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Abstract: The basic equations governing the free surface flow of a fluid are considered and approximated by
using a semi-compressible Smoothed Particle Hydrodynamics (SPH) method which is a grid-less Lagrangian
approach. It 1s found that the standard SPH method, which has been successfully applied to simulate the
transient free surface flows, could be used for simulation of multiphase flows with high density ratios, by doing
a correction on mass of mterface particles. The SPH modeling is shown to provide a promising tool to predict
the two liquid characteristics of free surface flows. To show the validity of the present method numerical
examples on bubble rigsing in a heavier fluid and luck-exchange flow are considered and a good agreement is

observed.
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INTRODUCTION

The Smoothed Particle Hydrodynamics (SPH) method
15 a powerful particle approach which was originally
developed for the study of astrophysics (Monaghan and
Gingold, 1983; Monaghan, 1988) and later employed to
study the wave overtopping over coastal structures
(Dalrymple and Rogers, 2006, Gomez-Gesteira and
Dalrymple, 2004). In the simulations of incompressible
flows using the SPH model, the mncompressibility is
achieved by employing an equation of state and the fluid
1s assumed to be slightly compressible, which 1s called the
weakly compressible SPH method. In SPH method,
materials are approximated by particles that are free to
move around rather than by fixed grids or meshes. The
particles are basically moving interpolation points that
carry with them physical properties, such as the mass,
velocity, viscosity, density of the fluid and any other
properties that are relevant. The inter-particle forces are
calculated by smoothing the information from nearby
particles in a way that ensures that the resultant
particle motion 1s consistent with the motion of a
corresponding real fluid, as determined by the Navier-
Stokes equations.

Despite its fully Lagrangian property, when the
standard formulation of SPH is applied to multi-phase
flows only small density differences are permitted
between the considered phases because it 1s umplicitly
assumed that the density gradient is much smaller than
that of the smoothing kemel (Monaghan, 1994;
Monaghan and Kocharayan, 1995, Monaghan et al,
1999). As aremedy, Ritchie and Thomas (2001) suggesta

summation of the particle-averaged pressure, not density,
to handle large density gradients. However, their method
does not satisfy mass conservation. Colagrossi and
Landrim (2003) modified the approximation form of spatial
derivatives to diminish the effects of large density
difference across the interface. Nevertheless, since the
density summation 1s replaced by a non-conservative
density evolution equation mass conservation is not
satisfied either. Although the conservation errors are
decreased somewhat by a special density re-imtialization
approach, they may accumulate and affect the flow
behavior considerably m long time computations. Hu and
Adams (2006) employed a particle smoothing function in
which neighboring particles only contribute to the
specific volume but not to the density. The resulting
algorithm resolves a density discontinuity at a phase
interface naturally and satisfies mass conservation since
a density summation equation was employed, this method
was suffering from clumping and clustering, so Hu and
Adams (2007) developed an incompressible SPH model
which solves the Poisson equation for pressure by a
projection formulation. This model 1s a good model for
two phase flows. The scope of this study is finding a
quick and simple way for comrection the standard semi-
compressible SPH model, for lugh density difference
multiphase flows. The essential step is that by changing
the mass of particles which have interaction with particles
from a different phase, the undesirable force between two
particles is controlled, this simple idea improves the
results very well and comparison model’s results with
previous numerical, analytical and experimental results
supports this ¢laim.
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In the present study, first the general concepts of the
standard SPH modeling for incompressible flows are
given. On this ground, the present SPH-implementation 1s
mtroduced and described in details and derived graphs
for mass coefficient in a case that light fluid is surrounded
by a heavy fluid (e.g, bubble rising in water) are
presented. Using these graphs the lock-exchange flow for
different fluids 1s simulated and compared with
experimental works and other numerical models.

