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Abstract: This study deals with the tracking control problem of a robotic mampulator with changing dynamics.
A multiple-input multiple-output (MIMO) artificial neural network based generalized predictive control (NGPC)
controller was designed for a six-degrees-of-freedom (6-DOF) robotic manipulator random disturbances and
changing load. A three-layered neural network was used in the controller design to predict robotic manipulator
mputs which track a desired trajectory. Standard back propagation (BP) algorithm was used as a learming
algorithm to minimize the difference between actual trajectory and that predicted by the neural network. NGPC
controller was compared the conventional GPC under different control conditions. Results show that proposed

control improved the ability of GPC under uncertainties.
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INTRODUCTION

Evaluation of robot actuator inputs to track a desired
trajectory is one of the most basic and important problems
mrobotic (Sun ef al., 2001; Behera ef al., 1994). A robotic
mampulator 15 highly nonlinear system because of
interactions between its links. These interactions make it
hard to control. Several conventional methods such as
adaptive control, proportional-plus-integral-plus-
derivative (PID) control, self-tuming control, self-tumung
PID control and generalized predictive control have been
used inrobot control (Chen et al., 1999, Malki ef al., 1997,
Vega and Prada, 1991, Alonge et al, 2003,
Nasisi and Carell1, 2003; Kanev and Verhaegen, 2000).
However, because of high level interactions and nonlinear
dynamics, industrial manipulators which use conventional
linear control systems cannot be used over certain
velocity limits and the productivity 1s limited. Furthermore,
increasing performance needs also require improved
manipulator techniques. Therefore, it is necessary to
apply some advanced control techmques to provide high
quality tracking control. One of these control techniques
is generalized predictive control (GPC).

GPC is based on the use of a model which includes
the prediction of the future outputs over a certain horizon
(Clarke et al, 1987a, b). Thus, it can predict future
changes of the measurement signal and base control
actions on this prediction. GPC belongs to the class of

model-based predictive control (MPC) techmiques has
become popular over the past two decades as a powerful
tool for solving many problems. Today, this technicue is
still used widely because of their ability to systematically
take mto account real plant constramts in real-time
(Mahfouf et al., 1997, Bordons and Camcho, 1998,
Normey-Rico and Camcho, 2000, Zhang et al., 2004).

On the other hand, the conventional GPC algorithms
use linear models of the process to predict the output of
the process over a certain horizon and to evaluate a future
sequence of control signals in order to minimize a certain
cost function that represents the future output prediction
errors over a reference trajectory (Clarke et al., 1987a, b).
However, if the process 1s nonlinear, use of linear models
becomes impractical and the identification of nonlinear
models for control becomes necessary.

In recent years, the use of neural networks (NNs) for
nonlinear system 1dentification has proved to be extremely
successful (Huang and Lewis, 2003; Zamarrefio and Vega,
1999). NNs have been shown to possess good function
approximation capabilities and have been applied
successfully by many researchers in modeling some
poorly understood systems or processes. The results
demonstrated the feasibility of identification and
control of nonlinear dynamic systems (Tsai ef al., 2002;
Lu and Tsai, 2004). Therefore, artificial neural network
(ANN) was used in the predictive controller design to
improve the ability of GPC.
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NN based controller has been proposed by many
researchers (Palos et al., 2001; Laabidi ef al., 2008).
Gupta and Sinha (2000) have presented an intelligent
control system using a PD controller and ANN.
Takahashi and Yamada (1994) have presented a study
based on designing a NN controller, to control the tip of
the angular position of a single-link flexible arm. Yildirim
(2004) has proposed an adaptive robust neural controller
for two-degrees-of-freedom robotic manipulator. Proposed
neural controller has been shown to perform better than
the conventional control schemes. Temurtas et al. (2005)
have presented a controller ANN based on GPC for three
joint robotic mampulator. Their study can be cited as
closest to the work undertaken in this paper. In their
study, three independent single-input single-output
(SISO) controllers were used for control of jomts and
mechanical vibrations m the links were neglected. In
practical robot applications, mechanic vibrations n links
must not be neglected since they make hard to robot
control. On the other hand, if a number of controllers are
used in control design; many more hardware equipments
will be required. Therefore, this paper focuses on a
multiple-input multiple-output (MIMO) controller design.
In this study, MIMO NGPC controller designed for 6-DOF
robotic manipulator with random disturbances and load
effect. Conventional GPC was also used for comparison.
The controllers generate jomnt torques that will cause the
robotic manipulator to follow a desired trajectory for a
given trajectory. In the GPC, linear model was used to
predict robot actuator mputs whereas prediction was
carried out over a three-layered NN in the NGPC. The
curves of trajectory and velocity belonging to joints were
examined and end-effecter position errors were computed
for different control status. The results obtamned by using
NGPC were compared with those of conventional GPC.

