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Abstract: This research aims to study the effect of Channel State Information (CSI) at the transmitter on the
overall channel capacity. The capacity of MIMO correlated Rayleigh channels for different antenna
configurations with and without chammel knowledge (CSI) at the transmitter 13 sumulated. When CSI is available
at the transmitter (i.e., informed transmitter), waterfilling algorithm is used to allocate the power among the
transmitter antermas. Simulations show that capacity 1s mnproved sigmficantly when CSI 1s known at the
transmitter. It also shows that the lack in channel knowledge (1.e., uninformed transmitter) can be compensated
for by increasing the number of antennas in the receiver (M,). When the number of antennas in the transmitter
is larger than those in the receiver, using waterfilling becomes necessary to get the optimum capacity.

Key words: MIMO correlated channels, waterfilling algorithm, informed/Auminformed transmitter, channel state
information at the transmitter, lower SNR region, higher SNR region

INTRODUCTION

Modern wireless systems continue to demand higher
data rates and better reliabilities. These demands can be
fulfilled using the conventional systems which are limited
by multipath fading and interference by increasing either
channel bandwidth, transmitted power, or both. However,
this simplistic solution is not attractive for the following
reasons. Firstly, transmitted power cannot exceed a
certain value for its biological hazards and beside that, the
sensitivity of wireless receivers rarely exceeds 30-35 dB
because of the difficulty of building linear receivers at
reasonable cost (Paulraj et al., 2004). Secondly, frequency
spectrum is a scarce resource especially below the 6 GHz.
This makes it very difficult and costly to increase the
channel bandwidth (Paulraj et al., 2004). For all these
reasons, new techmques must be introduced to achieve
these demands of the modemn wireless systems. These
techniques must be affordable in terms of cost and
biologically unharmful.

Multiple-Input  Multiple-Output  (MIMO) system
represents one of these genius solutions that improve the
bandwidth efficiency and system reliability without need
to use extra bandwidth or transmitting more power mto
the channel (Foschini and Gans, 199%).

In MIMO systems, the transmitter uses more than
one anterma to transmit the data and the receiver uses
more than one antenna to receive these data. The
capacities achieved by MIMO systems are very high
compared with the conventional systems (SISO, SIMO
and MISO) given that the underlying channel is rich of

scatterers with independent spatial fading. This gain in
capacity and reliability depends on the mumber of
antennas at both sides, the statistics of the channel
and the channel knowledge at the transmitter
(Gesbert et ai., 2003) bandwidth, at the same time and this
1s the source of capacity gain in spatial multiplexing based
MIMO systems. This extra capacity is obtained without
increasing the channel bandwidth, or transmitted power.

In this study, we will investigate the capacity of
MIMO Rayleigh correlated channels for different
configurations and at different correlation coefficients.
First we will study the capacity of MIMO systems with
equal mumber of antennas at transmitter and receiver,
when the channel is known and when it is unknown at the
transmitter. Secondly, MIMO systems capacity with
receive diversity also will be studied for both known and
unknown channels. Thirdly, MIMO systems with larger
transmit array will be used to calculate the capacity for
both cases known and unknown channels at the
transmitter.

MIMO SYSTEM MODEL

Since MIMO 1s a narrowband technology (Salous,
2003), a narrowband, flat fading Rayleigh correlated
chanmel 1s to be considered here.

Single user, with multiple transmit and receive
antennas will be considered in this study. The total
transmit power 1s P, where P 13 independent of the mumber
of antermas at the transmit side. This system 13 described
as follows:
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y=Hx-+n ()

where, x = (x,, X,,..., %,)" is the M,x]1 complex vector
representing the transmitted signal with the power
constraint