MATERIALS AND METHODS

SPH is a particle based method for modeling coupled
fluid flows, solid structure deformation and heat transfer.
The particles represent blobs of discretised fluid or sohds
that move around in response to the fluid or solid stresses
produced by the interaction with other particles.
Importantly, SPH does not use any fixed grids or meshes
to track the fluid and calculate the flud velocities.
Formally, SPH 1s a Lagrangian continuum method for
solving systems of partial differential equations. The fluid
(or solid) is discretised and the properties of each of these
flud/solid elements are attributed to their centers, which
are then mterpreted as a particle. SPH uses an
interpolation kernel to smooth the values of any
information held by the particles to give smooth
continuous interpolated fields.

Governing equations: The almost incompressible medium
water is not made totally incompressible but more
compressible m SPH. The full mass conservation equation
has to be used:

%:ﬁJV.U (1a)
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The Eq. la-c give a time derivative of the density,
velocity and the position of fluid particles. p, u, v, x, t
represent the density, velocity, viscosity, position and
time, respectively and f; 1s a body force such as gravity.
With a relation between the pressure and the density it is
no longer necessary to solve the implicit Poisson
equation for the pressure.

Numerical model: Tn SPH, the fluid field is represented as
a collection of N neighbor particles, interacting each other
through evolution equations of the general form:
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where, p, u, P;, m;, x; are the density, velocity, pressure,
mass and position of particle 1, f; is a bedy force, IT; is the
viscous term and W, = W(r;, h) is the smoothing function.
r; = 1,~1, is the position vector from particle j to particle 1
and h is the smoothing length. By neglecting the
atmospheric  pressure, the equation between
pressure and density 1s as follow (Batchelor, 1974):

state

P. = PO{(S;)V —1} (3)

where, P, and p, are the reference pressure and density of
fluid, vy =7, B, = ¢’py/y and c is the used speed of sound
and mstead of using the real sound speed which needs
using a very small time step for the stability reasons, an
artificial sound speed of ¢ = 10 i, is used in SPH. With
this value for speed of sound, the maximum relative
density differences are small in order of ~ 1% (Monaghan,
1994). Now the calculation time stays reasonable and
water is only slightly compressible in SPH. Tn multi-phase
flows Py, py, ¢ and y may be different for each phase. The
quartic spline kernel which is used here 1s in this form

2.5-¢* -sa.5- gt +100.5- 9*

0£q<0.5
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U 1199zh 25
2= q -
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where, q¢ = r/h,, r, is the absolute distance between
particles i and j and. The spatial derivative of kernel
function for two dimension problems 1is calculated as:

X.—X. OW..
VR B P 5
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The choice of the smoothing length h is determining
the number of mteractions for each particle. When h 1s too
small, there are not enough particles nearby to interact
with, giving a low accuracy. When h is too big, local
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properties are smeared out too much, this gives a low
acouracy agaim and the calculation becomes slow. Here an
adaptive kernel fimetion 1s used by defining a varable
smooth length, using the following equation (Monaghan,
2005).

Npew = hold(poi)lfd ©)
Pnew

where, d is the number of dimensions. According to this
formula the smooth length is increasing by decreasing in
density and vice-versa. So, in places such as interface
between two phases or near the boundaries, kernel
function adopts itself to the conditions. With a smoothing
length around 1.4 times the initial particle spacing, Ap, the
circle of influence has a radius of 3.5 and 2.8 Ap for
quartic and cubic spline functions, respectively. With this
smoothing length every particle has 36 and 20 neighbors
in two dimensions for mentioned functions, respectively.
That 15 a good optimum for both accuracy and calculation
speed.

IT; is the viscous term and is defined as an artificial
viscous stress term. Different methods for defining this
term have been produced by scientists (Monaghan, 1994;
Cleary, 1998, Gomez-Gesteira and Dalrymple, 2004). One of
the prevalent defimtions which 1s used in this study 1s
(Monaghan, 2005).

