——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com




Tournal of Applied Sciences 8 (21): 3938-3944, 2008
ISSN 1812-5654
© 2008 Asian Network for Scientific Information

An Ant Colony Algorithm for the Flowshop Scheduling Problem

'S.J. Sadjadi, *J.L. Bouquard and ‘M. Ziace
'Iran University of Science and Technology, Tehran, Iran
*University Frangois-Rabelais, Tours, France

Abstract: In this study, we considered the flowshop scheduling problem with the objectives of the makespan
(F//C,_,) and the total flowtime (F//Xf) separately. The permutation case of the problem was first solved by an
Ant Colony Optimization (ACO) algorithm. The permutation solutions of this ACO algorithm were then
mnproved by a non-permutation local search. In order to evaluate the performance of the proposed
metaheuristic, computational experiments were performed using the well-known benchmark problems. A
comparison with Rajendran solutions and the best metaheuristic solutions known for Taillard benchmark
problems was carried out, show that the proposed ACO algorithm was clearly superior to the above

metaheuristics.

Key words: Scheduling, flowshop scheduling problem, ant colony algorithm, metaheuristic, local search

INTRODUCTION

In a flowshop problem, a set of jobs must be
processed on a number of sequential machines, each job
has to be processed on all machines and the processing
routes of all jobs are the In the general
(non-permutation) case of the flowshop scheduling
problem, the sequence of jobs on each machine may be
different from the sequence of jobs on another machine.
In the permutation case, these sequences are the same for

same.

all machines.

Tt is proved that the permutation flow shop does not
necessarily provide an optimal solution (Liao et al., 2006).
These people show that the performance of
nonpermutation schedules is better than that of
permutation schedules. In general, when there are more
than three machines, permutation schedules are no
longer dominant (Koulamas, 1998). In comparison with
the permutation schedules, the performance of
non-permutation schedules may be considerable if the
problems have nonregular performance measures like
maximum tardiness or weighted mean tardiness
(Liao et al, 2006). The non-permutation schedules may
provide much better solutions in such situations.
However, almost all existing researches have focused on
permutation schedules and there is a lack of sufficient
analysis on non-permutation scheduling problems in the
literature (Cheng et al., 2000).

As the problem size grows bigger, identifying the
best permutation schedule itself becomes quite difficult.
Obviously, finding an optimal solution when sequence

changes are permitted 1s more complex and difficult
(Pugazhendhi et al., 2002). In the literature, heuristic
methods have wusually been wused to solve the
non-permutation flowshop scheduling problems. Some of
them are Jain and Meeran (2002) and Koulamas (1998).
Two widely used objectives in the literature are the
makespan and the total flowtime, which are based on the
completion times. The literature abounds with numerous
and very different techniques for the permutation
flowshop scheduling problem with these objectives. Ruiz
and Maroto (2005) have presented an extensive review
and evaluation of many heuristics and metaheuristics for
the permutation flowshop scheduling problem with the
makespan criterion. Varadharajan and Chandrasekharan
(2005) consider the bicriteria permutation flowshop
scheduling problem with the objectives of minimizing the
makespan and total flowtme of jobs and present a
Multi-Objective Simulated-annealing Algorithm (MOSA)
for solving the problem. Rajendran and Hans (2004) have
recently presented two ant colony algorithms (M-MMAS
and PACO) for solving the permutation flowshop
scheduling problem with the objectives of makespan and
total flowtime. The solutions of their methods are the best
results obtained so far on only one mainframe. We show
that the method proposed n this paper can obtain better
solutions than the M-MMAS and PACO. A similar work
has been done by Vallada and Ruben (2008) for the
makespan criterion. Their research is a state of the art on
the literature about the permutation flowshop scheduling
problem with makespan. They propose cooperative
metaheuristic methods for the problem. They use the

Corresponding Author:

Mohsen Ziace, Department of Industrial Engineering, Iran University of Science and Technology,

Narmak, Tehran, Iran Tel: +98-581-2222766 Fax: +98-21-77240482
3938



J. Applied Sci., 8 (21): 3938-3944, 2008

island model where each island runs an instance of the
algorithm. We compare our method with the best
solutions of this cooperative metaheuristic (with 12
1slands) and show that our solutions are close to those
reported by Vallada and Ruben (2008) but they have used
simultanecusly 12 processors.