tr (B (") < P (2

¥ = (Y1, ¥ar.. Vo) i the M1 complex vector representing
the received signal and n = (n,, n,,..., n,)" is M,x1 complex
vector representing the additive wlite Gaussian noise
vector (AWGN) with a zero mean and covariance
matrix 6%, Tw, where Ty, is the M, xM, identity matrix. The
()% (O () and E() denote transposition, conjugate
transpose, trace and expectation, respectively. H is M, xM,
MIMO channel matrix, whose entries h; represent the
channel response of the chammel between jth transmit

antenna and the ith receive antenna.
MIMO CHANNEL MODEL

Kronecker model will be used here in this paper to
describe the Rayleigh correlated channel. In this model
the channel spatial correlation Ry = E [vec(H)vec(HH)]
(Shiu et al, 2000), where vec(H) denotes the MM, =1
vector formed by stacking the columns of H. When the
channel is rich with multipath and no LOS component
exists, the transmit antennas correlation and receive
antennas correlation can be considered mdependent. In
such case, the channel correlation matrix R, can be
decomposed into two correlation matrices, the transmit
correlation matrix R, and the receive correlation matrix R,
so as Ry, = R, T @ R, where ® is the kronecker product.
Hence the Rayleigh correlated channel can be written as:

H= RrIJ’Z Hi_thlt'Z
Where:
R, = The receive correlation matrix
R, = The transmit correlation matrix

H,,, = The uncorrelated charmel matrix
CORRELATION MODEL

The exponential correlation model will be adopted in
this study (Loyka, 2001 ). For this model, the components
of the correlation matrices (R, and R,) are given by:

4 .

I R

L=y, . IrEl
i 1]

where, r 1s the complex correlation coefficient of
neighboring antenna. This model is suitable for studying

the effects of correlation on the channel capacity,
although 1t 1s not accurate for some real world scenarios.
However, this model is physically reasonable, where the
correlation between the adjacent antennas is larger than
the correlation between none-adjacent antennas (1bid).

MIMO CHANNEL CAPACITY

The theoretical capacity of this system is expressed
by the following formula (Telatar, 1999).

C=E, {logg det,, +ﬁHQHH)} (3)

where, ) = E[xx"] is the input covariance matrix and E, is
the total transmit power, N; 1s the noise power mn each
anterma at the receive side.

In Eq. 3, the mean is taken over the random channel.
The capacity depends on the number of antennas at both
sides, input covariance matrix Q and the channel
statistics. When channel H is Rayleigh distributed, its
mean will be zero (no LOS component exists) and its
covarlance 1s 1.

The Q matrix represents the covariance matrix of
the transmitted vector. This matrix i1s diagonal and its
elements are all real numbers. The trace of this matrix
should not exceed the number of transmit antennas. In
other words, tr (Q) = M, There are two cases for this
matrix, when the transmitter does not have a prior
knowledge about the channel, this channel will be the
identity matrix = L, when the instantaneous channel 1s
available at the transmitter, therefore transmitter can
optimize Q matrix to obtain the optimum capacity. We will
consider both cases in what follows,

Uninformed transmitter: When the channel is unknown
to the transmitter (1.e., umnformed transmitter), but
perfectly known to the receiver, the optinum choice 1s to
divide the available transmit power equally among the
antenma elements of the transmitter. Assume that the
components of the transmitted vector x are statistically
independent, meaning that Q = Im with Gaussian
distribution, then the ergodic capacity reduces to:

C=E, {logg det(,, + %HHH)} )

Given that HH" = VDV" (Eigen Value Decomposition
theorem), the capacity of the MIMO chamel can be
expressed as

EN VDVH] } (5)

C:EH{ logzdet[IMx + M
=70
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where, V is an M,>*M, matrix (eigenvectors of the channel
H) satisfying VAV =VV"=IyandD = diag{l, A, ... Ay}
with A, = 0. The diagonal matrix D comprises the
eigenvalues (4;) of the chanmel H. using the identity det
(I, + AB) = det (I, + BA) for matrices A (m*n) and
B (n>m) and V¥V = In, Eq. 3 simplifies to

C=E, {logg det(l,, + ﬁm} (6)

or equivalently

C:EH[ ilog{HME;I x‘} } (7)

where, r = rank(HH"™) = min[M,, M,] (number of parallel
channels) and 4, (i=1,... r) are the positive eigenvalues of
HH". Equation 5 expresses the capacity of the MIMO
channel as the sum of the capacities of r SISO channels,
each having power gain A, (i=1,..., r) and transmit power
E/M,. Tt is noticed that all eigenchannels in Eq. 7 are
allocated the same power, this
eigenchannels are not accessible due to the lack of
knowledge in the transmatter, so it just divides the power
equally among them.

