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Abstract: Developing river inflow forecast is an essential requirement for reservoir operation. Accurate
forecasting results in better control of water availability, more refined operation of reservoirs and improved
hydropower generation. Artificial Neural Networks (ANN) models have been determined useful and efficient,
particularly in problems for which the characteristics of the processes are difficult to describe using
mathematical models. The ANN forecasting model is established considering the utilization of the inflow pattern
of the previous three months. In this study, real inflow data collected over the last 130 years at Lake Nasser
upstream Aswan High Dam (AHD) on Nile River, Egypt was used to develop and examme the performance of
the proposed method. The results showed that the proposed ANN model was capable of providing monthly
mflow forecasting with Relative Error (RE) less than 20%, which 1s considerably more accurate 1f compared with
the pre-developed regression model. The main mertit of this model 1s to provide accurate source of nformation
for inflow forecasting for better reservoir operation and appropriate long-term water resources management and

planning.
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INTRODUCTION

The Aswan’s High Dam (AHD), which i1s a major
urigation structure n Egypt, 15 located on the Nile River
near the city of Aswan. With the completion of the AHD
in 1970, a heuristic operation was established and adopted
for the management and operation of the AHD reservoir.
Its reservoir namely, Lake Nasser is considered as the
largest man made lake allover the world. Lake Nasser is
supplied by Nile River flow with an average annual inflow
of 84 billion cubic meters (BCM). The reservoir supplies
water for irrigation, municipal and industrial and energy
production as well as navigation purposes. Water
allocations to these groups of users are prioritized, with
the highest priority given to wrigation.

Developing optimal release policies of multi-purpose
reservolrs 1s very complex, especially for reservoirs with
explicit stochastic environment (e.g., uncertainty in future
inflows). The development of management models for
identification of optimal operating policies for
reservoirs spans over four decades of research. Tn a
random environment, where climatic factors such as
stream flow are stochastic, the economic returns from
reservolr releases defined by the optimal policy are

uncertain. Furthermore, the consequences of release
decision cannot be fully realized until future unknown
(inflow) events occur.

Operation policy of the reservorr 1s based on dividing
Lake Nasser storage into six zones, as shown in Fig. 1.
The dead storage zone, that is allocated to receive
sediments coming with the river flow during the flood
period, has a top elevation of 147 m with total volume of
about 31 BCM. The operation rule for this zone 1s to
regardless of the
requirements. The second zone is the live storage zone,
which amounts to 90 BCM. This zone 1s divided into two
parts. The first part 1s called buffer part that lies between
elevation 147 m and elevation 150 m. Within this zone, the
dam operators make their releases to meet the downstream
requirements. The total annual release should not
overshoot Egypt’s quota (555 BCM). The remaming
storage between elevations 175 and 183 m is divided
between a flood buffer and flood control zone. Although
the emergency spillways are designed to have a crest
level of 178 m, it 18 decided to control the reservoir
releases so that the water elevation does not exceed
175 m at the end of the hydrologic year (July 31st). As
shown in Fig. 1, the level of 178 m is separating the flood

release no flow downstream
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Fig. 1: Main components for different operation zones of AHD reservoir

buffer zone from the flood control zone at which any
accumulated volume has to be spilled (Fahmy, 2001;
Sadek et al., 1997).

As a result, river flow forecasts become an essential
requirement for AHD reservowr operation. Accurate
forecasting means better control of water availability,
more refined operation of reservoirs and improved
hydropower generation. Therefore, the problem of
forecasting of natural Nile River flows 1s of considerable
importance and new inflow forecasting models should be
investigated.

River flow 1s believed to be lughly nonlinear, time-
varying, spatially distributed and not easily described by
simple models. Two major approaches for modeling the
river flow forecasting process have been explored in the
literature. These are the conceptual (physical) models
and the system-theoretic models. Conceptual river flow
forecasting models are designed to approximate within
their structures (in some physically realistic manner) the
general mtermnal sub-processes and physical mechamsms,
which govern the hydrologic cycle. These models usually
incorporate simplified forms of physical laws and are
generally nonlinear, time-invariant and deterministic,
with parameters that are representative of river flow
characteristics. Until recently, for practical reasons
(data availability, calibration problems, etc.) most
conceptual river flow-forecasting model assumed lumped
representations of the parameters. While such models
ignore the spatially distributed, time-varymng and
stochastic properties of the river flow process; they
attempt to incorporate realistic representations of the
major non-linearities mherent in the river flow and chimatic
parameters relationships. Conceptual niver flow models are

generally reported to be reliable in forecasting the most
important features of the hydrograph, such as the
beginning of the rising limb, the time and the height of the
peak and volume of flow. However, the implementation
and calibration of such model can typically encounter
various difficulties including sophisticated mathematical
tools, significant amounts of calibration and some degree
of experience with the model.