In this study, we consider the m-machine n-job
tflowshop scheduling problem with the objective functions
of the makespan and the total flowtime separately. We
assume that the ready times of all the jobs are equal to
zero. Therefore, the total flowtime 1s equal to the total
completion time. We develop an ACO algorithm to solve
the permutation case of the problem. The permutation
solution of the proposed ACO algorithm is then improved
by a non-permutation local search. Therefore, the end
solution of the method may be a non-permutation
schedule. Tn order to evaluate the performance of the
proposed metaheuristic, we implement the method for the
benchmark problems of Taillard (1993) and present the
results of the computational experiments. Fmally, the
conclusion remarks of this study are presented at the end
to summarize the contribution of the study.

AN ACO ALGORITHM FOR SOLVING THE
PROBLEM

Liao et al. (2006) show that there 18 hittle improvement
made by non-permutation schedules over permutation
schedules with respect to the completion-time based
criteria such as makespan and total flowtime. Therefore,
the proposed ACO algorithm 1s designed for generating
only the permutation sequences. However, we store o
best permutation solutions of the ant colony procedure
and then improve all of them by a rapid non-permutation
local search. Storing best solutions for improving them
may have an important role to increase the performance of
the method. The steps of the proposed ant colony
algorithm are as follows. Let z* be the objective function
of the best sequence obtained so far (BS). [, K are the
number of jobs and the number of machines respectively.

Step 1 (finding a seed permutation schedule): The
algorithm uses a constructive method to find an 1mtial
permutation schedule. We wuse the NEH heurstic
(Nawaz et al., 1983) to generate an initial permutation
sequence for the objective of minimizing the makespan
and a heuristic proposed by Woo and Yim (1998) to
generate an mitial permutation sequence for the objective
of minimizing the total flowtime of jobs. These heuristics
are powerful methods for solving a permutation
flowshop scheduling problem (Ruiz and Concepcion,
20035, Woo and Yim, 1998).

Step 2 (first local search): The first local search is done
using the pair-wise exchanges (Allahverdi, 2003), on the
sequence as follows. We keep n-1 best solutions.

2-1)Let: counter=1,n=1,

2-2) Imprv =0,

2-3)Fory,= 1(1)J-1):
Fory, = (y+1) (D T

Replace the job in the position y, with the job in the
position y, without changing the positions of the other
jobs. If the objective function of the resulted permutation
sequence is less than or equal to z*, do the following
settings:

¢ Set the resulted sequence to &, and its objective
function to z*

* n=ntl,

¢  Imprv=1,

Otherwise, replace again the job in the position vy,
with the job in the position y,.

2-4) counter = counter+1,
2-5) If counter = C, and Imprv=1, go to step 2-2,
Else go to step 3

Step 3 (second local search): All of n sequences obtained
from the previous section are mmproved by the second
local search. This search 1s done based on the shift
neighborhood method (Osman and Potts, 1989), which is
defined by removing a job at one position and putting it
to another position. The local search continues until no
new 1mprovement oceurs. Let ny = max (0, n-1001). The
steps of this local search are as follows:

3-1) Let: counter =1,
3-2) Imprv =0,
3-3)Fory,=1(1)I:

Fory, =1 (1 1(y; # y.):

Remove the job at the position y, and put it to the
position y, in the sequence 8, - It the objective function
of the resulted permutation sequence is less than or equal
to z¥, do the following settings:

*  Set the resulted sequence to 8* and its objective
function to z*,
¢  Imprv=1,

Otherwise, put again the job in its first position (y,),
3-4) counter = counter+1,

3-5) If counter = C, and Imprv=1, go to step 3-2,
Else go to step 3-6,

3939



J. Applied Sci., 8 (21): 3938-3944, 2008

3-6)n, = nyt+1,
3-7) If ng=<in go to step 3-1.

The best permutation sequence obtained from this
step 1s now considered as a seed sequence for the ant
colony algorithm which 1s started from the next step.