18 because these

Informed transmitter: There 1s a possibility that
transmitter learns the channel state information (CST or
channel matrix H) before it transmits the data vector. For
instance, in TDD (Time Division Duplexing) systems, the
channel matrix can be fed back to the transmitter from the
receiver. In such an event, the capacity can be increased
by resorting to the so-called waterfilling principle
(Paulraj et al, 2003), by assigning various levels of
transmit power to varlous transmitting antennas. This
power 1s assigned on the bases that the better the channel
15, the more power it gets and vice versa.

WATERFILLING ALGORITHM

When the channel parameters are known at the
transmitter, the waterfilling algorithm can be used to
maximize the channel capacity by allocating more power
to the channels that are in good condition and less or
none at all to the bad channels [ibid].

Assuming a narrowband chamel, the system can be
expressed as in Eq. 1.

Given H = USV" (Singular Value Decomposition,
SVD), now system can be expressed as:

y=USV’x+n (8

where, U is a matrix containing the eigenvectors of the
recelver, V 18 a matrix contaimng the transmitter
eigenvectors and the matrix S is a diagonal matrix
containing the singular values (o, where o, = & ) of
the matrix H. U and V matrices are umtary, satisfying
Ul = U0 = 1, and VV'= V'V =T,

The transmitted vector is multiplied by a matrix V
prior to transmission to cancel the effect of the matrix V"
contained in H. In the same way, received vector is
multiplied by a matrix U" to cancel the effect of the matrix
U contained m H.

X' =Vx, v =Ulv,n’ =Uh,

Substituting these values in Eg. 8, will produce the
following

v =5x+n (N

The system modeled by Eq. 9 1s representing a group
of parallel SISO channels; their power gains are the-none
zero diagonal elements of the matrix S.

The capacity of the MIMO channel 1s the sum of the
individual parallel SISO channel capacities and is given by

1 E,Y
C:E{ Ylog,| 1+—="
i=l Mt a

N%H (10)

where, v; is the amount of power transmitted over the
eigenvalue A, such that:

Yv-M, (1)

Chamnel capacity maximization 1implies that
transmitter accesses the individual subchannels (the
eigenvalues) and allocates varable power levels to them.
Hence, the mutual information maximization problem
becomes,

max x
C—EH{ ) Elog{H Ed, A‘J } (12)

PR A= M, N,

Using Lagrangian method, the optimal energy
allocated to each eigenmode 1s

yfp’—[u—l\é‘;%] Li=L2,...T (13)

and

P =M, (14)
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where, |1 is a constant representing the water level and (x),
umnplies

S I as)

if X =0

Now, the optimal energy allocation 1s found
iteratively through the water filling algorithm as described
below:

The iteration count p 1s set to 1 and then the
constant p in Eq. 13 1s calculated based on the followimng
formula,

M

(riplﬂ)[u (16)

N 1—p+l 1
n=

i —
EEA

s i=l Y

Using the obtained value of u from Eq. 14, the power
allocated to the ith sub-channel can be calculated using

MN, Y
=lu—">21,i=12,..,r—p+tl
Y [H E 2, J P

(17)

If the power allocated to the charmel with the lowest

MtND

gain 1s negative Le., the term 18 greater than p

5"