__G 7
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P=(p;+P;)/2 is the average density. W; =1; -1, this is the
velocity difference between two particles. =(c +0,)/2
is the constant for defining the viscosity difference
between two particles and @ 1s chosen normally between
limits 1 > ¢ > 0. B 1s a coefficient which in all simulations
15 equal to 2. This artificial viscosity introduces both
shear and bulk viscosity, but with neglectable changes in
the density it is almost entirely shear viscosity. This
approach to model viscosity guarantees that momentum
1s transferred from the particle with the highest velocity to
the particle with lowest velocity.

Colagrosi and Landrim (2003) showed that the
averaging of the densities helps ensure that the free
surfaces are smooth and physically acceptable and
Dalrymple and Rogers (2006) performed this filtering every
40 time steps by reimitializing the density of each particle
according to:

T
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In this study, the remitialisation of density is done
every 40 time steps for each phase separately, it prevents
of density deviations and keeps the density of particles
near to reference density.

The XSPH correction for movement of particle 1s
included according to Eq. 9, it means an average between
the particle’s velocity and the average field velocity from
all neighbor particles 15 used for moving a particle in
Eq. 2c¢. This smoothing on velocity prevents particles
penetration. Also for consistency reasons, the smoothed
velocity has to be used in continuity equation. It should
be noted that the new smoothed velocity is used just in
Eq. 2a and ¢ and m the momentum equation the non-
smoothed velocity 1s used (Monaghan, 1989).

u-—u.
" j i g
uiui+s§_jmj[ — Wij 9)
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where, € is a constant (0 < € < 1). With & =1 the particles
are moved with the field velocity, with € = 0 the particles
are moved with their own velocity, normally & = 0.5.

Time integration: By using the SPH approximation, three
differential equations should be integrated in time:

D
P _Fi,x) (10a)
Dt
Dy _ (10b)
Pu_gux
Dt uX,p)
Px g (10c)
Dt

These differential equations are integrated in time by
using the predictor-corrector time integration which
predicts the velocity, density and particle position at the
intermediate time steps, as follows:

Predictor step:
Q2 n %G(un—1/2,pn—1/2’Xn—1/2) (11a)
pn+1/2:pn+%F(ﬁn=Xn) (11b)
Xn+1/2:Xn+§ﬁn (11¢)
2
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where, A%, A" and A™ denote the value of variable A
at the beginning, intermediate and at the end of (n+1)th
time step, respectively.

Corrector step:

o O SLG(Hn+1/25pn+1/2,Xn+1f2) (12a)
sl _ynt1/2 8 n (12b)

2
onHL _ on+1/2 +%F(ﬁn+1,xn+l) (12¢)

With these predictors the time integration is second order
accurate. The time step, Ot, is calculated according to the
Courant condition modified for the existence of viscosity:

Bi< min{&O,G(L)nﬂ/l] (13)
Yo

dt, is the initial time step, h is the smoothing length, o is
a coefficient between zero and one, normally ¢ = 0.5 and
v, 18 defined in Eq. 7b.

Boundaries: Boundaries in SPH can be modeled by virtual
particles that characterize the system lumits. Basically,
three different types of particles can be distinguished:

(a) Boundary particles with repulsive forces: The
closed boundary is modeled with a single row of
boundary particles with mass, fixed density equal to

Their
positions are fixed or external imposed during the
calculation (Fig. 1a). A repulsive boundary force 1s
used to stop approaching fluid particles in analogy
with the forces among molecules (Monaghan, 1994,
2005).

(b) Quasi fluid boundary particles: One or more rows of
fixed fluid particles are placed at the boundary. No
estimates of boundary forces or directions are
needed; the boundary particles just like fluid particles
verify equations of continuity and state, except that

fluid particles density and no pressure.

their position is fixed or externally imposed in time.
They build up pressure just like normal fluid
particles; this is how they prevent particle
penetration. Fluid particles near the boundary have
mteraction with a double staggered row of quasi-flud
particles. When a slip boundary is needed these
quasi fluid particles are used m the calculation of the
viscous stress terms, for a free-slip boundary they
are not used (Crespo et al., 2007).

