
+[3ml+ 2m* + 2m? + 2mP + 3P +  + 4m” +

2n°l+ 2nm + 2n*m +nm? + nml]

+[-ml—m? —m+ 2m’l+ 2ml* + 3F + 4m® +

2n’l-2nl-F —n+ 2n’m + nm* +nml]

It 18 clear that the number of the arithmetic operations
of the AUSKE PLM increases drastically with the
augmented state dimension, which makes the algorithm
computationally mefficient. In contrast, the proposed
algorithm based on the two-stage partitioned technique
required fewer computations. This enables the proposed
algorithm to have much better computational efficiency
than the AUSKE PLM. Using Eq. 34 and 35, the
operational savings, denoted by OS{EL, of the
OPSKE PLM as compared to the AUSKE PL.M are:

OSTEE = AOR(AUSKE_PLM) - AOR(OPSKE_PLM)=
Mn +m,D+Sm +m,D - Mn,D-8m,) -M (n,m,D) -8 (n,m,D
=—2m’ +14n°m +17nm’ —4n°l+ 6nml — 21° + 2nl+ n—m? — 21> — 2nm

(36)

The state

vector AOR AOR POGOTEE
. . OFSKE ATSKE

dimensions (OPSKE PLM) (AUSKE PLM) OSimer  (9g)

n=4,m=1, 888 1085 197 18.15

=2

n=4,m=2 1090 1738 648 37.28

=2

n=4,m=3 1414 2623 1209 46.09

=2

n=4,m=4, 1908 3776 1868 4947

=2

Average 1325 = 2305 = 980 37.74

Tt is clear from Eq. 36 that for MTT problem which
usually /<n, the proposed scheme has computational
advantage over the AUUSKE PLM.

To measure the relative operational savings of the
OPSKE PLM with respect to the arithmetic operation
required by the AUSKE PLM (AOR (AUSKE PLM)), the
percentage of the operational savings defined as below:

OPSKE
POSIPEE — Bivag 100 (37)
AOR(AUSKE_PLM)

The OPSKE PLM could be applied to the lugher
order derivatives of the acceleration for complex
maneuvering target (i.e., different input vector dimensions
m). In view of this fact and m order to compare the
OPSKE PLM and the AUSKE PLM i simulation
results section, the acceleration vector considered as
U, =[uf 5 u . Using Eq. 34-37, the operational
savings and the percentage of the operational savings, of
the OPSKE PLM comparing to the AUSKE PLM for
different values of m and n =4, I =2 are shown in Table 3.

It can be mferred from Table 3 that the OPSKE PLM
has better overall performance than the AUSKE PLM
(averaged 37.74%).

SIMULATION RESULTS

To evaluate the proposed algorithm, an example of
maneuvering target tracking problem which turns, in two-
dimensional space is simulated. Tn this simulation example,
the performance of the OPSKE PLM for the MTT has
been compared with the work suggested by Mahapatra
and Mehrotra (2000) as an example of the AUSKE method
by using the PL.M technique. As mentioned before in the
augmented state method the state vector includes the
mput vector 1.e., acceleration and jerk parameter in
maneuvering target tracking problem. The sampling
interval is T = 0.01 (sec) and target maneuver is applied at
9th second (900th sample). The iitial conditions are
selected smmilar for the AUSKE PLM as well as the
OPSKE PLM. The state vectors are:
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Xo=[x vi v W)L Ue=[up Eoug

fug _ x
Xk - [Xk Vk Yk

gl
viowp ool )

o u

where, x,, v and ji denote the position, velocity,
acceleration and jerk of the target along the x-axis,

respectively. We consider the target imitial conditions for

the state and the acceleration vectors as below:

X,=[2165m -80m/sec 1250m 25m/sec]

U,=[0g Og/sec 0g Og/sec]

X%~ [2165m —80m/sec 1250 m 25 m/sec
Og Og/sec 0O0g 0g/sec]

The target begins to maneuver as U900 =[0g
-0.7glkec  Og 0.4 gfkec] for 9 (sec)<t<90 (sec).