While conceptual models are of importance in the
understanding of hydrologic processes, there are many
practical situations such as river flow forecasting where
the mam concern 1s with making accurate predictions at
specific locations. In such a situation, it 1s preferable to
develop and implement a simpler system-theoretic model
instead of developing a conceptual model. In the system-
theoretic approach, models based on differential
equations (or difference equations in case of discrete-time
systems) are used to identify a direct mapping between
the inputs and outputs without detailed consideration of
the intemnal structure of the physical processes. The linear
time-series models such as ARMAX (Auto Regressive
Moving Average with exogenous inputs) models
developed by Box et al. (1594) have been usually used in
such situations because they are relatively easy to
develop and mmplement. They have been determined to
provide satisfactory predictions in many applications
(Bras and Rodriguez-Tturbe, 1993). However, such models
do not attempt to represent the nonlinear dynamics
inherent m the river streamflow and therefore may not
always perform adecquately.

Motivated by the difficulties
nonlinear models, their complex structure and parameter
estimation techmques some truly nonlinear system-

associated with
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theoretic river flow forecasting models have been
reported. In most cases, linearity or piece-wise linearity
has been assumed (Chetan and Sudheer, 2006). Allowing
the model parameters to vary with time can compensate
for the model structural errors that arise from such
assumptions. For example, real-time 1identification
techniques, such as recursive least squares and
state-space Kalman filtering, have been applied for
adaptive estimation of model parameters (Bras and
Rodriguez-Tturbe, 1993).

Recently, significant progress in the fields of
norlinear pattern recognition and system control theory
has made advances in a branch of nonlinear system
theoretic modeling called Artificial Neural Networks
(ANN). An ANN is a nonlinear mathematical structure,
which 1s capable of representing arbitrarily complex
nonlinear processes that relate the inputs and outputs of
any system. ANN models have been used successfully
to model complex nonlinear nput-output time series
relationships in a wide variety of fields.

The success with which ANNs have been used to
model dynamic systems m other fields of science and
engineering suggests that the ANN approach may
prove to be an effective and efficient way to model the
river flow process in situations where explicit knowledge
of the mtemal hydrologic sub-process 1s not required.
Some studies in which ANN models have been applied
to problems mvolving river watershed and weather
prediction have been reported in the literature.
French et al. (1992) demonstrated that an ANN 1s capable
of forecasting the complex temporal and spatial
distribution of rainfall generated by a ramfall simulation
model. Chang and Tsang (1992) used an ANN to model
Snow Water Equivalent (SWE) from multi-channel
brightness temperatures and obtained better results than
a multiple regression model.

A wide range of application of ANN technique has
been investigated in the field of water resources
management specially for river flow forecasting. Chetan
and Sudheer (2006) developed a hybrid hinear-neural
model for forecasting the river flow of Kolar basin, in
India. Eii et al. (2003) proposed a method for inflow
forecasting of the Karogawa Dam by using neural
networks. The methodology was applied using the rain
data outside and inside the dam basin. The model reduced
the forecasting error by about 30%.

Coulibaly et al. (1999, 2000, 2001a, b) reported that
Recurrent Neural Network (RNN) could be appropriately
utilized for inflow forecasting while taking into
consideration  the precipitation, snowmelt and
temperature. However, it was reported that complex
training procedure as well as long traimng time 15 required
to achieve the desired performance.

Apparently, the nonlinear ANN model approach
1s shown to provide better representation of inflow
forecasting than other conventional methods. Because
the ANN approach presented here does not provide
models that have physically realistic components and
parameters, it 18 by no means a substitute for conceptual
river flow forecasting modeling. However, the ANN
approach does provide a variable and effective alternative
to the traditional approach for developing input-output
forecasting models m situations that do not require
modeling of the other physical parameter of the river flow.