(@
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Fig. 1. Modeling of closed boundaries in SPH method, (a)
boundary particles with repulsive force and (b)
ghost particles, dark particles are fluid and gray
particles are ghost particles

(c) Ghost particles: For every particle within a distance
shorter than the kernel support radius (e.g., 2 h, for
cubic spline function) from the boundary, a virtual
(ghost) particle 1s mirrored outside the boundary
every time step (Randles and Libersky, 1996). Both
particles have same mass, density and pressure, but
velocities normal to boundary are opposite. The
velocities parallel to boundary can be the same 1n
sleep boundaries and opposite for non-slip ones
(Fig. 1b).

In this research the closed boundaries are simulated
by ghost particles; the main advantage of this method is
that boundary 1s compatible with different phases and it
can adopt itself with fluid particles. Because we are
working with particles with different characteristics,
especially with different mass and densities, the boundary
15 adaptive with particles. By using fixed particles for
closed boundary, either quasi-fluid particles or repulsive
force particles, there will be difficult to siumulate an
adaptive boundary which can be compatible with different
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phases. Also, using particles with repulsive forces impose
an undesirable kinetic energy in system which needs
some imtial time steps for dampmg this energy. For
problems which start with an mstability such as bubble
rising or dem breaking, imtial dampmg of the kinetic
energy 1s difficult but by using ghost particles the amount
of mmitial kinetic energy is small and there 13 no need to
initial damping.

In this study, the bottom and wall friction are defined
by selecting the velocity of ghost particles in direction
parallel to boundary in this form

g :Cv-“f (14

where, 1, and u; are the parallel to boundary velocity
components of ghost and fluid particles, respectively and
C, i a coefficient which defines the amount of friction and
slip or non-slip boundary (-1<C,<1), n Fig. 1b tlus
coefficient 1s equal to 0.3.

Correction in standard SPH: The standard SPH which 1s
used for simulating two liquids with different density
ratios, works well for density ratios greater (p/py) (than
0.1, but for smaller density ratios it suffers from different
problems. At smaller density ratios, because particles
attain large velocities in opposite directions on the two
sides of the interface, the instability occurs sooner and
the solution rapidly deteriorates. We understood that the
main source of mereasing velocities in the interface 1s the
mass differences between two particles which are belong
to two separate fluids; this mass difference in momentum
equation causes the increase of the rate of velocity
changes. So, we concentrated on changing the mass of
particles which have interaction with particles from other
fluid artificially. Two coefficients have been defined as
cmy and cm,; which are the coefficient of mass of dense
fluid and Light fluid, respectively. When a particle from
denser fluid interacts with a particle from lighter fluid, the
masses of these particles are changed as follows:

m =cm m
d new dd (15)

My g = CM 1y

In order to finding a regular method for defimng these
coefficients, several tests with different particle sizes for
different density ratios have been done for evolution of
rising a circular bubble through the imtially still heavier
fluid. The brief of these simulations 1s that, as density
ratio goes to one or particle size goes to zero, the value of
coefficients cm, and cm,;goes to one.

MODEL VERIFICATIONS

The bubble rising in a heavier liquid: We found that
numerical stability of a two-phase flow model with SPH in
a case that lighter fluid is surrounded by a denser fluid is
more difficult than a case which denser fluid is
surrounded by lhghter fluid. In this case a circular
bubble of fluid A 1s free to rise through the initially
still fluid B. we suppose that surrounding liquid is water
{pe = 1000 kg m™) and the simulations are done for
bubbles with different characteristics. According to the
experimental and analytical results (Batchelor, 1974; Liu
and Zheng, 2006; Kwaguch et al., 2006), if the volume of
a bubble in water increases beyond 0.0006 cc, the bubble
becomes oblate, owing to the variation of pressure in the
water over the surface of the bubble and it 1s also
observed to rise in an oscillatory manner. Further
increasing in the bubble volume is accompanied by a
progressive flattening of the rear face of the bubble and
for volume above 5 cc, for which surface tension is
negligible, the bubble is shaped like an umbrella. The rear
face is rather unsteady and the edge of the slice is jagged
and iregular, but by contrast the whole of the front
appears to be steady, smooth and closely spherical or in
two dimension circular (Fig. 2). Here we consider the
general shape of bubble and the speed U with which the
bubble rises through the water. According to analytical
solution of Batchelor (1974) and comparison with
experimental results (Davis and Taylor, 1950) for a wide
range of bubble sizes and different liquids the following
formula has been produced for two-dimensional bubbles:

U= % g(M)R (16)
Pa

Fig. 2: Photograph of air bubble m mtrobenzene;
R=3cm, U=0.37msec” (Simplified from Davis
and Taylor, 1950)
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Fig. 3: Comparison of SPH results (—) for bubble rise
(rear face of bubble) with analytic formula (_)
(Ratchelor, 1974), p/p,= 0.001, cmy=1.0, cm,= 2.5,
dp=004andR =028 m

where, R 1s the radius of curvature of the bubble surface
and g is the gravity acceleration. p, and p, are,
respectively the density of surrounding liquid and bubble.
In the case of bubble rising, if cm, be selected less than
one, particles of bubble will spread among water particles
and this is not desirable, also for high density ratio using
mass coefficients equal to one result in deterioration of
model. So for balance the forces from near interface
particles, the mass of lighter particles should be increased
by selecting cm; greater than one. The position of rear
face of air bubble, p =1 kg m ™~ with radius equal to 0.28 m
in a tank of water, p, = 1000 kg m is compared with
analytical formula (Eq. 16). There is a time lag between two
results, because m SPH model, an mitial interaction
between particles, causes a bit decreasing in volume of
bubble, but by shifting the graph of SPH to left a good
agreement is considered (Fig. 3). In this simulation the
artificial viscosity coefficients of air and water are 0.001
and 0.01, respectively. For finding proper em, for bubbles
with different densities in water and for different particle
sizes, the shape and speed of rising bubble are
considered. The final values for cm; are shown in Fig. 4. In
all simulations which have been done for finding the
proper cm, an agreement similar to Fig. 3) should be
achieved and the shape of rising bubble should be similar
to Fig. 2 and 5.

By rise of bubble, the circle or changes to a
mushroom shape and then the tail of bubble is separated
by vortex current and finally there is an umbrella shape
bubble with a flat rear face (Fig. 2, 5). By increasing the
density ratio and decreasing the particle size and
mcreasing the resolution of model the amount of cm; 1s
going to one. Tn all simulations the value of cm, is equal
to one, just for density ratios larger than 0.5, for reaching
at exact speed of bubble rising, there is need to mcreasing
the mass of surrounding particles by choosing cm, greater

—o— dp =2/100
—o— dp =2/50
—a— dp =2/40
2+
&
Q
l_
C T T
0.001 0.01 0.1 1

PP,

Fig. 4. The values for cm, against density ratio of two
fluids. Different graphs show different particle
sizes; -0-, -O- and -A- represent particle size of
0.02, 0.04 and 0.05, respectively

SR P

e Rl B Ay
of et o L T P T
*." ;:. = -‘3"4}5:'!%

-—.‘1 ‘r‘_ =T
e — l-‘%\- ::'_;' ry "
IG..“'-J_

TTRo.6d

0.5

I.n-l
- -F.I'.l?""'

o=

Fig. 5: Air bubble rising in water, The frames show the
position and shape of bubble from bottom to top at
times 0.0, 0.2, 0.3, 0.4, 0.6, 0.8 and 1.0 sec. The
conditions are sunilar to Fig. 3
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than one, in these cases cm, should be chosen greater
than one for keeping the shape of bubble in correct form.