GENERALIZED PREDICTIVE
CONTROL

Generalized Predictive Control (GPC) belongs to the
class of digital control methods called Model-Based
Predictive control (MBPC) and was first introduced by
Clarke and hus co-workers in 1987 (Clarke et al., 1987a, b).
MBPC techniques have been analyzed and implemented
successfully in process control industries since the end
of the 1970’s and continue to be used because they can
systematically take into account real plant constraints in
real-time.

The GPC system for the robot control is given in
Fig. 1.
manipulator, controller and parameter estimator.

It consists of three components, the robotic

Estimated
pam*netm 1 estimator

Robotic
manipulator

Fig. 1:Block diagram of the GPC system for robotic
marpulator

In the GPC algorithm, the process is supposed to
be represented by a CARIMA (Controlled Auto-

Regressive Integrated Moving Average) model
(Clarke et al., 1987a, b):
A(q™) ¥() = Blgut—1) + &)/ A 1)

where, y(t) denotes the output of the process, u(t)
denotes its input and £(t) denotes an uncorrelated random
noise.

A (g and B (q™") are polyncmials of q', the
backward shift operator:

Alqhy =1, +ia] q’ (2)
B = Db, g 3)
A=1-q"

In the prediction process, future outputs are
predicted by using past inputs and past outputs. Predict
step is selected short since using a great number of
elements for prediction causes high computation
overhead. In this study, the prediction was made for
future three outputs. Therefore, n, n, are selected as 2, 1
respectively. Initial values were used as follows; a, = a, =
0,b;=1,b,=0.

The prediction process is executed as follows:
We rewrite equation 1;

AQHA ¥ = BA u(t-1) +&(0) 4

v =(-a)yt -D+(a, -2yt - D+ a,yt-3 (5)
+byAut—1)+ bAu(t— 2) + &(t)

The first step predicted output ( ¥());

S\/(t + 1) = (1 - ﬂl)Y(t) + (al —d, )Y(t - 1) (6)
+a,y(t—2)+b,Au(t) + bAu(t -1)
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The second predicted cutput ¥(t+2),

S((t +2)=(1 —a —a, + 3—12)}/“-)Jr 31(1* a,+ az)y(tfl)
+a,(1-1,)y(t—2) +[b, (1 —a,)+ b JAu(t) (7)
+b,(1-a)Aut-1)

and the third predicted output: ¥(t+3);

Jl+3)=[-a —a,+a° +a,(2a,-2)]y)
+[a,(1-2, -3, +a")+a,(a, -2 )]yt -1 )
+a,l-a —a,+a )yt -2 +[b,d-a, —a,+a")
+b,(1-a)Aut) +bl-a, —a, +a, YAu(t -1

A (q™" and B (q7") parameters in equation (1) should be
updated each step of control. For this process, a
parameter estimator 1s needed to update. In our
application, Recursive Least Square (RLS) was used to
parameter estimation and detailed computational issues of
the RL.S are addressed in Durmus ef al. (2008).