For more than thirty-four years of operation of the
AHD and Lake Nasser reservoir, the inflow to the lake
faces different cycles (flood and drought). Accordingly,
several efforts have been made for developing forecasting
models of the natural inflow at AHD. In fact, the nature of
the Nile River inflow can be described as a multivariate
process. Physically, the flow at a given station depends
on the past and present flow rates at the upstream
stations. However, it 13 extremely difficult at the present
time to obtain accurate information about the flow rates at
the upstream stations. Thus, a model completely based on
the historical inflow data at the AHD is required.
Fortunately, accurate mflow data at the AHD over the
past 130 years are available. Information about the flow
rates at the upstream stations as well as the climatic
condition affecting the inflow are all embedded in this
data.

Several forecasting models were suggested and
developed using the um-variate autoregressive moving
average representation of the natural inflow at AHD
(Salem and Dorrah, 1982; Koutsoyianms ef af., 2008). The
results of these models tend to either over-estimated for
low floods or under-estimated for high flood. This
drawback 1s very vital to the feasible storage level to
ensure that the storage limits, namely the dead storage
and the reservoir capacity, are not violated. Therefore, it
1s essential to develop a model capable of mimicking the
behavior of the River Nile inflow to produce forecasting
sequences of the natural inflow at AHD.

The objective of this research is to analyze the
historical inflow data of AHD and to develop an
independent forecasting model of the natural Nile River
wnflow at AHD using ANN. While such a model is not
intended as a substitute for a physiographic and hydro-
climatology based models, it can provide a valuable
alternative when the decision-maker of the AHD and Lake
Nasser requires an accurate forecast of Nile River mflow
to be provided using only the available input and output
time series data. The anticipated mmpact of this model is
that it can forecast the natural inflow at AHD without the
need to explicitly represent the nternal hydrologic or
climatic parameters.
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MATERIALS AND METHODS

Artificial neural networks: Artificial Neural Networks
(ANN) 18 densely intercormected processing units that
utilize parallel computation algorithms. ANN is also
known as connectionism, parallel distributed processing,
neuro-computing, natural intelligent systems and machine
learning algorithms. The basic advantage of ANN is that
they can learn from representative examples without
providing special programming modules to simulate
special patterns in the data set (Bishop, 1995). This allows
ANN to leam and adapt to a continuously changing
environment. While ANN do not provide a closed form
mathematical model for the problem, they do offer
accurate models based on the leaming procedure. Neural
Networks (NN) are composed of simple elements
operating in parallel. These elements are inspired by
biological nervous system and the network functionality
15 determined by the connections between them. The NN
can be trained to perform a particular function by tumung
the values of the weights (connections) between these
elements. The training procedure of NN is performed so
that a particular input leads to a certain target output as
shown in Fig. 2.

The neurons: ANN are networks of many simple
processors (neurons) operating in parallel, each possibly
having a small amount of local memory. The smallest
network unit (the neuron) receives its input through a
connection that multiplies its strength by a scalar weight
w and adds a bias b. The sum of the weighted mputs and
their weights and biases 18 the argument for a transfer
function f that produces the neuron output a. Figure 3
shows a schematic model for a single neuron. A neural
network can consist of an input layer, an output layer and
a number of lidden layers that might have varable
mumber of newons each. The pattern of connectivity in
the network is represented by a weight vector W. The
pattern of comnectivity (excitatory or ihibitory)
characterizes the architecture of the network (Ripley,
1996). By adjusting the connections weights (W) and the
biases (b) the network can exhibit any desired output. The
process of adjusting the weights and the biases of the
network 1s known as the training process. In other words,
an ANN learns from examples (of known input/output
sequences ) and exhibits some capability for generalization
beyond the traimng data (Bishop, 1995; Ripley, 1996;
Tsoukalas and Uhrig, 1997).

Transfer functions: Transfer functions for the neurons
are needed to mtroduce non-linearity mto the network.
Bounded activation functions such as the logistic are

Neural Network
Including layers of

Input neurons and some
weights in between

Estimation
error

T Training
[ Adstparmeters |1 Hion

Fig. 2: Artificial neural network model

re—| = L o ¢ ——» A={(PW+h)
I

Fig. 3: The neuron model

particularly useful when the target values have a bounded
range. But if the target values have non-bounded ranges,
1t 18 preferable to use an unbounded activation function.
Many transfer functions have been introduced by ANN
researchers. Commonly used transfer functions include
hard limit transfer fimctions that are used in perceptron
networks (Gibson and Cowan, 1990), linear, sigmoid and
log-sigmoid transfer functions that are wed in
feedforward networks. The linear and the log-sigmoid
transfer functions are further described below as they are
used m the networks:

» Linear transfer function: Neurons utilizing this
transfer function are usually utilized as linear
approximates in  adaptive filtering
(Tsoukalas and Uhrig, 1997).

s  The log-sigmoid transfer function: This transfer
function has an output ranging between O and 1.
This transfer function 1s commonly used 1n
backpropagation networks, in part because it is
differentiable (Bishop, 1995).

linear

Multi-layer networks: Multi-layer networks are powerful
modeling tools (Bishop, 1995; Ripley, 1996). The mput and
the output layers of any network have numbers of
neurons equal to the number of the inputs and outputs of
the system respectively. The layers between the input and
the output layers are known as hidden layers. The number
of neurons and ldden layers can be arbitrarily chosen
and adjusted until the function can map the desired
output. Tt has been proven that a network of two layers
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that utilizes a sigmoid and a linear transfer functions in its
first and second layer respectively can be trained to model
any non-linear relation (Bishop, 1995; Ripley, 1996).

Learning rules: The learning rule is a procedure for
modifying the weights and biases of the network. This
procedure may also be referred to as the traming
algorithm. Learming rules fall into two broad categories:
supervised learning and unsupervised leaming. In
supervised learning, the learning rule is provided with a
known input/output set of data and an algorithm 1s then
used to adjust the weights and biases of the network in
order to move the network outputs closer to the targets.
Therefore, modelling capabilities of networks trained
using supervised learning algorithms are limited to the
range of the mput used in training the network. In
unsupervised learning the weights and biases of the
network are modified according to the inputs only.
Unsupervised learmming 1s usually used to for data
partitioning (Ripley, 1996; Tsoukalas and Uhrig, 1997).

Backpropagation algorithm: Bakpropagation is a
generalized learmung rule that 1s based on gradient descent
algonthm and 1s commonly used with multi-layer networks
that utilize non-linear transfer functions. The total
weighted input at any neuron x; and its output activity
y; based on a selected transfer function is computed. To
perform the backpropagation learning rule, the network
performs the following steps (Magoulas et al., 1999).

*  Compute the Mean Square Error (MSE) between the
output activity y, and the desired output d, over the
whole range of data (N) as in Eq. 1:

N

MSE:%E(yfdJ)Z (1

i=1

* Compute the rate of change of the error E with
respect to an output activity (y;) represented by
JdE/dy. This derivative is the difference between the
actual and the desired output (y,-d;)

* Compute the rate of change of the error E with
respect to the input received by an output unit (x,)
represented by JE/0x;

* Compute the rate of change of the error E with
respect to the weight on the connection mnto an
output unit (W) represented by JE/JW,

¢+ Compute the rate of change of the error E with
respect to the activity of a unit n the previous layer
(vi) represented by OE/y, This step allows
backpropagation  to be applied to multilayer
networks

By repeating steps 1 to 5 the vectors of weights (W)
and biases (b) can be altered to allow the network
achieving the desired output. The simplest approach
for updating the network weights and biases 1s described
as:

Wi =W — g, 2

where, p, 18 the learning coefficient which 15 a small
positive constant that controls the step size of the
iterative changes in the network weights and g, 1s the
error gradient vector.

Inflow forecasting with MILP-NN: In fact, the forecasting
procedure 1s, by definition, an operation through which
the future water inflow pattern can be provided. Most of
present inflows forecasting systems attempt to forecast
the inflow at monthly basis (Olason et «l, 1997,
Abrahart et al., 2007). However, the same theory can be
applied to any kind of other timely basis (howrly, daily,
weekly,... etc.) based on the nature of the data available.
In this study, it is required to forecast the inflow at month
t using the monitored mflow of some previous months.
The mumber of months used to provide accurate inflow
forecasting at certamn month 1s based on data analysis and
the desired accuracy. Tn addition, the inflow forecasted at
month t can be used with the monitored nflow of some
previous months to provide a forecasting at month t+1.
This procedure of using the forecasted inflow can be
repeated for T, months and the value of T, depends on the
environmental conditions and the basin characteristics
(Todd et al, 1999). Tt has been reported by Sutcliffe
and Parks (1999) that the lead time L carmot be more than
3 months.

We have determined that inflow forecasting at certain
month t based on the monitored inflow from the previous
years at the same month (instead of previous months at
the same year) canmot provide reliable results. This will be
justified later by analysis of autocorrelation sequences of
the inflow data at certain month t over number of years.