(the sub-charmel 1s bad), this chammel is discarded and
by setting YE L. =0 and the algorithm is rerun with

mcrementing the iteration account by 1. This algorithm 1s
repeated until all good sub-channels are allocated the
optimal power. The capacity of the MIMO channels when
the channel 1s known to the transmitter 1s at least equal to
that obtained when the channel is unknown to the
transmitter. Ones the optimal power allocation across the
spatial sub-channels is determined, the optimized input
covariance matrix Q is now obtained,

124 Unknown ch, corr = 0.6

Unknown ch, corr = 0.9
Unknown ch, corr = 0.0
Known ch, corr=0.0
Known ch, corr=0.6
Known ch, corr=0.9

104

Q" = diag {v,"" v,... v}

(18)

and the Eq. 1 will take the new form

(19)

C=E, [logz det(ly, + i HQDF‘HH)}

RESULTS AND DISCUSSION

In this study, we study the MIMO channel capacity
for different antenna configurations (different array sizes)
over the SNR range from 0 to 20 dB. We investigate the
capacity when the channel is known and unknown to the
transmitter. Monte Carlo simulation techmique 1s used.
Channel capacity is calculated at each SNR point by
generating 10,000 channel matrixes and taking the average
over them. We will consider three cases here

Mt = Mr

Figure 1-3 show the capacity of (2,2), (3,3) and (6,6)
MIMO channels, respectively, for different correlations
(0, 0.6, 0.9), when the channel is known and unknown to
the transmitter. Figure 1 show that the capacity of the
channel is higher when it is known to the transmitter,
for the transmitter sends only through the good sub-
is unknown, the
transmitter divides the power equally among all the sub-
channels, in this case the transmitted power through the
bad sub-channels 1s wasted and does not contribute to
the overall channel capacity. However, the extra capacity
gamed from the channel knowledge at the transmitter
begins to disappear at high SNRs. Tt is also worth noting
that the channel knowledge at the transmit side 1s more

channels but when the channel

Capacity (Bits sec )

10
SNR (dB)

12 14 16 18 20

Fig. 1: EBrgodic capacity variation with SNR for correlated 2*2 (Mt = 2, Mr = 2) channel
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189 —n— Corr=10.0, ch = Unknowm
—#— Cormr = 0.6, ch = Unknown
161 o Corr= 0.9, ch = Unknown
—a— Corr=10.0, ch=Known
—i— Corr=0.6, ch=Known
124 —— Corr = 0.9, ch = Known

L ]

Capacity (Bits sec )

12 14 16 18 20

SNR (dB)

Fig. 2: Brgodic capacity variation with SNR for correlated 3*3 (Mt = 3, Mr = 3) channel

—a— Known ch, corr = 0.0
—i— Known ch, corr = 0.6

354 —e— Known ch, corr =09
—o— Unknown ch, corr=0.0
30 Unknown ch, corr = 0.6
Unlknown ch, carr =09
Tﬂ-\ 25_
8
2 207
5
=15
E|
&
< 104
5%

[~

12 14 16 18 20

SNR (4B)

Fig. 3: Brgodic capacity variation with SNR for correlated 6*6 (Mt = 6, Mr = 6) channel

beneficial at the low SNRs, large systems and at high
correlations. The figures reflect the significance of
channel knowledge at the transmatter.

Mr = Mt

When the number of receive antennas 1s larger than
the transmit antennas, the gain obtained from the channel
knowledge at the transmit side becomes less. From Fig. 4,
we see that for a (2, 3) channel, the gain in capacity 1s less
than that of (2, 2) chammel when the channel 1s known at
the transmitter especially for SNR <12 dB. This gain
becomes less when we increase the number of receive
antermas by 1 and disappear when Mr ever increases, for
mstance, for (2, 6) channel the capacity of unknown and
known channel at the transmitter is almost the same above
SNR =12 dB (Fig. 5). Increasing the number of receive
antenmas compensates for the lack of channel knowledge
at the transmitter when the channel 13 low correlated.

