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Abstract: In the classical scheduling problems, processing time was assumed to be constant and takes
predefined values. In many realistic environments, such as machine maintaining or crisis event management,
processing time on each machine depends on the position of jobs on the machine sequence or their starting
time on that machine. We assume that processing time was an increasing linear function of its start time, in
other words p, = at;, in the literature these jobs were called detericrating jobs. This problem addresses classic
mimif\C,,, scheduling problem with a new assumption on the processing time of the jobs and it was surmised
in the format of n'\m\p,p; = &;t;\C,, .. We have used new Electro Magnetic meta-heuristic algorithm to find near
optimum solution and compared the results with the results obtammed from modified classical algorithms like

CDS and Palmer.
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INTRODUCTION

The machine-scheduling model is one of the most
recent methods that are used to allocate limited resources
among projects. In this model, resources are taken for
machines and projects are taken for jobs, whereas
different environmental conditions are formulated as
production constraints. In most of the machine
scheduling problems, the job processmng times are
assumed as known and constant, which 1s not applicable
mn many practical scenarios. However, in recent years
some authors have investigated stochastic machine
scheduling  problems. Pinedo (1995)
comprehensively the stochastic scheduling problems. It
is observed that in the last decade there is a growing
interest in considering problems involving scheduling
with time-dependent processing times, i.e., problems
where processing time of the job depends on the starting
time on each machine. There are two main categories for
these sorts of the problems. If the processing time

reviewed

decreased by postponing the operation on machine it 1is
called jobs with learning effect, for example, in drymng
process, if the drying operation of the batch 1s postponed
to a later time, natural evaporation leads to decrease in
processing time. In the second category processing time
mcreased by postponing the starting time of the process,
which is known as deteriorating jobs. Kumnathur and

Gupta (1990), Mosheiov (1994) and Sundararaghavan and
Kunnathur (1994) have depicted the applications of these
problems, some of them are mentioned below:

¢ TIncrisis management, like fire fighting or earthqualce,
where the situation deteriorated by time, the
processing tine of each reaction increased by
postponing the process

»  Mamtaining and repairing production machines in
factories usually depends on the duration of their
active work time; if the interval between each
repairing audit increases, the time for repairing
operation increases as well

¢ The recovery duration of many diseases depends on
the curing start time

»  The similar case 13 for military attacks or defense
actions where the condition worsens with time

Gupta and Gupta (1988) were of the earliest
researchers who studied these problems in 1987. They
assumed that each job processing time on a machine can
be expressed by the following function: P; = f(t;), in which
the t, 1s the starting time of ith job on the machine. They
investigated three different expressions of the function:

Pi = a1+b1t1
P, =a+bt+ct’
P, = a+bt+ct™.. +mt™
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Other researchers followed this idea by concentrating
on simple linear function, later other functions such as
step-wise functions have also been considered.

Alidace and Womer (1999) reviewed deteriorating
jobs and categorized all possible functions in seven
groups. It is an essential reference in selecting the
mcreasing or decreasing function. They also investigated
the complexity of the problems. Later in 2002 Cheng ef al.
(2004) considered the complexity of the deteriorating jobs
inmore details.

However, most of the studies have focused on the
single machme problem. In recent years some authors
mvestigated two-machines flow shop with deteriorating
jobs via different objective functions. Wang et al. (2006)
considered minimizing total completion time. They have
proposed a heuristic algorithm to overcome the
inefficiency of the branch-and-bound algorithm. Wu and
Tee (2006) studied minimizing mean flow time, a branch-
and-bound algorithm and several heuristic algorithms are
provided to search for the optimal solution and the near-
optimal solutions. Later Lee et al. (2007) provided an
extensive review of that problem with malke-span function.
Because of computational complexity, there have been
fewer studies in problems having more than two
machines. Mosheiov (1995) considered the case of
M-parallel identical machines, with one step operation and
multi-step deterioration function. He has mtroduced a
heuristic algorithm for mimmizing make-span and has
compared the answers with that of integer model solution.
Hsieh and Bricker (1997) investigated the M-parallel
identical machine problem with p, = x+at, and p = e
deterioration function and minimizing make-span objective
function. They have introduced some heuristics for this
problem and have compared their performances. Later on
Mosheiov (1998) studied the M-parallel identical machines
problem having deterioration function p = &t and
introduced another heuristic algorithm and a lower bound
for minimizing the make-span. Khalil and Samson (2001)
mvestigated the (Hsieh and Bricker, 1997) problem by
using Simulated Amnealing meta-heuristic algorithm
and compared their answers with former
Gawiejnowicz et al. (2006) considered the M-parallel
identical machines problem with p, = x+et and p, = e
deterioration functions and completion tiume objective
function. They have proposed another heuristic algorithm
and reported their computational results. Kang and Ng
(2007) studied the NP-hard problem of scheduling n
deteriorating jobs on m 1dentical parallel machines to
minimize the make-span. They have presented a fully
polynomial-time approximation scheme for the problem.
J1 and Cheng (2008) considered the parallel-machine
scheduling problem in which the objective 1s to mimmize

