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Nonlinear Tracking Control on a Robot Manipulator in the Task
Space with Uncertain Dynamics
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Shahrood University of Technology, Postal Code 3619995161, P.O. Box 316, Shahrood, Iran

Abstract: This study was presented the design of a nonlinear robust controller based on Lyapunov method
for tracking control of a robot manipulator i the task space. Fust of all, the dynamics of manipulator was
divided to the known and unknown parts. The feedback linearization was used to remove the known nonlinear
terms from the closed loop svstem which was advantageous to reduce the estimated uncertainties. Then the
robust controller was designed to overcome uncertainties using their estimated maximum values. The proposed
controller can guarantee the globally asymptotical stability. This control approach was studied on a two links
elbow manipulator and can be applied for n degrees of freedom robot manipulators.
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INTRODUCTION

Tt is well known that the dynamics of robots are
highly nonlinear with large couplings and uncertainties in
model. Tn spite of this, the most adopted controller in
industrial settings 1s still the Proportional-Integral-
Derivative (PID), with additional features like filters,
feedforward actions and so on. Although simple
controllers such as PID controllers are effective for
regulating purposes in robotic applications, they cammot
work well for tracking purposes. Instead, model-based
robot controllers can work perfectly using exact models of
the robot manipulator.

However, most research on robot control has
assumed that the exact dynamics and kinematics of the
manipulator from the joint space to the task space are
known. This assumption leads us to several open
problems m the development of robot control laws today.
In free motion (Arimoto, 1999), this implies that the exact
lengths of the links, joint offsets and the object which the
robot is holding, must be known. Unfortunately, no
physical parameters can be derived exactly. Moreover,
when the robot picks up objects or tools of different
lengths, unknown orientations and gripping points, the
overall parameters are changing and, therefore, difficult to
derive exactly. Therefore, the robot i1s not able to
manipulate the tool to a desired position if the length or
gripping point of the tool 13 uncertain. When the control
problem is extended to the control of multifingered robot
hands (Bicchi, 2000), such assumption also limits its
potential applications because the kinematics is uncertain
in many applications of robot hands. For example, the

contact points of the robot fingers are uncertain and
changing during mamipulation. Smmilarly, in hybrid
position force control (Yoshikawa, 2000), the assumption
of exact kinematics also leads us to an open problem on
how to control the robot if the dynamics and constraint
are uncertain.

Robust control methods
desigming of control on robot manipulator m joint space.
In these articles, it is proved that closed-loop system has
asymptotic stability. But in these researches, problem of
unstructured uncertainties remains, because, in design
method of these controllers, only parameter uncertainties
have been considered by Koo and Kim (1994), Liu and
Goldenberg (1997) and Mmif ef al. (1999).

With regard to the discussed case, even if controllers
are designed that guarantee precise tracking in joint
space, one can not state that this precise tracking is
available in task space, because, m control method of
robot in joint space, kinematical model is used for
determination of position and end-effector. In presence
of uncertainty, this model is not precise and therefore,
the resulting error is not observed and compensated due
to lack of feedback from position of end-effector
(Cheah et al., 2003a, b; Dixon, 2004; Cheah and Liaw,
2003).

The most effective method for prevention from this
error is to control robot in task space without inverse
kinematical model (Cheah et ai., 2003a, b, Dixon, 2004,
Cheah and Liaw, 2003). In this method, information of task
space 1s feed backed directly to the mput control
Therefore, tracking error is directly observed and
corrected.

have been used for
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In order to compensate kinematical uncertainty,
approximate Jacobin controllers have been provided for
setpoint control in task space. Using the approximate
Jacobin control approach, other open problems such as
force control with uncertainties and control of robot
fingers with uncertain contact points can be resolved in
a unified formulation (Cheah ef af., 1998, 2003a, b). Since
tracking 1s mmportant in most of the works done by robots,
some of the researchers have concentrated their
researches on trajectory control of robot manipulator.