Step 4 (setting pheromones): Let f; be the pheromone trail
intensity (or desire) of setting job i in position j in a
sequence. Initially f.’s are calculated as follows:

£ {1 +3/z" Ifjobiis assigned to position j in BS,

“h otherwise,

We consider also F; as the sum of the pheromones
from position 1 to position j (Rajendran and Ziegler, 2004).
It may be interpreted as the desire of setting job 1 at a
position less than or equal to  and calculated as follows:

E =3, Vi

1

Step 5 (construction of an ant sequence): Different
methods were tested to generate an ant sequence (AS)
from the values of the pheromones (Dorigo and Stitzle,
2004). Finally, we chose the following method for it
provided better performance.

Forj=1(1)Ido:

*  Select the following job for the °th position of the ant
sequence, if it 18 not scheduled so far,
¢ The job with the biggest F; with the probability
.
¢ The job with the second biggest Iy with the
probability o,
¢ The job with the third biggest F; with the
probability o,
¢ The job with the fourth biggest F, with the
probability c,,
¢+ If no job has selected for j’th position of the ant
sequence, among non-scheduled jobs, select one
with maximum F;.

We chose the s such that o = 2 o, and obviously,
Zo, = 1. That is, o, =815, «,=4/15, «,=2/15 and
oy = 1/15.

Step 6 (local searches): Use local search procedures of
steps 2 and 3 forn, = n-1.

Step 7 (updating pheromones and best sequence): BS is
updated if the objective value of AS is less than that of
BS. The pheromones are also updated as follows to take
mnto account the new best solution.

Axf®+(+d)/z  Ifd >0 | Ifjabiis assigned
£ =S Axf 1z Ifd, < 0| topositionjin AS,
Ax f;f“ otherwise,

In the above relation, A is the evaporation rate (we
set A = 0.9), z is the objective value of AS and d, is
calculated from the following relation:

d, =

B(Zi:z)xloo
z

B is a parameter which sets the importance of the
improvement {(we set B = 2). F;’s are also updated as
follows:

To explamn the above pheromone settings, suppose
that job 1 is assigned to position j in BS and £, 1s set to
1+3/z*. Non-promising ant sequences get pheromone
value of 1/z in each iteration and therefore, missing
randomly BS in the pheromone settings may occur after at
least three iterations. The lower pheromones instead of
1+3/z*, for example 1+2/2*, may increase the probability of
missing rendomly BS and ligher pheromones may lead to
cumulate the pheromones in BS and so the promissing
sequences may hot be considered, even if we contact with
them in some ants. However we have used d, parameter
for decreasing the probability of occurring this situation.
It means that if we find a sequence AS which is better
than BS, the phromones of that AS will be increased in
comparison with the regular increment of phromones. The
value of this increment is proporticnal to the amount of
difference between the objectives of AS and BS.

Step 8 (stop criterion): Stop criterion can be defined
either by an upper bound on the number of iterations
(ants), or by an upper bound on the computational time.
Stop if selected stopping criterion is met, otherwise go to
step 5.

Step 9 (non-permutation local search): Several best
permutation schedules are kept for the non-permutation
local search. In this step, all of them are subjected to the
following improvement algorithm:

A better solution is searched in the neighborhood of
the current solution and the process stops when no
mnprovement 18 found. A neighbor of a solution 1s
obtamed by a pairwise exchange of two jobs on the k first
machines or on the k last machines, for k =1 to K. The
pairs consists of two jobs, the positions of which are not
further than 2: A job of rank j is tested for an exchange
with the job of rank (j+1) and the job of rank (j+2).

3940



J. Applied Sci., 8 (21): 3938-3944, 2008

In the above local search, each job can violate the
permutation condition in the amount of at most 2
positions, 1.e. if y;,J =1, 2, ..., K is the position of j°th
operation of job 1 on machine j, then we have:

mq:v::ylj—miny‘J =2 i=12,..1
1 ]

The first reason for the above choice 1s that,
intuitively, the permutation violation of more than 2 jobs
may not be very promising. The second one 1s that the
purpose of this algorithm is to improve a permutation
solution rapidly. This can help us to improve a larger
number of solutions. For example, if we have the pair (1, 2)
and 4 machines, the following replacements are tested:

Considered replaces

Machine 1 12 21 21 21 21 12 12 12
Machine 2 12 12 21 21 21 21 12 12
Machine 3 12 12 12 21 21 21 21 12
Machine 4 12 12 12 12 21 21 21 21