ones.

the total completion time. They have gone a Fully
Polynomial-Time Approximation Scheme (FPTAS) for the
case with m 1dentical machines, where m 1s fixed. Lee and
Wu (2008) investigated a multi-machine scheduling
problem in which machines are not always available; each
machine is assumed to have a maintenance period which
15 known m advance. Both the resumable and non-
resumable cases are discussed with the objective of
minimizing the makespan. A lower bound and a heuristic
algorithm are proposed for each case.

In all of the Multi-machine studies, only parallel
machines have been mvestigated. However, Mosheiov
(2002) has assumed a simple linear deterioration function
Py = ety and make-span objective function and provided
a complete analysis of the complexity of flow-shops,
open-shops and job-shop problems. He has proved that
the Johnson algorithm provides optimal answer for two-
machine case in flow-shop environment. He has also
shown that the computational complexity of problems
having more than two machines falls in the category of
NP-completeness.

The nm‘\f\C, .. problem is one of the classic machine
scheduling problems. In this case m different operations
are done by m different machines on n different jobs and
jobs follow of the flow shop model, i.e., the operational
sequence of all the jobs remains same. If the job sequence
on all machmes be also the same, it 1s called permutation
scheduling problem which is noted by n\m\p\C,,...

Johnson (1954) has found optimal algorithm for
m = 2. Later on many researchers have proposed many
different heuristics and meta-heuristic algorithms for
solving problems for m>2. There have been numerous
comparisons between the performances of proposed
algorithms. Rz and Concepeion (2005) have presented a
comprehensive review of these comparisons. They also
have compared 25 different heuristic and meta-heuristic
methods for solving nm\p\C,, problem by using
Taillard’s (1993) test method- a set of 120 instance of
various sizes, having 20, 50, 100, 200 and 500 jobs and 5,
10 or 20 machines, with 10 problem inside each set. It is
observed that the CDS and Palmer heuristic algorithms are
well accepted algorithms, which have been the base for
most of the algorithms and have good performances with
comparatively short run times.

In this study, we have considered nm\phC,,, problem
for m=2 with simple linear deterioration function p; = wt;,
where 1refers to order of sequence of the job on machine
and j refers to order of machime itself. The problem
under consideration has been denoted in the form of
nm\p,p; = a;t\C, ., where it is assumed that all jobs are
available on t; = 1. As mentioned earlier this problem 1s
NP-complete for m>2.
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Tt is assumed that a job’s initially arriving order is
introduced by i, but jobs are allocated to all the machines
with permutation order which 1s 1dentified by an array like
I in the following we use of these denotes: The notations
are as follows:

OL =[k]: The kth job in array I 1s ith imtial arrived job

S[k]; The start time of operation on kth job in array
T on jth machine

Plk]; The process time of kth job in array T on jth
machine

Crk], The process completion time of kth job mn
array 1 on jth machine

Clk] : The completion time of kth job in array T on all
machines

afk], : The deterioration coefficient for kth job mn

array 1 on jth machine

Now assume that the mitial order of jobs 1s
rearranged and allocated to machines by the order of array
I, so for the first job in array T on the first machine we
should have:

Py = 1oy =0y

Cin =g +Fpgy =1+ o

For the second job in array I on the first machine we
should have:

S[2]1 = C[1]1 =1+ T

By =Sy gy = (L agg Joy

Cop = Sy + By = (1 )1+ 0y )

Likewse, for the kth job in array I on the first machine we

should have:

——

(1 + oy

S[k]l - C[kfl]l

k-1
1=

Similarly for the kth job in array T on the jth machine we
should have:

S, = Max{Cly, Cpaf
LT R

Chy =Su, (1 + (x[k]j) k=1,

We have solved this problem with 4 different
methods:

*»  Modifying classic CDS and Palmer

+  Fortified Local search (1.S) for finding lower bound

»  Neighbor Search (NS)

+  Using of Electro Magnetism (EM) meta-heuristic
algorithm with Neighbor search (EMIN)

BENCH MARKED AL GORITHMS

Modifying classic CDS and palmer: Johnson (1954)
recommended that for n\2p\C, . problem, in optimal array
the initial ith job should be before initial jth job if:

min {p_],l: Pj,z} = min {pl,la Pl,z}

Campbell et al (1970) recommended the following
procedure for solving nm'\p\C,,,. problem for m=>2, in their
algorithm, which 1s well known as CDS:

Step 1: k=1
m k
Step 2: P,- > PP, =D P
j=m-k+1 i=1
Step 3: Treat A and B as two Johnson machines and
find the optimal answer for it. Denote this
answer by Cyk)
Step 4 : If k =m-2 then kt+1 -k and return to step 2
Step 5: The best near optimal answer 1s the array with
smallest C (k) for1 =k =m-1

We have modified this algorithm by substituting o,
with p;. As mentioned earlier, in the case of m=2 the
Johnson’s algorithm gives optinal solution for
n\2\ppy; = ot\Cpe problem. Since CDS is a direct
development of JTohnson’s algorithm and gives good near
optimal result for classic n\m\p\C,. problem, we
hypothesized that modified CDS would also give good
near optimal solution for n\m\p,p; = ¢4\ Crae

Palmer (1965) recommended in that order to get a
good near optimal solution for n\m'p\C,, problem m a
very short time, the following procedure should be used:

For each initial ith job find the:

S, = i“ fm—(2j- 1P,

Sorting jobs in descending order of 5, leads to a good
near optimal result.

Similar to CDS we have modified classic Palmer by
substituting «; with p; and logically hypothesized that
this procedure will provide us with a good near optimal
solution in a short time.
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Fortified Local Search (L.S) for finding lower bound: This
algorithm requires Imitial Sample Number (ISN) and
Algorithm’s Tterations Number (ATN) for each sample
array. At first 1t provides random different arrangement of
job order in TSN. Then for each sequential order, like array
I, 1t follows the following procedure in the ATN:

*  Start with array [

¢  Exchange the position of first job with the second
one mn array [ and name this new array as I'

¢ If the make-span for array T' is smaller than T,
substitute with I (or delete I and rename I' to I)

+  Repeat steps 2 and 3 for first job in updated array I
and all subsequent jobs

¢+ Focus on the second job in the updated array and
repeat steps 2, 3 and 4 for this job and all subsequent
jobs

*  Repeat step 5 for all jobs in updated array like second
job

*  (ives out array I

This algornthm searches m feasible space with a
simple systematic logic. Since it checks many arrays
systematically, the algorithm converges towards the
optimal point. However, it takes considerable time to run
thus algorithm and for this reasorn, it s not at all feasible to
solve large scale problems. We have used this algorithm
here only to find a lower bound, so that we can compare
the solution of other algorithm with this one.

Neighborhood Search (NS): This is very similar to LS
algorithm, but we have made 1t simpler. It 1s mainly used
in EM for improving the array in its neighborhood. Tt does
not take as much time as LS. Like LS, it requires Initial
Sample Number (ISN) and Number of Algorithm’s
Iteration (AIN). At first it provides different random
arrangement of job order in TSN. Then for each sequential
order like I it does the following procedure in AIN:

*  Start with array [

e PuK=1

*  Exchange the position of Kth job m array [ with (K+1)
th job in array T and name new array T'

* If the make-span for array I' 1s smaller than I,
substitute it with T (or delete T and rename T' to T)

¢ K+1-K

¢ If the K<n then repeat from step 3
Give out array L.