In this study, ANN with its nonlinear and stochastic
modeling capabilities is utilized to develop a forecasting
model that mimics the nflow pattern at AHD and predict
the inflow pattern for two months ahead based upon the
monitored/forecasted inflow at three previous months.
The inflow Q; forecasted at month t based on the inflow
monitored Q, at the previous three months can be
expressed as:

Qe ()= £{Qun (t-1). 0 (1-2).Qm (1-3)) @)

Consequently, the mflow for month t+1 can be forecasted
as follows:

4491



J. Applied Sci., 8 (24): 4487-4499, 2008

QD

ANN
5 forecastin
¢ Z)O:? madel fcvl'g :> O::

month t

Qg (t+1)

ANN
forecasting
model for
month t+1 Q. (t+2)

ANN
forecasting
%@ O:: model for

month t+2
Q (t-l)O;‘
Fig. 4: Schematic representation of the proposed inflow forecasting procedure
Table 1: The ANN architecture for each month
Months R N; N, N Transfer function Transfer function Transfer function
August 3 6 4 2 Log_sigmoid Tan_sigmois Pure-line
Septernber 3 6 4 1 Log sigmoid Tan_sigmois Pure-line
October 3 5 3 2 Log_sigmoid Log_sigmoid Pure-line
November 3 5 3 2 Log sigmoid Log sigmoid Pure-line
December 3 6 3 1 Log_sigmoid Tan_sigmois Pure-line
January 2 6 2 1 Log sigmoid Pure-line -
February 2 4 3 1 Log_sigmoid Pure-line .
March 2 4 3 1 Log sigmoid Pure-line -
April 2 6 4 1 Log_sigmoid Pure-line .
May 2 6 4 2 Log sigmoid Pure-line -
June 3 5 4 2 Log_sigmoid Tan_sigmois Pure-line
July 3 5 4 2 Log sigmoid Tan_sigmois Pure-line
Qp (t+1)=F(Qp (1), Qp (t-1),Qy (t-2)) (4y  ANN model were examined using the mflow data

Similarly, the inflow for month t+2 can be forecasted using
the following equation:

Qe (t+2) = Qe (1) Qe (1), Qua (t 1)) (%)

In fact, Q; in all of the above equations represents
forecasted mflow while Q, is a monitored inflow. The
above procedure, which was applied at month t, can be
repeatedly applied at every other month using the same
model described in Eq. 3-5. A schematic representation of
the above procedure 1s given m Fig. 4.

The ANN model 15 established using the above three
equations. The architecture of the network consists of an
input layer of three neuwrons (corresponding to the
monitored/forecasted mflow of the previous three months
at the mputs to the network), an output layer of one
neuron (corresponding to the forecasted inflow) and
number of hidden layers of arbitrary number of neurons at
each layer. In order to achieve the desirable forecasting
accuracy, 12 ANN architectures were developed (one for
each month). Monthly natural inflows for the period of
60 years (between 1871 and 1930) were utilized to train the
12 networks. The performance and the reliability of the

momnitored between 1931 and 1960. The capabilities of the
developed ANN model was further verified by the inflow
data between 1961 and 2000 that correspond to the inflow
monitored after the construction of AHD m 1960.

In order to accelerate the training procedure and to
achieve mimmum mean square estimation error, the inflow
data was normalized. Different MLP-ANN architectures
(while keeping three neurons m the input layer and only
one neuron n the output layer) were used to examine the
best performance. The choice of the number of hidden
layers and the number of neurons in each layer is based
on two performance indices. The first 1s the root mean
square value of the prediction error and the second 1s the
value of the maximum error. Both indices are obtained
while examining the ANN model with the inflow data
between 1931 and 1960. The last group of data (between
1961 and 2000) verified the capabilities of the ANN model
as it will be explained later in the results section. An
example of the ANN architecture used for the month of
August 1s given in Fig. 5.

The number of hidden layers (R) and the number of
neurons in each layer (N) for each network are given in
Table 1. The transfer functions used in each layer of the
networks were alsoshown m Table 1. All 12 networks

4492



J. Applied Sci., 8 (24): 4487-4499, 2008

Hidden layer I with

Inflow at month t

Inflow at month t-1

Inflow at month t-2

N\
ORI
0\

~/

4 neurons
AN

Hidden layer Il with

Hidden layer Il with

2 neurons Output Layer with
1 neurons

X
/N

Inflow at month t+1

Fig. 5: The exact neural network architecture for month August

30

254 K +

L

104
3
5_
c T T T T 1 ] L] 1] T T T T
1871 1881 1891 1901 1911 1921 1931 1941 1951 1961 1971 1981 1991
Years

Fig. 6: The natural inflow at Aswan for period 1871-2000 for month August

utilize the backpropagation algorithm during the tramning
procedure. The scaled conjugate gradient criterion was
used to update the ANN parameters while training since
1t was reported that this method 1s the most suitable in
case of high randomness on the input data, which is the
case m this study (Clhuang et al., 2004). This criterion 1is
based on the conjugate gradient method but with small
modification that avoid time consuming in the line search
(Bishop, 1995).