The GPC strategy mimmizes a weighted sum of
square predicted future errors and square control signal
increments; the cost function for MIMO GPC is defined as
follows:

INGNGN = ) (Sr(t+j)—yr(t+j))T(Sr(t+j)—yr(t+j>)( )
j=H; 9

+3 (Auite -1V AG (Au(t+j-1))

j=1

where, N, 13 the mimmum costing horizon, N, 1s the
maximum costing horizon, N, is the control horizon, y is a
predicted output, vy, is the reference output. A is the
control input weighting factor and it is selected very small
(as A = 107°). Detailed computational issues of the GPC
are addressed in Clarke et al. (1987a, b).

NONLINEAR GENERALIZED PREDICTIVE
CONTROL FOR ROBOTIC MANIPULATORS

The nonlinear generalized predictive control (NGPC)
system for the robotic manipulator 1s given in Fig. 2. It
consists of four components, the robotic manipulator, a
tracking reference signal that specifies the desired
trajectory of the manipulator, an artificial neural networlk
for prediction and the Cost Function Mimmization (CFM)
algorithm that determines the input needed to produce the
desired trajectory of the manipulator.

The NGPC algorithm operates in two modes,
prediction and control. For realizing this aim, a double
pole double throw switch is used. The CFM algorithm
produces an output which is either used as an input to the
robotic manipulator or the manipulator’s neural networlk

Fig. 2: Block diagram of the nonlinear GPC system

model. The switch position is set to the robotic
manipulator when the CFM algorithm has solved for the
best input, u(n), that will minimize a specified cost
function. Between samples, the switching position 1s set
to the mampulator’s neural network model where the CFM
algorithm uses this model to compute the next control
input, u(n+1), from predictions of the response from the
manipulator’s model. Once the cost function is minimized,
this input is passed to the manipulator (Durmus ef al.,
2008).

The cost function in the NGPC 1s defined as following
equation:

N

JNGNLN) = S (v -yn (o Y 3 20 (Auim+ Y

j=Hy

By s s
+> . + .
T lun+p-u,,+e u,, —un+ji+e

(10)
Where:
] = 1,2,... #Hiterations
N, = The minimum costing horizon
N, = The maximum costing horizon
Nu = The control horizon
y, () = A reference trajectory
y, = The predicted output of the neural network
A = The control input weighting factor, it is selected
very small (as A = 107°)
Au(ntj) = The change in u andis defined as u

(nt)-u (nt-1)

Upand u,, = Maximum and minimum control inputs s 1s
the sharpness of the comers of the
constraint functior, € =107

The minimization algorithm used in the NGPC is
Newton-Raphson method because it requires less
iteratton  numbers  for  comvergence.  Detailed
computational 1ssues of the Newton-Raphson method are
addressed in Durmus et al. (2008).

Robotic manipulator neural network model for NGPC: A
multi-layer feed-forward network (MLFN) with tapped time
delays was used for the robotic mampulator NN model.
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¥, ()

Yo (1)

Fig. 3: Multi-layer feed-forward neural network model
with a time delayed structure

The network structure is given in Fig. 3. The torque, v, is
the control input to the manipulator system and the
trajectory, v is the output. The network inputs are past
values of the torque and the past values of the
manipulator’s trajectory. The network has a single hidden
layer with multiple hidden layer nodes and a single output
node.

The number of neurons in the mput and output layers
was decided according to the structure of GPC. The past
2 inputs and past 3 outputs were used for prediction since
over past data using leads to over computation. In this
state, n, d; and hid were selected as 2, 3 and 5
respectively. Consecuently, the designed neural networlk
has 36 inputs and 6 outputs.

This network is multilayer network (input layer,
hidden layer and output layer). Whereas the hidden layer
neurons use tag-sigmoid activation functions, linear
activation function is used for output layer neurons.
Equations used in the neural network models are given in
Eq 11-13.