ELECTRO MAGNETISM

Introducing base electro magnetism: Birbil and Fang
(2003) introduced this meta-heuristic algorithm. The

method utilizes an attraction-repulsion mechanism to
move the sample pomts towards the optimality. They
studied a special class of optimization problems with
bounded variables m the form of:

minf(x)
st. xe[l,u]
[l,u]:: {x eR*|] £x 2, uk,kzl,...,n}

Where:

n = Dimension of the problem

u, = Upper bound in the kth dimension
I, = Lower bound in the kth dimension

f(x)= Pointer to the function that is minimized

Similar to that in elementary electromagnetism, they
have assumed each sample point as a particle that 1s
released to a space. In their approach the charge of each
pount relates to the objective function value, which 1s tried
to be optimized. This charge also determines the
magnitude of attraction or repulsion of the point over the
sample population- the better the objective function
value, the higher the magmitude of attraction. After
calculating these charges, they have used them to find a
direction for each point to move m subsequent iterations.
They have selected that direction by evaluating a
combination force exerted on the point via other points.
The same as electromagnetic, force is calculated by
addmg the forces in vector space from each of the other
points which is calculated separately.

The EM comsists of four main phase which is
depicted in brief:

Initialization: This procedure is used to sample m points
(arrays for our problem) randomly from the feasible
domain, which is an n dimensional hyper-cube (n job
position for our problem). After a point is sampled from
the space, the objective function value for the pomt 1s
calculated using the function pointer f(x) and the point

that has the best function value is named x",

Local search: This procedure 1s used to gather the local
information for a point and improve the point along its
local area. They have suggested using arbitrary local
search methods and in their paper have considered a local
search method for example.

of total force vector:

Calculation At first they

have computed the charge of each point like i according
to its objective function, the objective function of x"*
and other points objective function by the following

formula:
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£(x) - £(x™)
2 (E() ()

m
k=

q =exp|-n

Note that objective function of each point changes
from iteration to iteration and the sign of the charge
depends on the other point which is compared with. In
comparing two points, the poimnt with lgher objective
function attracts other point and the point with lower
objective function repulses other point. Finally, the total
force F' exerted on point i is computed by the following
equation:

) (X] % ) |quiq;j if f(xj ) <f (x‘)
Py ‘ v,
= e _x:)|quq; it ()1 (x)

Movement according to the total force: After evaluating
the total force vector I, the point 1 is moved m the
direction of the force by a random step length, A. This
random step length 1s used in order to ensure that the
points have a nonzero probability to move to the
unvisited regions along the movement direction. The new
point 1 is calculated from the former point i with the
following equation:

. F
X' =x' + A (RNG)
i

In which the (RNG) 1s a vector whose components
denote the allowed feasible movement toward the upper
bound, 0, or the lower bound, [ # for the correspending
dimension.

There can be define various termination criteria for
the EM, Birbil and Fang (2003) proposed using predefined
iteration mumber. They have demonstrated by some
example that heuristic EM performs very well in
convergence towards the optimal poimnt.

Modified EM for n\m\p,p; = ¢;t\C, .. problem: As earlier
mentioned Birbil and Fang (2003) have proposed heuristic
EM for special application. We assume that the position
of each job in an array I is dencted by x', in other words,
if the position of imtial ith job in the array I 1s k, 1t 1s
denoted by:

We have modified some aspects of base EM for
using in our problem which are as follows:

Use of EM for discrete variables: The base EM was
designed for continuous variables. We have used EM for
discrete variables, this customization leads to some
modification in the movement procedure and we have
used integer function to round the produced points. If the
power is positive we have rounded the points up and if
the power 1s negative we have rounded the points down.

Adding constraints to base optimization model: Tn the
base EM model there was just one upper and lower bound
constramt. But, n this problem, we have more constraimnts,
for example, two or more 1mtial jobs cannot be allocated in
the same place in an array I, in notation:

I 1 g
X, # X, ifi=]

So, after assigning new position of each job in each
updated array, the algorithm checks whether this position
was formerly allocated to another job if it was allocated
earlier, the process is repeated 10 times. If some jobs
cannot be allocated after the process repetitions, they are
stored 1 a set. Finally in our new array we may have some
positions which are empty of job and some jobs which are
never allocated, these two sets will have equal members.
We sort the unallocated jobs ascending by their former
position mn the old array and then these jobs are allocated
one by one to empty positions i new updated array.