Recently, adaptive Jacobian controllers have been
provided for trajectory control of robot manipulator in
task space (Cheah et al, 2004, 2005, 2006). These
controllers don’t need precise
kinematics and Jacobin matrix. But in these articles, it 1s
assumed that dynamics of robot have structured
uncertainties. Therefore, the way in which unstructured
uncertainties are dealt with is a great challenge and is
considered as one of the research open problems.

In this study, by use of feedback linearization
through direct Lyapunov method, robust nonlinear
controller has been provided for trajectory control of
robot manipulator in the task space with presence of
structured and unstructured uncertainties.

nformation about

ROBOT DYNAMICS

The dynamics of the robot with n degrees of freedom
are nonlinear and can be expressed as (Qu and Dawson,
1996):

M(q)q+V,{q.q)q+G(q)+ F,q+F(q)+ T, =u(t) (1

where, ¢(t)cR* denotes the joint angles of the manipulator,
q(t) and §(t) are the vectors of joint velocity and joimt
acceleration, respectively. M(q)eR*™ is the inertia matrix
which is symmetric and positive definite, V, (6.4)q=R"® is
a vector function contaimng coriolis and centrifugal
forces, G{q)eR"® 18 a vector function consisting of
gravitational forces. FyeR¥™ is a diagonal matrix of viscous
and dynamic friction coefficients, F(q)e R" is the vector
of unstructured friction effects such as static friction
terms. T,£R" 15 the vector of any generalized input due to
disturbances or un-modeled dynamics and u(t)eR" is the
vector function consisting of applied generalized torques.
For simplicity Eq. 1, H{q.q) can be shown as:

H(q.4)=V, (0.9)q+ G(a)+ Fa+ E (Q)+ T, (2
By substituting Eq. 2 into 1 we have:

M(q)d+H(g.q)=u(t) 3

UNCERTAINTIES AND BOUNDING FUNCTION

In the presence of uncertamty such as unknown
parameters, frictions, load variation, disturbances and un-
model dynamics, dynamics (3) of robotic systems are
usually not totally known. All the terms in Eq. 3 can be
reduced without loss of any generality into two parts:

M(CI) =M, (q)+Mu (Cl) (4)
H(q.q)=H,(q.9)+ H,{q.9)
Where:
L(gq=V,,(e9)q+G,(q)+F,q (5
H.(q.4)= V,.(¢q)q+ G, (q)+ F, . q+ F,{q) + T, )
where, M, (q), H,(q.4), V,,(0.4), G, () and Fy are the

known parts and M,(q),11,(q.q), V,..(q.9), G and F,
denote the unknown parts of M(q). H{(q.q). V,.(9.9), G(g

and F,, respectively. For design of robust nonlinear

controller, the following assumptions should be
established.

Assumptions:

. r{lIn<M(q)Sn_1(q)I“ Vqe R®

© Va(adlst(ald . vaacr®

. ||de+F y H:& +& |v| .¥yeR®

o olsE ) R

+ =g

where, m, &;.&; and g are positive constant and it is

assumed that these are known constant. M(q) and £(q)
are known, positive defimte function of q and £, 1s a
known positive definite function. For a revolute-joint
robot, matrix M(q) 1s not only positive definite but also 1its
dependence on ¢ is in the form of the trigonometric
functions, sine and cosine. This implies that, for revolute-
joint robots M{q)=m, £(q) = £, and E(q) = &, are all
constants.

ROBOT DYNAMICS IN THE TASK SPACE

For design of robust nonlinear controller in task
space, the dynamics equation of manipulator in task space
should be established there for Eq. 3 is simplified as:

4=M"(q)(u(t)~H(q.q)) )
The task space velocity X(1) is related to joint space
velocity it} as (Cheah et al., 2006):
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X=1J(a)q (8)

where, J(q)eR"™ 1s the Jacobian matrix from jomt space to
task space. The derivative of Eq. 8 respect to time can be
written as:

X=J(a)g+J(a)q (9)

jlq) exists if the desired path is smooth. Assuming there
are no simgular pomts in the desired path in task space
such that the jacobian matrix 15 of full rank. Eq. 7 1is
substituted into Eq. &