Outputs of hidden layer neurons are:

g . 4 . 11
net;(n) = b, + ; w,u(n-i) +§ Wy, Y0 1) (1)

nety(n) L -nety(n)

¢
O;(n) = (net; (n) = | g

) (12)

Linear activation function outputs are:

yn(n):b+%leoj(n) (13)

where, j = 0 to hid-land hid is the number of hidden layer
nedes, net; (n) is the activation level of the j* hidden
node, f () 1s the activation function for the hidden layer
nodes, ny is the number of input nodes associated with
pastu (n), dy 1s the number of input nodes associated with
past y (1), w, is the weight connecting the j* hidden node

to the output node, w,, is the weight connecting the i*
input node to the j* hidden nede, y, (n-1) is the delayed
output of the manipulator’s joint used as an input to the
network and u (n-1) 15 the mput to the network and 1it’s
delays.

A training set was prepared by using the results of
conventional GPC. The robotic manipulator was
controlled for different trajectories to generate the traming
and test sets. To obtain the torque value at time t as a
output, values of torque at time (t-1), (t-2), values of
trajectory at time (t-1), (t-2), (t-3) and values of reference
trajectory at time (t-1) were used in the input stage as 36
elements. These data have been generated using GPC
controller for different trajectories selected uniformly.
Back propagation (BP) was used for training neural
network. 20, 000 mput and output vector sets were
generated with GPC algorithm, using the robotic
manipulator simulation software. The training process was
completed in approximately 2, 000, 000 iterations.

ROBOTIC MANIPULATOR MODEL

Used the robotic manipulator (6-DOF) is shown in
Fig. 4 (Tarn et al., 1993). The dynamic model of robot
includes kinematics equations, friction effects and effect
of carrying load at the end-effecter for given robot.

There are six mteractive second-order nonlinear
differential equations which give the dynamic behaviors
of 6-DOF robotic manipulator. The fourth-order Runge-
Kutta integration method was used to solve these
differential equations. The motion equations of robotic
manipulator were developed by Lagrange-Euler as follows
(Spong and Vidyasagar, 1989).

D)6 + H(6,8) + G(O)+1,(0)+7,(0) = «(1) (14)

where, 6, 8 and 6 are n-dimensional vectors, indicating
the joint acceleration, velocity and position, respectively.
D (6) is a n-dimensional symmetric inertial matrix. H(6,6)
is a n-dimensional vector, represents Coriolis and
centrifugal torques. G (6) is a n-dimensional vector,
represents torque due to gravity. T, (t) 1s n-dimensional
vector, represents torque due to friction effects. 1, (t) 1s
load effect, T (t) 1s, n-dimensional, the generalized torque
vector.

Robot arm friction model includes static, kinetic and
fluid friction used in this study (Rodrigo ef al., 2002). The
friction model 1s given following:

e B 2Dt tann(g) ek, (@) (19)
1+ 4
X

s
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Fig. 4: Configuration of the 6-DOF robotic mampulator

where, f, x, f, and k, are static friction, constant to
correct static friction due to Stribeck Effect, kinetic friction
and flud friction, respectively (Rodrigo et af., 2002).

In this study, position reference and velocity
reference trajectory for each joint were determined
according to the sinusocidal trajectory principle. The
motion for the sinusoidal trajectory is given in Fig. 5.

The equations motions for the sinusoidal trajectory
(Spong and Vidyasagar, 1989) are,

6(t) = a+bCos(wt) (16)
8(0) = — bwSin (wt) (17)
8(t) = — bw’ Cos(wt) (18)
T 0, + 89, __ef—eD
w = Ea = Tb = (—2 )
oli] = (@)-(@)Cos(’%) i=oon (9

(n = 6 for 6-DOF robotic manipulator)

olil = ¢ 2y Sisinc™h (20)

81i]= (@)(fﬁos(%) (21)

where, 0, (t) is the angular position of the joint i at time t,
0., 1s the imtial angular position of the joint 1 at time t, and
0.;1s the final angular position of the joint 1 at time t;

»
>

Fig. 5: The motion trajectory planning

The coordinate of end-effecter for robot arm is
computed as follows:
[ d, (cos(8, +6,)cos, sin 8, +sin (6, + 8, )cosd,) |
X =
| +d,sin(6, +6,) +a,co8(6, +6,) +a,cos6, | (22)
*cos6, - (d, + dgsin®, sin & )sin®,
[ d, (cos(, + 6, )cos8, sin 6, +sin (6, + 6, )cosd,) |
= | +d, sin (6, + €,)+a,cos(6, +6,)+ a, cosd, | (23)