Data analysis: In this study, the Nile River inflow data
m Aswan published by the Egyptian Mimstry of
Water Resources and Imgation was utilized. The
inflows in Aswan for the period between 1871 and
1902 have been deduced using a general stage-discharge

table, which has been constructed from the Aswan
downstream gauge. Due to the construction of several
dams and other hydraulic structures 1n Egypt and
Sudan, the natural mflow from 1902 onwards have been
derived directly from the general stage-discharge
relationship in Aswan by comrecting the measured inflow
for the effect of losses from upstream reservoirs,
abstractions in Sudan and the effect of regulation by
Senmnar Reservorr.

The natural mflows in Aswan for months August and
March are demonstrated in the Fig. 6 and 7. Obviously,
the monitored mflow 1s random in nature. Accordingly, it
1s recommended to analyze the data by studying the auto-
correlation sequences for each month over the 130 years
and the cross-correlation between consequent months in

4493



J. Applied Sci., 8 (24): 4487-4499, 2008

L 4

4

Inflow (Billion m")

L
s L 4

1 1 T T T T T i T
1871 1881 1891 1501 1911 1921 1931 1941 1951 1961

Years

Fig. 7: The natural inflow at Aswan for period 1871-2000 for month March

T
1971

T
1981

T
1991

) 'T®
0.4
_ 03 : Ny
S 02 i z N
S WA NP WA AT N DN N W T
0.0-44 i N Y H . v‘ Ty ‘\
i1 !
o[V Y NV WYY - Y
% 1o 6 1 & 0 20 10 & 16 20 30
Time (year) Time (year)
e ) 25T
15 20
10 15
e 4 Ll =
=z 5 =z 1.
o ‘!“V‘-« n] \A r-'\f'\_.. 0.5
MM T AT I
o5t VYV VA
30 20 -10 10 20 30 30 20 -10 10 20 30
Time (year) Time (year)}

Fig. 8 The auto-correlation sequence for the inflow for months of (a) August, (b) September, (¢) October and (d)

November

the same year. The study of the auto-correlation
function, clearly, tells how the process is correlated with
itself over time. While studying the cross-correlation
sequences provides information about the mutual
correlation between two consequent months.

The auto-correlation sequence for a random process
x(t), corresponding to a monitored inflow at certain month,
1s defined as:

Ry (1) = E(xD x(t+1)) ©)

where, T i3 the independent time variable of the
autocorrelation sequence R(T).

On the other hand, the cross-correlation sequence
(CCS) between the processes x(t) and y(t), corresponding
to inflows at two consequent months, is defined as:

CCS(t)=E(x(t) y(t+1)) {7)

Figure 8 shows the auto-correlation sequence for

4 different months with respect to time over 130 years.
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Fig. 9: The cross-correlation sequence for the inflow for
months of (a) August-July, (b) August-June and
(c) August-May

Obviously, these auto-correlation sequences decrease
rapidly with respect to time showing no enough
correlation over time. In this case, the auto-correlation
function is more likely to represent a white sequence
which is impossible to predict over time. In other words,
it is unlikely to use neural networks to predict the inflow
of certain month at certain year utilizing the
monitored/forecasted inflow of the same month at the
previous years.

Fortunately, studying the cross-correlation between
the inflow at month t(Q(t)) and the inflow at three
previous months (Q(t), Q(t—1), Q(t-2)) showed a strong
correlation over time. Figure 9 shows the cross-correlation
function between August and the previous three months
(July-June-May). This justifies the architecture proposed
in this study to predict the inflow at certain month based
on the monitored/forecasted inflow at previous months
shown in Fig. 4.