X=J(@M (q)(u{t)-H{q.q))+ I{a)q (10)
Eq. 10 is rearranged as:
M(q)J" X+ H(g.q)-M(q)T" lg=u(t) (11)

I7'(q) is the inverse of Jacobian matrix. Torque is related
to force as (Cheah er ai., 2006):

u(t)=T (f(t) (12)

T'(q)eR™™ is the transpose of jacobian matrix and f(t)cR®
15 the mput force of manipulator. Equation 12 1s
substituted into Eq. 11 and it 1s rearranged as:

TTM(q) 7 X+ T Hiqu)- " M() I Ig=£(t)  (13)

To simplify Eq. 13, the following equations are expressed:
Ala)=T7 M(q)T” (14)

N(q.q)=T7"H(q.q)- T M(q)T"Jq (15)

Substituting Eq. 14 and 15 into Eq. 13, the equations
of motion can be expressed as:

A(q)X+N(q.q)=F(t) (16)

According to Eq. 4, M(q) and H(q,q) have a known
and anunknown part therefore A(q) and N(q,q) have the
same parts:

A(G)= A, )+ A, (a) an
N{q.q)=N,(q.q)+N,(q.q)

where, A(q) and N, (q,q) are the known parts and A(q)
and N, (q,q) denote the unknown parts of A(qg) and

N(q,q) , respectively.

ROBUST NONLINEAR CONTROL

e(t) 1s the trajectory error and 1s defined as:
Xat)-X(t) =e(b)

where, X, (t)is a desired path and X(t) 1s the position of
mamipulator n task space. In Eq. 16, a control law 1s
presented as:

£(t)= A, (X, + N (q.0)+ oA, (q)e(t) + (18)

KA (q)e(t)+ o, (@){oe(t)+ (1)) +u, (1)

where, ¢ and K are the positive constants and u,(t) 1s the
new robust control mput. For computational simplicity,
Afq) and N, (q.9) canbe simplified versions of the known
parts of A(q) and N{q.q), respectively. In the worst
situation when there 1s no knowledge about the controlled
robotic manipulator, one can choose A, (q)=1 and
N, (q.4)=0 . By defining r(t)=ce+é and substituting
Eq. 18 into Eqg. 16, the following equation can be
expressed as:

A(q)X:Ak (q)Xd+Nk(q7q)+a’Ak (q)é(t)+ (19
KA, (q)e(t)+a A, (q)r(t)-N(q.q)+u,(t)

Equation 17 is substituted into Eq. 19 and A(q)X, is
added and subtracted:

(20
N.(g.9)+u,(t)

+
ad (q)e() + KA, (qle(t)+rad (q)r(t)-
Equation 20 1s rearranged as:

~A@R() =A@, oA, (@e() e
KA, (@)e(t) ~o, ()N, (@d) 71, (D)

A = A(g)-A,(q) 15 used mto Eq. 21 and 22 as:
A ()X +aA (q)e(t) +KA (q)e(t)+ oA, (q)r(t)

—aA{g)et)-KA(g)e(t) - cAlq)r(t)+ Nu(a.q)- v, (t)
(22)

€(t)=A"(a)

To simplify Eq. 22, the following equation can be
expressed:

AA=A,(q)X, + oA, (q)e(t)+ (23)
AL (Qe(t)+ A, (q)r(t)+ N, (q.q)

Equation 23 1s substituted into Eq. 22:
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Et)=a" (q){AAf aA(q)e(t)-KA(q)e(t)-aA(q)r(t)- u,(t)}
(24)

By definingand, e(t)=Z,(t) and ¢é(t)=Z,(t) Eq. 24 is
rearranged as:

Z=DZ+B[AA-oA{q)e(t)-KA(q)e(t)—aA(q)r(t)-u,(t}]

SAL N

f()=la1, 1,1z

In Eq. 25, most of the uncertainties exist in AA and
matrix B. To design the robust control, the maximum size
of uncertainties should be available. The boundaries of
uncertainties are discussed further.