*sin@ +(d, +d, sin 6, sin 0, ) cosO,

z=d,(cos(0, + ©,) cosd, —sin(0, +0,)cos9,sin 8, ) (24)

+d,cos(0,+6,)—a,sin (0, +6,)—a,sing,

THE DESIGN OF CONTROLLER USING NGPC FOR
6-DOF ROBOTIC MANIPULATOR CONTROL

Here, the design of the NGPC based on
ANN controller is given. The designed controller has 36
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Fig. 6: Block diagram of artificial neural network implemented generalized predictive controller

inputs and 6 outputs. To obtain the torque value at time
t as a output, values of torque at tume (t-1), (t-2), values of
trajectory at time (t-1), (t-2), (t-3) and values of reference
trajectory at time (t-1) are used in the input stage as 36
elements for 6-DOF robotic manipulator. Outputs are the
torques which will be applied to joints to track the desired
trajectories. These data also have been used for
prediction and learning of artificial neural network in the
NGPC. The block diagram of the control system is shown
mFig. 6.

The NGPC starts with the mnput signal, 6, (entered
angle of joints), which is presented to the trajectory
planning model. This model produces a tracking reference
signal, v, (n), which 1s used as an mput to the CFM block.
The CFM block produces an output which is both used as
an input to the plant (robotic manipulator) and to neural
network for prediction The newal network serves to
predict the plant outputs from N, to N, future time steps
m Eq. 10 by using past data. The predicted outputs
passed to CFM. The CFM minimizes cost function that
represents errors between reference signal and predicted
outputs of the plant until desired mimmization is achieved.
Once the cost function 1s mimmized, this input 1s passed
to the manipulator. This process repeats for each control
step.

For comparison of control algorithms, the following
control states and values were used as a scenario of
control.

The control states used in this study:

¢ There were carrying load and friction effects in the
control simulation

*  There were falling load and friction effects in the
control simulation

s There were disturbance (between -0.5 and +0.5
Newton*meters), falling load and friction effects in
the control simulation

The control values used in the simulation:

¢ The total simulation time is 10 second and total step
number is 10000

»  The end-effecter of robotic manipulator caries 5 kg
load m the state of carrying and falling load. And the
load 15 falling at the 4000th control step (at 4th
second) in the state of falling load

+  Random disturbances between -0.5 and +0.5 Nm were
added to the torques computed at the end of each
step for control states

RESULTS AND DISCUSSION

Some sample control results of the 6-DOF robotic
manipulator which uses GPC algorithm at the state of A
were given in Fig. 7. And some sample control results of
the 6-DOF robotic mampulator which uses NGPC
algorithm at the state of A were also given in Fig. 8 The
same trajectory is used for both methods. The start and
final angles of the joints are given in Table 1.

There are errors at the beginning of motion results
from nertia of motionless robot arm (Fig. 7, ). However,
angular velocity and torque errors are bigger in the GPC
than those in the NGPC. This can be because the neural
network improves the predicted trajectory at the
beginning of the motion. So, motion of the manipulator is
more smooth and flexible in the NGPC.

There were similar situations at the load changes. In
the Fig. 9 and 10, angular velocity and torque errors are
seen at tiune falling load (at 4th second) result from load
change. If the parameters of the system change in the
control process, the performance of control system is
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Fig. 7: Some angle and velocity graphs of joints using GPC (State A: with load and with friction)

Table 1: Start and final angles of joints

Final angle (rad)

Joints Start angle (rad)

1 -0.174532925199 (-10°)
2 -0.785398163397 (-45°)
3 0.698131700798 (40°)
4 -0.698131700798 (-40°)
5 0.872664625997 (50°)
6 0.000000000000 (0°)

0.000000000000 (0°)
-0.610865238198 (-35°)
1.047197551197 (607)
0.349065850399 (20°)
0.349065850399 (20°)
1.396263401595 (80°)

hardly affected. The errors were bigger in the GPC than
those of'the artificial neural network implemented NGPC.
It is shown that the influence of load change to the NGPC
is less than that of the GPC. This means that the NGPC is
much stable than GPC for the load changes. It was seen
that the proposed controller has better robustness in
resisting against the changes of the parameters of the
control system. The neural network provided quick
adaptation for NGPC whereas GPC could not adapt
quickly. There were also similar situations with random
disturbances (Fig. 11, 12).