Description of the algorithm: The above algorithm starts
with an initial permutation schedule. This initial schedule
is then improved by two local searches to obtain a seed
sequence for starting the ant colony procedure. The first
local search 1s based on the pair-wise exchanges and it
can generate and store n-1 sequences which are denoted
by &,; s =1, 2, ..., n-1 and subscript s demonstrates the
rank of the corresponding sequence with respect to the
value of objective function. So if we have two sequences:
d,, and &, and s <s, then the objective value of 8, is
greater than or equal to the objective value of 8,, This
local search continues until counter reaches to its upper
bound (C+1) or no improvement occurs in the current
search. Therefore, the search will be repeated at most C,
times. In step 3, at most 1000 best sequences [starting
fromn, = max(0, n-1001)] among n sequences obtained

from step 2 are selected and improved by the second local
search. This based on the shift
neighborhood. The value of n may be very large and the
memory error may be occurred, because the program
should store n sequences. To prevent this error, we can
consider an upper bound (say UP) for n by adding the
following condition before the statement n = n+1:

local search 1s

Ifn=UP, thenn=0

The second local search continues until counter
reaches to its upper bound (C,+1) or no improvement
occurs in the current search.

COMPUTATIONAL EXPERIMENTS

Here, we describe the computational experiments
used in order to evaluate the effectiveness of the
proposed metaheuristic method. The programs have been
coded in CH++. The platform of our experiments 1s a
personal computer with a Pentium-TV 1700 MHZ, CPU and
512 MB RAM. The maximum number of ants for each
problem, 18 10000 and maximum running time of ACO
algorithm for each problem 1s I(K/2)90 m sec (Vallada
and Ruiz, 2008). The maximum running time of non-
permutation local search is set to 10 sec for all problems.
We have also considered C, = C, = 50 for consideration of
the computational time. To compare the solutions of the
proposed method with some other methods, we have
used the standard benchmark problems of Taillard (1993).
We have compared our solutions with the solutions of
two recent works which are Rajendran and Hans (2004)
and Vallada and Ruben (2008). The numerical results are
shown in Table 1-3. We have reported both of the
permutation solutions obtained from the ACO
algorithm (in the column of PRMUT m the Table)
and the non-permutation solutions obtained from the

Table 1: The results of the computational experiments for the objective of makespan

Mean relative percentage increase in makespan

Rajeendran and Ziegler Vallada and Ruiz (12 islands) Proposed method
n m MMAS M-MMAS PACO 1G CIG GA CGA PRMUT NONPRMUT
20 5 0.408 0.762 0.704 0.00 0.00 0.04 0.03 -0.008 -0.075
10 0.591 0.890 0.843 0.00 0.00 0.02 0.02 0.343 0.0085
20 0.410 0.721 0.720 0.00 0.00 0.01 0.01 0.239 -0.073
50 5 0.145 0.144 0.090 0.00 0.00 0.00 0.00 0.085 0.027
10 2.193 1.118 0.746 0.30 0.30 0.37 0.34 0.549 0.496
20 2.475 2.013 1.855 0.54 0.50 0.66 0.67 1.329 1.120
100 5 0.196 0.084 0.072 0.00 0.00 0.00 0.00 0.025 -0.007
10 0.928 0.451 0.404 0.04 0.04 0.09 0.07 0.388 0.363
20 2.238 1.030 0.985 0.67 0.65 0.94 0.90 0413 0.327
Average 1.0665 0.801 0.713 0.172 0.166 0.237 0.227 0374 0.251

3941



J. Applied Sci., 8 (21): 3938-3944, 2008

Table 2: The results of the computational experiments for the objective of total flowtime
Mean relative percentage increase in total flowtime

n m BES (LR) M-MMAS PACO Method
Permutation
20 5 1.361 0.197 0.454 0.005
10 1.433 0.049 0.324 0.000
20 1.216 0.111 0.181 0.000
50 5 0.778 0.360 0.176 0.133
10 1.747 0.759 0.498 0.163
20 1.909 0.600 0.294 0.078
100 5 0.185 0.141 0.259 0.260
10 0.756 0.351 0.066 0.390
20 1644 0.391 0.161 0.319
Average 1.225 00.329 0.268 0.150
Nonpermutation
20 5 1.507 0.341 0.599 0.005
10 2.107 0.715 0.991 0.000
20 1.860 0.749 0.819 0.000
50 5 0.820 0.402 0.218 0.098
10 2.086 1.095 0.833 0.114
20 2.500 1.183 0.876 0.000
100 5 0.222 0.177 0.295 0.160
10 0.852 0.447 0.161 0.146
20 2.181 0.922 0.692 0.099
Average 1.571 0.670 0.609 0.069