MAXIMUM SIZE OF THE UNCERTAINTIES

According to assumptions mentioned earlier, Eq. 23
can be expressed as:

INE Ku(q)sup!}iﬂﬂ+ oK @R K@) (o,

ro (@ (O E(Dl + & () + & + & lal + &

?ﬁ*ﬂu(q)\lé(t)lhKﬁu(q)He(t)” 27)

vl (@O S(@lal + &la) 1 &, + & ldl+ &

p(z,t):a(q)supﬂ

A,(q) 1s the maximum size of A (q).
Robust control: To prove the stability of system
presented by Eq. 25, the Lyapunov function candidate 1s

presented as:

vizy=Lkzmz, + L (28)
2 2

The derivative of Eq. 28 respect to time can be written
as:

V(2)=K 2,7, +i"r (29)
By using of Eq. 24 and 25, Eq. 29 18 sumplified as follows:
V{zZ)= ‘OC(KHZ1H2 + i ) +IT A (g){aa—u, ()} (O

If uncertainty AA 18 known, control law u(t) = AA
will stabilize the system but If uncertainty AA 1s unknown
for V=0, u, should be chosen properly.

Lemma: Let Vbe a Lyapunov function candidate for any
given continuous time system. Suppose that along the
trajectory of the system:

V(Z)=-AA(Z)|Z] +e0(t)  vZeRr® (31

where, %(Z)22» 0 forall Z and A,, >0 are constants and

1s umformly continuous and satisfies the properties that,
for all t=t,:

0<9(t) <eo, I:¢(s)ds:c¢<m A (32)

Then, the system is asymptotically convergent to the
origin of the whole.

Proof : It follows that:
V(Z)< MV (Z)+ed(t) (33)
Now, define a new variable as:
o(t)=V(Z)+ 2, V(Z)-24(t) (34)
Note that the preceding differential equation 1s scalar,
of first order and time invariant. Tt follows that w(t)<0.

Solving the equation, we have:

V(Z)=V(Z(t))e " + [ (o(s) + w(s)) ds

[Fa

V(Z(t))e ™ e ™ gp(s)ds (35)

1
V(Z{t,))e ™ + EJ.Z e g5y ds + EJ.: e g (s)ds
7

Note that by the mean value theorem there exists
s*e |:tu E} such that:
2

0= J.;C’J” (Ip(s)ds = e J.ftb(s)ds < e‘“v("ﬂ“)cw (36)

]

Which mmplies:

limE e p(s)ds=0 (37

L

»

Similarly, there exists g= - {t t} such that:

_Ee”* Elp(s)ds = tj)(l;)_lliL et dds < %q)(t*) (38)
2 2

v

which implies that:
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lim [; ¢ ¢ (s)ds = 0 (39)

oo o —
—eT

Since t* - e as t - < and since, by uniform continuity
and the barbalat lemma (Khalil, 2001), limo(t)=
Consequently the state ||7|| converges to zero
asymptotically for any initial condition. According to the
above mentioned assumptions, the system Eq. 25 has
global asymptotically stability that m Eq. 30, the following
equation should be expressed:

TAT (QIAA - TTAT(q)u, < eg(t) (40)
According to Eq. 26 and 27, Eq. 40 can be expressed as:

e A (@)p(Z.t) - r" A7 (q)u, < ed(t) (41)

p(Z,t) and A '(q) are the maximum size of AA and A™'(q),
respectively. According to Eq. 41, control law u, should be
presented as:

- ( V(1A ()
@(fz. () (42)
v@ﬂ A (@e(zy)

A7(q) and A7'(q) are the maximum and minimum sizes of
A7'(q), respectively. Equation 42 is substituted inte left
side of Eq. 41 and it can be expressed as:

= “I’” Al (q)p(Z,t)— rTA—l(q)[ Y(Z,t)p(Z,t) Al (q) } (43)

(@] co(t))
=A™ H)-AT VT(Z=t)V(Z’t) (44)
HA" @e(z.)-A “%AﬂmMWZM+me

) L |z o) (45)
ez -4 “‘)(ﬂq)(w(ztnwsw))}

According to HEq. 45, it is clear that the following
equation can be expressed:

B o L (46)

Equation 46 is simplified as:

_ vt

N IO (47)

From Eq. 47 it is derived that by choosing robust
control input Eq. 42, 40 is established hence system
presented by Eq. 25 has global asymptotically stability by
proposed control.