Comparisons of the GPC and NGPC algorithms
control results are summarized and demonstrated in
Table 2 and 3 by using angle location errors and x, y, z
axis errors of end-effecter for all of the control status.
End-effecter coordinates of robotic manipulator were
computed using Eq. 22-24.

Angle location errors and X, v, Z axis errors of the end-
effecter are smaller in the NGPC than those in the GPC
(Table 2, 3). The difference between control results for the
carrying load, with random disturbances and the falling
load states can be easily shown. These values for the
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Table 2: Angle location errors of control algorithms for control status
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i

=
g2

Velacity of joint 1 (Radisec)
EER

8

o
2 =

Angular of joint 5 {Rad)
P
]

Some angle and velocity graphs of joints using neural network implemented NGPC (State A: with load and with

friction)

Control status (rad)
Joint Controller A B C
1 GPC 0.004173337500 0.004173351978 0.000173516747
NGPC -0.0000623%165 -0.000062553161 0.000129773015
2 GPC 0.001014069086 0.000761165639 0.006193076845
NGPC 0.000404175469 0.000208797211 0.000588918097
3 GPC -0.000371099469 -0.000375978325 -0.000380519649
NGPC 0.000162112323 (.00001 8390058 0.000036596777
4 GPC -0.000242959708 -0.000244147328 0.000402917819
NGPC -0.000024398726 -0.000016631267 -0.000476464764
5 GPC 0.000392873002 0.000409310388 (L.O00189147815
NGPC 0.000131973926 0.000017202783 0.000720890061
6 GPC -0.000013101317 -0.000013101317 (.000055395398
NGPC -0.000013209944 -(0,000013209944 -0.001354191916
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Fig. 9: Some torque and velocity graphs of joints using GPC (State B: with friction and falling load)

Table 3: The end-effecter axis errors for different control status

End-effecter coordinate errors (mm)

Control state

Controllers X v 3
A GPC -0.103896501760 2.328357064059 -0.505426604190
NGPC 0.364692902864 -0.032835056385 -0.263337821119
B GPC -0.279583222659 2.327907356465 -0.364074534378
NGPC (.162438537309 -0.034844165537 -0.120771968326
C GPC 4.067840656838 0.108070719422 -3.391902406906
NGPC 0.431026191143 0.076745334388 -0.364679197600

NGPC are less than that of the GPC. NGPC reached at the
targeted point with less error.

In this study, GPC and NGPC algorithms were
designed and applied to 6-DOF robotic manipulator for
joint control. Nonlinear prediction model was proposed
mstead of linear model to improve the ability of GPC.
Conventional GPC and NGPC algorithms were compared

according to different scenarios of control. When the
parameters of the system change in the control process.
the performance of control system 1s hardly affected. It
was seen that the proposed controller has better
robusiness in resisting against the changes of the
parameters of the control system and its trajectory

tracking performance was observed higher than
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Fig. 10: Some torque and velocity graphs of joints using neural network implemented NGPC (State B: with friction
and falling load)
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Fig. 11: Torque and velocity graphs of joint 2 using GPC (State C: with falling load and random disturbances)
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Fig. 12: Torque and velocity graphs of joint 2 using neural network implemented NGPC (State C: with falling load and

random disturbances)

conventional GPC’s under uncertainties. Artificial neural
network improved the accuracy of predicted trajectory at
the beginning of motion, load changes and with random
disturbances and provided quick adaptation.
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