Prioritizing jobs movement: There is no position
constraint n the base EM model, so two or more variables
could have the same value and is not any priority in
getting value either and all variables get value
independent of others. But in present model as explained
earlier, the variables cannot take equal value, so we
should allocate value to variables one by one and value
of each variable depends on the former variables. But it is
possible a value which is better for a variable allocated
former. For preventing such occurrence to oceur, we have
prioritized value allocation to variables. We have sorted
variables (or jobs for getting new position in new array)
by the absolute value of their total force which was
calculated previously. The bigger absolute value of total
force for each job in an array means, that job 15 allocated
in bad position and its position should be changed
immediately. Therefore, at first we allocate value to the
variable with strong total force.

We indeed are interested m testing some parameters
of base EM and find proper value for them.

The powers parameter in the force formula: Birbil and
Fang (2003) have used exactly the electromagnetism
formula in their heuristic EM. Tn that formula the power for
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charge is 1 and the power for the distance is 2. But we are
mterested to know 1if those parameters are proper for our
problem. For investigation we assumed 3 levels:

¢+ The power of charge =05
The power of distance =2

*  The power of charge =1
The power of distance =1

¢ The power of charge =2
The power of distance =1

In the first scenario, distance has more importance. ITn
the second scenario, distance and charge have equal
mnportance. In the third scenario, charge has more
umportance.

Initial Sample Number (ISN) and Tteration Number of the
Algorithm (AIN): We are mterested in mvestigating the
umportance of ISN via AIN. So, we have considered three
different scenarios:

ISN = 3}
E
AN = 2—"}
|3
ISN = E}
2
AN = 20
ISN = E}
| 3
AIN = E}
3

Updating new sample arrays: In the base EM, after each
iteration, all new arrays replace all old arrays, we name it
continuous updating. We have proposed new approach
i which, after producing new arrays out of old ones, we
investigate all old and new arrays and accept half of total
arrays with better objective function and we name this
new approach discrete updating.

We have used neighborhood search which was
introduced in former sections, as the local improver in the
heuristic EM for solving n'm'\p,p; = ot \C,, problem.

COMPUTATIONAL DESIGN

For solving nm'p,p; = o;t;\C,, problem, we consider
ninfive levels (5, 15, 25, 35, 45)and m in three levels (3, 4,
5). For each 15 combmation of levels, we generate 5
instances by randomly predefined deterioration
coefficient such that:

Table 1: Factors and levels of EMN algorithims

Levels
Factor name 1 2 3
Force parameter PO P1 P1
ISN-AIN S1 52 S3
Updating procedure C D -

Table 2: Thirity six different algorithms used for solving n\m\p, p; =

&lltﬂl\cmﬁx
EM LS NS Classic Random
EMNCP0OS1 EMNDPOS2 LSLS1  BNSI1 CDS RND
EMNCP1S1 EMNDP1S2 LSBS1 (NSl PALMER
EMNCP281 EMNDP282 LSLS2 DNSI1
EMNDP0S1 EMNCP0S3 LSBS2 BNS2
EMNDP1S1 EMNCPIS3 LSLS3 CNS2
EMNDP251 EMNCP283 LSBS3 DNS2
EMNCP0OS2 EMNDPOS3 BNS3
EMNCP182 EMNDP1S3 CNS3
EMNCP252 EMNDP2S3 DNS3
o ~uni(0,1)

We solve each instance twice, each time by 36
different algorithms from 5 main categories as following:

Category 1: 18 different EMN algorithms produced by
combinations of three levels of force parameter, three
levels of ISN-AIN and two levels of updating procedure,
which is shown in Table 1.

Category 2: Nmne different NS algorithms are produced.
Six of them by combination of three levels of ISN_AIN
and two levels of updating procedure and three of them
are procduced by a big initial sample number which is equal
to ISN*ATN and repeats just once; the later one is called
BNS.

Category 3: Six different .S algorithms are proposed.
Three of them correspond to three ISN-AIN and three of
them with a big sample size equal to ISN*AIN and repeats
Just once.

Category 4: Two modified CDS and Palmer algorithms.

Category 5: One randomly produced arrangement of
jobs.

Finally, 75 different instances have been generated
and in total 5400 solutions have been produced for those
instances. In Table 2 different algorithms are shown.

We have used MATLAB?7 for coding the algorithms
and SAS9 for analysis of variance (ANOVA). All of these
have been done on a notebook with CPU speed 2, cash
4, RAM 1024, The summary of our computational result 1s
reported in Appendix 1.