CASE STUDY OF TWO-LINK ELBOW ROBOT
MANIPULATOR

Controller which has been studied in this study was
assembled on two link elbow robot manipulator in Fig. 1.
Dynamic equations of this robot are reported by
Spong et al. (2006) presented as follows:

vl NI

My, = (L°m, + 24, cos(q,) + 17 (m, +m,)) (49)
M, =M., = (mez +4im, cos(q,)) (50)
M;; = 4%m; (51
~myh;sin(q,)q,” - 2m,d i sin(q;)q,q,
h {q.q)= {+myhgcos(q, +q,)+(m, +m,)igcos(q,) (52)

E 4 HE (4 )+ T,

b, (0.d)= (mzt?g cos (q17+ q,))+ (m2.111!2 sin(qz)qf) (53)
+F, q, +F, (qz)+ T,

where, /, and [, are lengths of the first and second links

respectively, m,and m, are masses of the first and second

links,

respectively, g 1s the gravitational force, F, 1s

yA

Fig. 1: Two link elbow robot mampulator
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Fig. 2: Desired path X, m the task space
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Fig. 3: Desired path X, in the task space

Table 1: Parameters of two link elbow robot

L=1m L=1m

m; =10kg m; =5 kg
g=98 Fy=Fy=2
E (a)=FE (a.)=1 Ty=Tu=5

dynamic friction. FE{q) is static friction and T, is
disturbance and un-modeled dynamics. u, and u, are input
torques of the first and second links, respectively. Robot
parameters which have been used in this simulation are
shown in Table 1.

For the design of robust nonlinear control, it is
assumed that system parameters are unknown but
bounded as:

05emy, bk, my=l.5 (34

In the control design parameter and function are
selectedtobe K =1, & = 0.3, £ = 30 and ¢p(t) = e*. Then,

1.2

1.0

0.8

0.6

0.4+

Position erroe 1 (m)

0.2

0.0

0.2 T T T T T T T T T
0 1 2 3 4 5 6 7 H 9 10
Time (sec)

Fig. 4: Tracking error X, in the task space
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0.1

0.0

'0.1 T T L] L] T L] T T 1
0 1 2 3 4 5 6 7 8 9 10
Time (sec)

Fig. 5: Tracking error X, in the task space

from bounding parameters, £, £,, €, £y and &; , we choose
bounding function p(Z, t) to be:

p(Z.t)=300+65(|2] +|2[) (55)

Desired path m task space are given in Fig. 2 and 3.
According to Fig. 4 and 5, in the presence of structured
and unstructured uncertainties, the proposed control
performs appropriately and trajectory errors X, in 2 sec
and X, m 1 sec converge to zero.

CONCLUSION

In this study, we proposed a robust nonlmear control
for tracking of robot mampulator. The proposed control
was designed in task space to overcome structured and
unstructured uncertainties presence in dynamical model
of robot. First we presented a method to determine
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dynamical equation by which robot manipulator in task
space was modeled. In design of controller we used the
method of elimmating known dynamics to reduce the non-
linear effects. Finally to overcome the remaimung
uncertainties, we used straight Lyapunov method and
determined maximum value for uncertainties. By this
strategy a robust controller was designed which performs
the best even at worst condition. Mathematically
reagsoning confirms that by applying the proposed
controller, the closed loop system has asymptotically
stability. The experimental results illustrate that the
designed controller performs well m presence of
uncertainties and the tracking errors converges to zero
rapidly. In order to reduce the computational complexity
of controller, the considered system dynamics can be
reduced, instead studying uncertainties
considered more precisely.

can be
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