For this case study one fluid was surrounded by
another one, completely, but i a lot of practical problems,
there is a changeable interface between two phases. In
these cases it is possible to choose special amounts for
cm, and cmy by an engineering judgment according to
results of this section, here we want to model lock-
exchange between two fluids with high density ratios
using the mentioned method.

High density ratio lock-exchange flow: Lock-exchange
flow is a good test for direct numerical simulations of
flows of large density difference fluids. When a horizontal
channel 13 divided into two parts by a vertical splitter
plate and each chamber 1s filled with a fluid of different
density, an intruding, gravity-driven flow occurs when the
splitter removed. Tt consists in the spread of a dense
current of the heavier fluid under the lighter fluid and a
lighter fluid current above the heavier fluid, as 1s shown
in Fig. 6. This referred to as lock-exchange flow. In the
experiments by Grobelbauer et al. (1993), gases with a
density ratio of up to 21.6 were released m an unevenly
divided horizontal channel of half-height H = 0.15 m, as
shown in Fig. 6. The lock gate could be placed at a
distance 20 H from the right or left wall and 10 H from the
other one. The passage tume of either the light or dense
front was measured at fixed positions on the horizontal
walls of the larger chamber and the Froude number of
each front for the various gas pairs was calculated.

Table 1 shows the pairs of used gases and the range
of conducted numerical simulations. The dynamic
viscosity u of these gases lies between 12.57x10° Pa sec

Lock-gate :

2H

Py

20 H

Fig. 6 Lock-exchange flow, experimental setup used by
Grobelbaver et al. (1993)H=0.15m

{freon 22), 18.64x10° Pa sec (helium) and 21 10" Pa sec
(argon), while the kinematic viscosity (v) ranges from
3.43x107° m® sec’ (freon 22) to 1.10%10~* m’ sec™’
(helium). Thus, it 18 natural to keep the dynamic viscosity
constant in the attempt to reproduce these experiments by
numerical simulation. This might be different for liquids.
At the mterface between the dense and light fluids, shear-
layer mstabiliies develop which give rise to Kelvin-
Helmholtz billows. The smoke visualization by
Grébelbauer ef al. (1993), indicates some instability on the
interface especially close to the dense front when the
density ratio 1s large. As long as this mnstability remains
two dimensional, its essential features are accurately
captured by the direct numerical simulations. In order to
validate the numencal simulations presented in this study,
the conditions of the experiments Grobelbaver et al. (1993)
were reproduced as closely as possible. The parameters
of four of these experiments reproduced by numerical
simulation are shown m Table 1. The characteristic
Reynolds number of these flows was calculated with the
viscosity p and density of the lighter gas, Re = pUh/p;. By
using the SPH method the kinematic viscosity is
calculated from this formula (Monaghan, 2005).

15
v=——
112

(17)

Vg

The coefficients for dense and light particles, cmyand
cm,; are also shown in Table 1). An adaptive kernel
function which its smoothing length varies according to
the changing of density is used here for increasing
automatic and unconstrained resolution in intrusion
fronts, which have steep density and velocity gradients.
It is assumed that for all amounts of P, the three-
dimensional effects are negligible, so it is possible to use
the two-dimensional numerical model for decreasing
computational costs.

In Fig. 7 the numerical results of our SPH model
are compared with the experimental results of
Grobelbauer et al. (1993) and with numerical results of
Etienne et al. (2005).

For the light front the agreement between the arrivals
of the simulated and the experimental fronts is as well as