Table 3: The results of the computational experiments for the objective of the total flowtime (end solutions)

Proposed method
BES M-MMAS PACO PRMUT. NONPRMUT
20 jobs 5 machines 14226 14056 14056 04033 14024
15446 15151 15214 15159 15159
13676 13416 13403 13301 13229
15750 15486 15505 15447 15412
13633 13529 13529 13529 13529
13265 13139 13123 13123 13076
13774 13559 13674 13548 13524
13948 13968 14042 13948 13948
14456 14317 14383 14295 14295
13036 12968 13021 12943 12935
Average 14123 13958.9 13995 139326 13913.1
20 jobs 10 machines 21207 20980 20958 20911 20627
22927 22440 22591 22440 22424
20072 19833 19968 19833 19683
18857 18724 18769 18710 18502
18939 18644 18749 18641 18618
19608 19245 19245 19245 19245
18723 18376 18377 18343 18235
20504 20241 20377 20241 19999
20561 20330 20330 20330 20169
21506 21320 21323 21320 21217
Average 202904 20013.3 20068.7 20003.4 19871.9
20 jobs 20 machines 34119 33623 33623 33623 33571
31918 31604 31597 31587 31461
34552 33920 34130 33920 33585
32159 31698 31753 31661 31475
34990 34593 34642 34586 34391
32734 32737 32594 32564 32277
33449 33038 32922 32922 32858
32611 32244 32533 32412 32269
34084 33625 33623 33600 33306
32537 32317 32317 32262 31864
Average 333153 32049.9 32973.4 32913.7 32705.7
50 jobs 5 machines 65663 65768 65546 65400 65400
68664 68828 68485 68678 68626
64378 64166 64149 64008 64008
69795 69113 69359 68918 68919
70841 70331 70154 70147 70116

3942



J. Applied Sci., 8 (21): 3938-3944, 2008

Table 3: Continued

Proposed method
BES M-MMAS PACO PRMUT NONPRMUT
63084 67563 67664 67593 67550
67186 67014 66600 66784 66755
65582 64863 65123 65334 65215
63968 63735 63483 63446 63412
70273 70256 69831 69759 69580
Average 674434 67163.7 67039.4 67009.7 66958.1
50 jobs 10 machines 88770 89599 88942 88699 88536
85600 83612 84549 8159 84189
82456 81655 81338 81038 80726
89356 87924 88014 87705 87162
88482 88826 87801 87096 86577
89602 88394 88269 87654 87322
91422 90686 £9984 89898 89763
89549 88595 88281 87795 87333
88320 89470 80238 98791 89640
Average 884254 87573.6 87341.1 87052 86722.1
50 jobs 20 machines 129095 127348 126962 127025 126532
122094 121208 121098 120571 119811
121379 118051 117524 117959 116996
124083 123061 122807 121896 121312
122158 119920 119221 119540 118149
124061 122369 122262 121780 121268
126363 125609 125351 124609 123792
126317 124543 123374 123759 122293
125318 124059 123646 123762 123239
127823 126582 125767 125428 124958
Average 124869.1 123275 122901.2 122632.9 121935
100 jobs 5 machines 256789 257025 257886 258127 257842
245609 246612 246326 246691 246313
241013 240537 241271 241107 241000
231365 230480 230376 230594 230405
244016 243013 243457 243588 543554
235793 236225 236409 236492 436163
243741 243935 243854 543588 243304
235171 234813 234579 235637 235337
251291 252384 253325 251853 250792
247491 246261 246750 246493 246138
Average 243227.9 234128.5 2434233 243417 243084.8
100 jobs 10 machines 306375 305004 305376 305419 304450
280928 279094 27821 281157 280409
296927 297177 294239 294483 293929
309607 306994 306739 308020 307221
291731 290493 289676 291348 290810
276751 27649 275932 276272 274720
288199 286545 284846 285644 284301
296130 297454 297400 298070 296909
312175 30964 307043 308167 307169
298901 296869 297182 298234 297083
Average 295772.4 294574.3 2937354 294681.4 293690.1
100 jobs 20 machines 383865 373756 372630 377060 375640
383976 383614 381124 382273 380654
383779 380112 379135 381012 378233
384854 380201 380765 380103 378182
383802 377268 379064 376191 373617
387962 381510 380464 380096 376649
384839 381963 382015 383121 379817
397264 393617 393075 393633 388003
387831 385478 380359 383264 381057
384861 387948 388060 385889 382273
Average 387303.3 382546.7 381669.1 382264.2 379412.5