RESULTS AND DISCUSSION

The ANN-based architecture of Fig. 4 and 5 is
employed in this study to provide inflow forecasting at
each month. The monitored inflow over 60 years between
1871 and 1930 was used to train 12 networks with each
network corresponds to one month. All 12 networks
successfully achieved the target MSE. For example, the

0

10

Mean Square Error (MSE)

L] 1 1 T T 1 1 L] T 1
0 50 100 150 200 250 300 350 400 450 500
Iteration

Fig. 10: Training curve for the month of August

Table 2: RMSE error associated with NN forecasting model for each month

RMSE Maximum inflow Minimum inflow

Months (BCM) (BCM) (BCM)

August 0.4900 29.10 6.50
September 0.7805 32.79 7.31
October 1.0689 27.40 5.97
November 0.1801 14.40 4.12
December 0.2838 11.00 2.83
January 0.2347 7.70 1.72
February 0.2282 6.04 1.15
March 0.0909 5.81 1.07
April 0.2389 5.26 0.95
May 0.3215 4.72 0.80
June 0.2665 5.16 0.90
July 0.5544 11.03 1.74

training curve for the month of August is demonstrated
on Fig. 10 showing convergence to the target MSE of
0.0001 after 528 iterations.

The 12 networks developed during the training
procedure are used to provide the inflow forecasting for
the next 30 years between 1931 and 1960. Since the inflow
was accurately monitored over these 30 years, the
performance of the proposed ANN-based architecture can
be examined and evaluated. The distribution of the
percentage value of the error over these 30 years as well
as its RMSE value are the two statistical performance
indices used to evaluate the model accuracy. The
distribution of the percentage error between the
monitored (actual) and the forecasted inflows over the 30
years between 1931 and 1960 is shown in Fig. 11 for 4
different months. Apparently, the highest percentage
errors for these 4 months exist at the month of August,
December, January and June and it is equal to 7%.
However, we have determined that in some odd cases
(for the months of October, February, April, May and
July) the percentage error may take higher than normal
values of approximately 18% as can be shown in Fig. 12.

Table 2 shows the RMSE value of the error over the
same 30 years for the different months. Small RMSE
values of the errors associated with the months of

4495



J. Applied Sci., 8 (24): 4487-4499, 2008

@

SV .

Error (%)

-5
y

-10

1930 1940 1950 1960

Year
3
© [\
2 A

U

NN

TN \/

1930

Error (%)

1940 1950
Year

1960

, ® AVA
W
L

5 VA
SRR,
- ¥
-§930 1940 1950 1960
Year
2 d
(d) A y

Fxmr(%lﬁ)
<
)_,_._-—-—
2

Fig. 11: The error distribution for (a) August, (b) December, (¢) January and (d) June

20
@

. A

Exror (%)

1940 1950 1960

Year

©
AVZA!

0 v
TN

E-lc '\/\‘\w
-15 \’\

N

20

“1930

1940
Year

1950 1960

4 AV l\/
“1930 1940 1950 1960
Year
25
(b)
20
g 15 /‘_Av
.E 10 f/
3 4
S
0
1930 1940 1950 1960
Year
-
@
-0 A
e /|
g -10 \
a w"\/\/\/ .
12
1930 1940 1950 1960
Year

Fig. 12: The error distribution for (a) October, (b) February, (¢) May and (d) July

(August, September, December and June) can be
observed. This agrees with the small percentage errors
shown in Fig. 11. Although the RMSE values of the errors
assoclated with the months of (February and May) may
look small, they correspond to relatively small values of
the monitored inflow. For example, RMSE error values of
1.0689 BCM and 0.2282 BCM have been evaluated for the

months of October and February, respectively. These
values of RMSE errors are relatively high since they
correspond to momtored mflow range of (27.40-5.97) BCM
for October and (6.04-1.15) BCM for February. On the
other hand, RMSE error values of 0.49 BCM and 0.0909
BCM have been evaluated for the months of August and
March, respectively. These values of RMSE errors are
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small and correspond to momitored inflow range of
(29.10-6.50) BCM for August and (5.81-1.07) BCM for
March. After comprehensive analysis of the relatively
high percentage errors at the months of October,
February, April, May and July, we have figured out that
an over-fitting problem may have occurred while traiming
the corresponding networks. The over-fitting problem is
simply that the network was trained to only memorize the
traiming examples, but it did not learn to generalize.
More verification of the performance of the ANN-
based inflow-forecasting model has been established
using the inflow data between 1961 and 2000. Table 3
shows the RMSE value of the inflow error over these 40
years using the same 12 networks used between 1961 and
2000. Apparently, the same levels of errors have been
achieved. Tn addition, Table 3 shows performance of the
multi-lead forecasting for two months ahead as mentioned
above. The second column shows the RMSE forecasting
error when only the monitored inflows from the previous
months are utilized at the input of the model. The third
column corresponds to the case when one forecasted
inflow and two monitored mflows are used at the network
inputs while the fourth column corresponds to the case of
two forecasted inflows and one monitored inflow are
utilized. It can be depicted that the inflow forecasting
accuracy 1s reduced when less momtored inflow 15 used