Table 1: Values of the density parameter p* and Reynolds numbers in the experiments of Grobelbaver ef . (1993) and in the numerical simulations presented

here
SPH model

v u

(m?sec™h) Fluids R. (msec™) g o cimg oy B p*
1.51x107° No experiment 1.2x10° 121 1000 10 0.7 1.2 0.990 99.0
1.1x107* R22 and helium 7.49x10° 5.51 1000 47.6 0.9 1.2 0.955 20.6
1.1x107* Argon and helium 4.93x10° 3.63 1000 100.7 1.0 1.2 0.904 8.93
1.51x107° R22 and air 1.7%104 1.71 1000 334 1.0 1.1 0.706 1.99
1.26x107° CO, and argon 4.8<104 0.40 1000 900 1.0 1.0 0.228 0.11

v = /pp Re = plhl, U=, fBel, ,* = (g P 7og Py and B=(p, —p,)/p|
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Position (m)
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Fig. 7. Comparison of the numerical and experimental results, (a) light front and (b) dense front. For lock-exchange, in
all cases, Exp: Experimental results of Grobelbauer et al. (1993), FE: Finite Element model of Etierme ef al. (2005),

SPH: Current SPH model, p; = 1000 kg m and & = (py—p,Vpy
0.8 -
(a) ® Grobelbauer ef al. (1993) (b) @ Grobelbauer et al. (1993) Af
o Etienne et al. (2005) N 08 o Etienne ef al. (2005)
A SPH A SPH

)

0.0 T
0.0

— 1.872(1(1- P%Y™

Fig. 8 Comparison of the numerical and experimental results for Froude numbers, (a) Light front and (b) dense front,

pg = 1000 kg m™ and & = (p;~p,)/py

the results of Btienme et al. (2005). For the dense [ront, a
nearly constant shift in time between the calculated and
measured front arrivals 1s observed (Fig. 7b) sunilar to
Etienne et al (2005) numerical results. Possible
explanations for this time shift according to reasoning of
Etienne et al (2005) are either a large numerical
inconsistency in time around t =0 or a time lag in
the measurements. Thus, we are left to suppose that
there 13 either a uniform time lag i the measured arrival
time of the front, which may be due to a detection
problem, or that the time shift is due to the opening of the
gate.

In Fig. Ba and b, the experimental and numerical
Froude numbers fr, =u

1T
dense fronts for different density ratios are compared.

ffeH and Fry=U, /st of light and

Since the Froude mnumber only accounts for the
established velocity of the front, the shift in front arrival
between numerical and experimental results has no effect.

Tt is shown from Fig. 8a that, for the light front, the
SPH model 15 in close agreement with the experiments of
Grobelbauer et al. (1993) and also with numerical results

of Etienne et al. (2005), numerical and experimental results
concerning Fr, deviate from the straight line " /42 .
Figure 8b shows that for the dense front, the SPH model
as well as the model of Etienne et al. (2005), for
Reynolds numbers corresponding to the experiments of
Grébelbauer ef al. (1993), fit closely the experiments. The
data points can be closely fitted by a power law of the
form rr =18420-a-p"03).

In Fig. 9 the shape of lock-exchange flow and
nondimensional vorticity for p = 0.11, at two stages in the
flow development 18 shown. The vorticity of each particle
is defined as (Monaghan, 1992):

W, :Ej‘fmj(ui —uj)xViWij (18)

The general shape of vorticity 13 approximately
similar but is not in excellent agreement. This may be
iumproved by doing some comrection on vorticity
formula in SPH and by increasing the resolution of SPH

model.
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Fig. 9. Comparison of vorticity at the interface of two fluids,

from SPH and the density profile, respectively
CONCLUSION

A multi-phase free surface flow implementation of
Smoothed-Particle Hydrodynamics (SPH) is presented and
a new correction on standard SPH is provided. In this
model without defimng the interface between two phases
or using complicated correction for standard SPH method
and just by changing the mass of particles which have
mteraction with particles from other phases according to
derived graphs from bobble rising in a heavier fluid and an
engineering judgment, it is possible to model the violent
two-phase free surface fluids with density ratios (py/p;) up
to 1000. Numerical examples are investigated and
compared with analytic solutions, previous results and
experiments. The results suggest that this method can be
faithfully applied to multi-phase flows. Since its
construction is based on the standard SPH method the
mvolved corrections are simple to implement and suitable
for straightforward extension to three dimensions.
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