When the correlation 1s high (0.9) the simulation shows
that capacity decreases when the number of receive array

elements increases at the low SNR region (less than 12 dB,
Fig. 6).

Mt = Mr

When the number of antennas at the transmit side is
larger than those at the receive side, prior knowledge of
the charmnel at the transmit side 1s very mmportant. The
capacity gained from the prior knowledge of the channel
at the transmitter is high in low and high SNRs. When the
mumber of transmit antennas gets higher, the gain
becomes higher as well. When the nmumber of antennas at
the transmit side 1s larger than the receive side, the
number of antennas is also larger than the eigenvalues of
the channel. Hence the channel knowledge is very
necessary 1n this case to get better capacity, so the
transmitter can get access the right eigenvalues.
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Unknown ch, corr = 0.0
Unknown ch, corr = 0.6
Unknown ch, corr = 0.9
Known ch, corr = 0.0

Capacity (Bits sec” )
b

[ 25
.
o
20—
—_
[=2
—
o

14 16 18 20
SNR (dB)

Fig. 4: Brgodic capacity variation with SNR for correlated 2*3 (Mt = 2, Mr = 3) channel

16+

144

Capacity (Bits sec)

Unknown ch, corr = 0.6
Unknown ch, comr = 0.0
Unknown ch, cor = 0.9
Known ch, corr = 0.6
Known ch, corr=09

2 4 6 é 1I0 12 14 16 18 20
SNR (dB)

Fig. 5: Ergodic capacity variation with SNR for correlated 2*6 (Mt = 2, Mr = 6) channel

14+

134

12+

Capacily (Bits sec™)

(2, 2) kmawn ch
(2, 3) known ch
(2, 4) known ch
(2, 5) known ch
(2, 10) known ch

2 4 6 8 10 12 14 16 13 20
SNR (dB)

Fig. 6: Ergodic capacity variation with SNR for 0.9 correlation, Mt=2and Mr=2,3, 4, 5, 10
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144
—o— Unknown ch, corr=10.0
—a&— Unknown ch, corr = 0.6
124 —o— Unknown ch, corr = 0.9
—&— Known ch, corr=0.0

Known ch, corr = 0.6
Known ch, corr =09

Capacity (Bits sec )
1

4_
2-.
G T L] 1 1 T 1 L] 1 T 1
0 2 4 6 8 10 12 14 16 18 20
SNR (dB)

Fig. 7: Brgodic capacity variation with SNR for correlated 3*2 (Mt = 3, Mr = 2) channel

169 _a— Unknown ch, corr = 0.0
—&— TUnknown ch, corr=0.6
144 —o— Unknown ch, corr=0.9
—a— Known ch, corr = 0.0
12 —a— Known ch, corr=0.6
—ae— Known ch, cor=0.9
104

Capacity (Bits sec )

10 12 14 16 18 20
SNR (dB)

Fig. 8: Ergodic capacity variation with SNR for correlated 6*2 (Mt = 6, Mr = 2) channel

Figure 7 and 8 show the channel capacity when the
number of elements at the transmit side is larger than the
number of elements 1 the receive side. In this case, the
channel knowledge is very necessary to achieve the
maximum capacity.

CONCLUSION

In this study, we have studied the capacity of MIMO
channels, with different antenna configurations and
different correlations, when the channel 1s known and
unknown to the transmitter. When M, = M, channel
capacity can be improved significantly if the channel is
known to the transmitter especially in the low SNR regime,
large systems and high correlations. However, in the lugh
SNR regime channel knowledge at the transmitter will not
increase the capacity of the channel. When M, > M, the
lack of chamnel knowledge at the transmitter can be
compensated for by increasing the number of antennas at

the receive side. It is noted that when the ratio M,/M, = 3,
the capacity of known and unknown channel is almost the
same for the SNRs greater than 0 dB. When M, > M., the
eigenvalues of the channel will be less than M, so channel
knowledge is necessary for obtaining the optimum

capacity.
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