Table 3: RMSE associated for NN forecasting model for period of
(1961-2000) and the lead time for two months ahead
RMSE (BCM)  RMSE (BCM)  RMSE (BCM)

Months month (t) month (t+1) month (t+2)
August 0.4510 0.6966 0.8957
Septemnber 0.6385 0.8268 0.1561
October 0.7785 0.1441 0.3689
November 0.1369 0.3406 0.3051
Decemnber 0.3121 0.2816 0.2967
January 0.2640 0.2738 0.1182
February 0.2601 0.1091 0.1806
March 0.1027 0.1667 0.2238
April 0.1541 0.2066 0.3465
May 0.1996 0.3198 0.5011
June 0.2931 0.4625 0.6150
July 0.4432 0.5166 0.8127

at the network input. For example, the RMSE error for the
inflow forecasted at the month of November was 0.1369
BCM when the momitored mflows of the months of
August, September and October are used at the mput.
This error increases to 0.1441 BCM when the monitored
inflows of August and September and the forecasted
inflow of October are used. Furthermore, the RMSE  error
has further ncreased to 0.1561 BCM when the momnitored
inflow of August and the forecasted inflows of September
and October are used.

Figure 13 shows the distribution of the errors for the
months of July, June, May and March. It can be
determined that the model is examined separately for these
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Table 4: RE %% associated with the output of the proposed ANN and ARMA
models on monthly basis for vears 1999 and 2000
Conventional method ARMA

ANN (Salem and Dorrah, 1982)

Year Year
Month 1998-99  1999-2000 1998-99 1999-2000
August 14.70 16.19 -24.80 -27.57
September 11.79 -12.04 23.62 29.77
October -16.38 -17.62 -22.49 32.15
November 15.76 -16.62 -21.42 -25.53
December  -15.26 14.54 27.60 35.07
January 6.08 9.01 -26.04 -35.43
February 11.91 15.96 31.64 35.78
March 2.80 2.60 29.26 -36.14
April 14.04 1610 31.32 21.21
May 4.02 3.85 23.15 21.00
June -0.52 -0.90 -24.31 -22.05
July -7.10 -7.50 34.73 31.01

40 years (between 1961 and 2000). This is actually due to
the significant change m the inflow pattern during the
period between 1961 and 2000 that experienced different
cycles of high flood and drought. However, the proposed
ANN-based  forecasting module  that
monitored/forecasted mflow of previous months to
predict the inflow at the present month (and developed
using inflow data between 1871 and 1930) is still
performing adequately without change. This shows an
mnportant feature of the proposed model, which 1s
established based on studying the autocorrelation and
the cross-correlation sequences of the inflow data.

For further analysis of the proposed ANN model,
Table 4 compares the performance of the NN to the
ARMA models over the period between August 1998 and
Tuly 2000 (two water years) using the Relative Error (RE)
% indicator for each month.

utilizes

|Qf(testmg) - Qm ) (8)
Q

m

RE {%)=100*(

where, Oy 18 the forecasted inflow for a specific month
and Q, 1s the monitored inflow for this month. It is
obvious from Table 4 that the NN model outperformed the
ARMA models with remarkable improvements in the RE%o
for all months.

CONCLUSION

This study suggested a neural network based model
for mflow forecasting which 1s established based on
stochastic analysis of the historical records of inflow.
This model does not necessitate incorporating the
physical nature of the inflow, physiographic conditions,
the lags of independent variables and other climatic
conditions that are already embedded in the historical

inflow records. Furthermore, multi-lead forecasting can be
established using the same model. The proposed method
was applied to provide inflow forecasting for Nile river
flow at Lake Nasser m Aswan. Despite the hghly
stochastic nature of the inflow data in this region, the
proposed model was capable of mimicking the inflow
pattern accurately with relatively small inflow forecasting
errors of less than 10%. Therefore, it 1s anticipated that
significant improvement in reservoir operation and
management can be achieved when integrating with the
proposed forecasting model.
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