4126



J. Applied Sci., 8 (22): 4121-4128, 2008

COMPARISON OF ALGORITHMS AND
CONCLUSION

At first, we have analyzed our data with simple mean
statistic. For more accuracy we have performed nested
factorial analysis with ANOVA models on present data.
Present conclusion in brief is as follows:

* Ifwe add an operation to our problem (mcrease m by
one unit) and keep the number of job unchanged, the
make-span for new problem will be about 2.23 times
greater than the former problem. If we do not change
operation numbers and add another job to our
problem, the new make-span will be about 1.55 times
greater than the former problem.

*  After domg ANOVA at o = 0.05 the performance of
algorithms are grouped and sorted as following:

LS

EMN

NS (LCN)

CDS, Palmer

NS (BN)

NS (LDN)
Random allocating

mun time of EM algorithms. So we conclude that 1.5
algorithms improve the objective function a little only
by sacrificing the run time

All EM algorithms have better performance compared
to all other algorithms (except L.S) at & = 0.05.

Since, there 1s distinguished differentiation at a=0.05,
the performance of EMN algorithm 1s not dominated
by internal NS algorithm.

After performing ANOVA with ¢ = 0.05, we conclude
that using same power, 1, for both charge parameters
and distance parameters leads to a better result.

After performing ANOVA with o« = 0.05 and
mteraction tests, we conclude that m small number of
jobs (5, 15 and around 25) the Number of Initial
Sample (ISN) is more important than the algorithm’s
iteration number (AIN).

Doing ANOVA at ¢ = 0.05 and interaction tests have
also helped us to conclude that using discrete
updating approach leads to a better result than using
continuous approach, when the problem size is
relatively large (mumber of jobs 1s bigger than 25 and
number of machines is bigger than 3).

From these tests now we know that EMN algorithms

lead to reasonable answer in a relatively less time. Further

more we can adjust the parameters of EMN algorithms
¢ Modified classic CDS and Palmer have distinguished correspond to our problem size to better results.

good performance, so that the mean make-span of
these algorithms is 0.21 times smaller than the mean

make-span of random allocating of jobs. CDS doa

little better than Palmer which 1s distinguished at

o = 0.05. J

¢ The best make-span of LS algorithms is on the
average 0.83 times smaller than the mean make-span

of EM algorithms, but the mean run time of LS .

algorithms is approximately 12 times larger than mean

Appendix 1: Our test problems report is presented in the following table

The scopes for further study are as follows:

Considering n'm\p,py = &ttt \Cpo problem with
different heuristic and meta heuristic algorithms
Solving problem that has been considered here
(n'm\p,pij = o;t\C,,) with other algorithms and
compare them

Considering parameter A in movement process of EM
algorithm

Jobs  Machines Randoim EMN's Best. NS's Best 1.8's Best.
No.  No. CDS Palmer ARRY mean EMN mean NS mean LS
5 3 16 16 23 15 14 15 14 14 14
4 33 31 49 30 28 30 28 29 27
5 54 58 o4 55 52 54 52 52 52
15 3 794 898 2,509 44 715 839 T64 710 T10
4 2,626 2,457 8,530 2,035 1,809 2,413 2,203 1,703 1,672
5 4,953 8,013 15,081 4,404 3,816 5,314 4,341 3469 3,457
25 3 65,302 74,472 230,675 66,634 65,366 76,394 68,675 65,302 635,302
4 117,866 103,036 582,487 84,846 TTA36 121,582 98,518 68,766 67,414
5 241,278 249,314 1,183,794 176,780 157,184 245,657 192,723 135,719 128,057
35 3 5,325,580 5,271,280 31,167,300 4,323,770 4,221,010 5,521,064 4,864,320 4,189,163 4,188,980
4 6,483,760 6,615,520 52,817,270 4,522,562 4,331,200 5,807,006 4,839,380 4,194,543 4,171,934
5 15,662,920 19,553,640 79,720,100 11,034,873 9458390 18,154,457 13,777,190 6,834.972 6,729,850
45 3 176,950,400 166,900,000 1,031,607,000 152,469,100 149,354,800 186,334,444 156,184,300 148,273,533 148,140,200
4 222345400 223,166,400 1,730,438,000 136,708,744 121,227,600 232038411 179,617,500 93,730,800 90,838,900
5 520,280,000 597,990,000  6,232.300,000 419038539 358225900 716,958,300 513,903,000 280,830,767 280,200,000
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