The measurement standard deviations for the target

range and azimuth are & = 100 (m) and &° = 2 (deg),

respectively. Thus, the measurement covariance matrix

is REZFOOOO 0

} in polar coordmates. The system
0 4

matrices are given by:

[T*/3 T2 0 0
T#/2 T 0 0
Y = 200
Q o 0 TH3A T2
| 0 0 T2 T
[T7/252 T°/72 0 0
T6/72 T?/20 0 0
= 2a0.
R oo 0 T/252 TO/T2
0 0 T6/72 TH/20
T /30 T/24 0 0
T*/8 T/6 0 0
= 2uo
2 ! 0 T°/30 TY/24
0 0 T/8 T'/6
B =101, P =011, P =1,
A B
Aﬁug = |:04:1 Cj’ Hﬁug = [Hk 02x4]>
o[ & Lo X, 7]
(Qk) Qk (Pk) Pk

where, 0, = 0.09 (m sec™) is the variance of the target jerk
and ¢ = 0.0123 (sec™") is the reciprocal of the jerk time

2 x]
LT oo T2 T2/6 0 0 constant T = 1/&. The measurement standard deviations
A = 0 1 oo .B, = T 20 30 of the target positions in Cartesian coordnates are
00 1T 0 0 T/ T2/6 selected in each iteration using Eq. 10. The Root Mean
:0 00l 0 ‘ 0 T Square Error (RMSE) index is used for the results
1T 00 10 evaluation. The OPSKE PLM is mathematically
P L I L equivalent to the AUSKE PLM. Advantage of the
k > kT . A . . .
00 1T o1 OPSKE PLM is that it is less computationally intensive
00 01 00 than the AUSKE PLM. Figure 1 and 2 show the actual
x 10 . .
ol T e et ":""':"--'--._-; ‘_
.
E -2 g
>< g
-4 : y
Atéualposition \
_pf- e OESKE-RLM.nethiod v
ATESKE-PLM method i
5 10 15 20 25 30
Time (sec)
El i -
= 600f OPSKE-PLM T
o AUSEE-PLM &
% 400 =
200 e
B =
= 5 10 15 20 25 30
Time (sec)

Fig. 1. The actual value and the estimation of the x position and averaged RMS errors estimations by the OPSKE PLM

and the AUSKE PLM methods
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4

x 10

= Atcual position

COPEEE-PLM method;
AUSKE-PLMmethod

Time (zec)

T
OPSEE-PLM

w

=

=
T

AUSEE-PLM

200

(=}
=

Averaged RMSE of y ()

[=}
!
t

Fig. 2:
and the AUSKE PLM methods
Table4: Performance of the OPSKE_PLM compared to the AUSKE_PLM
in 100 different scenarios of target motion
Performance OPSKE PLM AUSKE PLM
RMSE x (m) 31.1223 31.1223
RMSE v* (m sec™) 2.3446 2.3446
RMSE " {m sec™) 0.2311 0.2311
RMSE ¥ (m sec™) 0.0101 0.0101
RMSE y (m) 21.1433 21.1433
RMSE v (m sec™!) 1.5245 1.5245
RMSE v (m sec™) 0.1204 0.1204
RMSE ¥ (m sec™) 0.0054 0.0054

value and the estimation of x and y and RMS errors of x
and vy positions estimations by the proposed
OPSKE PLM and the AUSKE PLM, respectively. It is
clear that the performance of the proposed OPSKE PLM
is as well as the results obtained by the AUSKE PLM in
the maneuvering target tracking problem.

Table 4 shows that the performance of the proposed
OPSKE PLM 1s as well as the results obtained by the
AUSKE PLM using Monte-Carlo approach i 100
different scenarios of the MTT problem. Note that m this
example n =4, m = 4 and / = 2 and the operation savings
for the OPSKE PLM over the AUSKE PLM as shown in
Table 3 are 1868 (or 49.47%).

CONCLUSIONS

The proposed scheme is based on a new partitioned
dynamic modeling and intends to overcome the

computational expensiveness drawbacks of the other

20

ra
Ll

30

Time (zec)

The actual value and the estimation of the y position and averaged RMS errors estimations by the OPSKE PLM

works which are based on the augmented methods. The

proposed OPSKE PLM provides the optimal state
estimate, which is equivalent to that of the AUSKE PLM.
In addition, the new optimal algorithm relations designed
to work in Cartesian coordinates with quickly data
processing. Simulation results show the good
performance of the proposed algorithm and effectiveness
of this scheme in tracking maneuvering targets as well as
the AUSKE PLM.
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