non-permutation local search (in the column of — Table 2, we have comsidered the best solution among
NONPRMUT in the Tables). To calculate the mean those of four methods (BES), (LR), M-MMAS, PACO and
relative percentage increase in total flowtime, shown in our method) as the best upper bound for the

3943



J. Applied Sci., 8 (21): 3938-3944, 2008

corresponding problem. From the results, it can be seen
that the proposed ant colony method demonstrates better
performance than the other methods for both objectives.

CONCLUSION

In this study, we have developed an effective ACO
algorithm to solve the permutation flowshop scheduling
problem. The permutation solutions of this ACO algorithm
are then improved by a non-permutation local search.
Numerical experiments have been designed and performed
to demonstrate the potential applicability of the proposed
method. The results have shown that the proposed
metaheuristic algorithm is clearly superior to the other
proposed metaheuristics.

REFERENCES

Allahverdi, A., 2003, The two-and m-machine flowshop
scheduling problems with bicriteria of makespan and
mean flowtime. Eur. T. Operat. Res., 147: 373-396.

Cheng, T.C.E., IN.D. Gupta and W. Guoging, 2000. A
review of flowshop scheduling research with setup
times. Prod. Operat. Manage., 9: 262-282.

Dorigo, M. and T. Stitzle, 2004. Ant Colony Optimization.
1st Edn., MIT Press, Cambridge, Massachusetts,
London, England, ISBN: 0-262-04219-3, .

Jain, A.5. and 5. Meeran, 2002. A multi-level hybrid
framework applied to the general flow-shop
scheduling problem. Comput. Operat. Res.,
29: 1873-1901.

Koulamas, C., 1998. A new constructive heuristic for the
flowshop scheduling problem. Eur. J. Operat. Res.,
105: 66-71.

Liao, CJ.,L M. Liao and C.T. Tseng, 2006. A performance
evaluation of permutation vs. non-permutation
schedules in a flowshop. Int. J. Prod. Res,
44: 4297-4309.

Nawaz, M., E.E. Enscore Ir. and I. Ham, 1983. A heuristic
algorithm for the m-machine, n-job flowshop
sequencing problem. Omega, 11: 91-95.

Osman, 1. and C. Potts, 1989. Simulated annealing
for permutation flowshop  scheduling. Omega,
17: 551-557.

Pugazhendhi, S., S. Thiagarajan, C. Rajendran and
N. Anantharaman, 2002. Anantharaman performance
enhancement by using nonpermutation schedules in
flowline-based manufacturing systems. Comput. Ind.
Eng., 44: 133-157.

Rajendran, R.C. and Z. Hans, 2004. Ant-colony algorithms
for permutation flowshop scheduling to minimize
makespan/total flowtime of jobs. Eur. J. Operat. Res.,
155: 426-438.

Ruiz, R. and M. Concepcion, 2005. A comprehensive
review and evaluation of permutation flowshop
heuristics. Eur. I. Operat. Res., 165: 479-494.

Taillard, E., 1993. Benchmarks for basic scheduling
problems. Eur. J. Operat. Res., 64: 278-285.

Vallada, E. and R. Ruben, 2008. Cooperative
metaheuristics for the permutation flowshop
scheduling problem. Eur. 1. Operat. Res,

10.1016/.ejor.2007.11.049

Varadharajan, T.K. and R. Chandrasekharan, 2005. A
multi-objective simulated-annealing algorithm for
scheduling in flowshops to mimmize the makespan
and total flowtime of jobs. Eur. J. Operat. Res.,
167: 772-795.

Woo, H.S. and D.S. Yim, 1998. A heuristic algorithm for
mean flowtime objective m flowshop scheduling.
Comput. Operat. Res., 25: 175-182.

3944



	JAS.pdf
	Page 1


