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Abstract: A meta-heuristic approach for solving the flexible job-shop scheduling problem (FISP) 15 presented
in this study. This problem consists of two sub-problems, the routing problem and the sequencing problem and
is among the hardest combinatorial optimization problems. We propose a Genetic Algorithm (GA) for the FTSP.
Our algorithm uses several different rules for generating the initial population and several strategies for
producing new population for next generation. Proposed GA 1s tested on benchmark problems and with due
attention to the results of other meta-heuristics in this field, the results of GA show that our algorithm is

effective and comparable to the other algorithms.
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INTRODUCTION

One of the most necessary subjects in the planming
and managing of menufacturing environments is the
scheduling of operations . To find the best schedule can
be very easy or very difficult, depending on the shop
enviromment, the process constraints and the performance
mndicator (Pmedo, 2002). The Job-shop Scheduling
Problem (JSP) is one of the most popular scheduling
models existing in practice (Cheng et al., 1996). Tt has
attracted many researchers due to its wide applicability
and mherent difficulty (Nowicki and Smatmcki, 1996; Jain
and Meeran, 1999). The classical TSP consists in
scheduling a set of jobs on a set of machines with the
objective to minimize a certain performance indicator,
subject to the constraint that each job has a specified
processing order through all machines which are fixed and
known in advance. A typical performance indicator for
ISP 1s the makespan, 1.e., the time needed to complete all
the jobs. FISP 1s NP-hard smce it 1s an extension of the
job-shop scheduling problem (Gao et al., 2008).

FISP is an extension of the classical JSP which exist
an allowable set of machines for each operation to
processes on any among them. FISP can decomposed
into two sub-problems: Assigning the operations to
machines (the routing problem) and sequencing the
operations on the machines (the sequencing problem) in
order to mimmize the performance indicators. Then, FISP
is more difficult than the classical ISP because it contains
an additional problem that is assigning operations to
machines.

Bruker and Schlie (1990) developed a polynomial
algorithm for solving the flexible job-shop scheduling
problem with two jobs. Exact methods developed, but
they are not applicable for instances with more than 20
jobs and 10 machines (Pinedo, 2002). Tn recent years,
meta-heuristics such as simulated annealing, tabu search
and genetic algorithms has used to solve FISP. They can
be categorized into 2 groups: Hierarchical approach and
integrated approach. The hierarchical approach attempts
to solve the problem by decomposing it into a sequence
of sub-problems, with reduced difficulty. A typical
decomposition is assign-then-sequence, commg from the
trivial observation that once the assignment is done, the
resulting sequencing problem 1s a JSP (Pezzella et of.,
2008). Brandimarte (1993) and Paulli (1995) followed this
approach. Kacem ef al (2002a) proposed a genetic
algorithm and expanded approach by localization to
achieve capable initial assignments. Xia and Wu (2005)
applied a hybrid of Particle Swarm Optimization (PSO) and
Simulated Annealing (SA) as a local search algorithm to
solving this problem as a hierarchical approach.

Integrated approaches are used by considering
assignment and sequencing at the same time and usually
obtain better results than hierarchical approach, but they
are much more difficult to solve. Gao et al(2008) used a
hybrid of GA and Variable Neighborhood Descent
(VND) for this problem as an integrated approach.
Pezzella et al. (2008) employed several different strategies
for initial population generation and new individual
reproduction, specially an intelligent mutation, in a GA
framework based on approach by localization for solving
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FISP as an integrated approach. Fattahi et al. ( 2007)
presented a SA and a Tabu Search (TS) and proposed two
hierarchical approaches and four integrated approaches
by hybridization of them for solving the FISP.

A genetic algorithm as an integrated approach is
presented for solving this problem. To achieve initial
assigrmments, we do the same as (Pezzella ef af., 2008) that
adopted the approach by localization of (Kacem ef al,
2002a, b) as Assignment Rule 1 and Assignment Rule 2.
Then, random selection of the next job is adopted to
sequence the operations to generate the mitial population.
Our algorithm also employs multiple different mutation
and crossover operators for assigning and sequencing.
We present the computational results on a number of
benchmark problems and compare them with the results
presented by previous authors.

PROBLEM DEFINITION

The FISP can be explamned as follows. It 1s given a
set of jobs, T = {I, ..., I}, and a set of machines, A = {M,,
..y M}, such that each job J; consists of a sequence of n;
operations, O,;, O, ...,Ouw,. Job J; 15 completed when its
operations performed one after another in the given order.
For each operation of job I, O, there are a set of
allowable machines called A; c A, which O can be
performed on one of them such as M, € A;. The FISP is
machine-dependent because the performance of each
operation on each allowable machine has a different
processing time like p, 0. Flexibility of problems can be
categorized mnto partial flexibility and total flexibility. It
1s partial, when at least cne of A; be proper subset of A
(A; © A) and it is total, when we have A; = A for all
operations. Operations execute on machines without
preemption and machines can perform at most one
operation at a time. All jobs and machines are available at
time 0. An example is given in Table 1. Each row refers to
an operation, each column refers to a machine and cells
are processing tunes. Notice that this example has partial
flexibility and unallowable machines for each operation
denoted by = in processing times table (Table 1).

Table 1: Processing times of example

Machines
Operation M, M, M.
Oy, 6 6 =
Oy o0 5 oo
Oy 4 5 5
Oy, o0 6 oo
0s, = 5 7
O3 7 9 2
Oy 6 3 I
0, 5 3 3
0s; 4 = I

THE SOLUTION ALGORITHM

In this study, a genetic algorithm for solving the
flexible job-shop scheduling problem (FISP) is presented.
This algorithm uses several different rules for generating
the mitial population and several strategies for producing
new population for next generation.

Genetic algorithm: Genetic algorithms (Gas) were
introduced by Holland (1975) and have been applied m a
number of fields, e.g., mathematics, engineering, biology,
and social science (Goldberg, 1989). GAs are intelligent
stochastic optimization techniques based on the
mechanism of natural selection and genetics. GAs start
with an 1mtial set of solutions, called populationn Each
solution in the population is called a chromosome (or
individual), which represents a point in the search space.
A chromosome consists of some genes. GAs work
iteratively, each single iteration 1s called a generation. At
each generation, the fitness of each chromosome is
evaluated, which is decided by the fitness function, and
the chromoscme is stochastically selected for the next
generation based on its fitness. New chromosomes,
called offspring (or children), are produced by two genetic
operators, crossover and mutation. The offspring are
supposed to mherit the excellent genes from their parents,
so that the average quality of solutions 13 better than that
in the previous generations. This evolution process is
repeated until some termination criteria are met.

Proposed GA approach: The proposed GA steps are as
follows:

Step 1: Initialization:

(a) Parameters setting: set the number of mitial
population (popsize), number of generation(ng),
percent of Assignment Rule 1(pal), percent of
Assignment Rule 2 (pa2), probability of each
crossover (pc), and probability of each mutation
(pm)

(b) Tnitial population generation

(bl)  Imtial assignments

(1) Generate pal. popsize initial assignments by
Assignment Rule 1
(11) Generate pa2. popsize initial assignments by

Assignment Rule 2
(b2)  Sequence the mitial assignments randomly

Step 2: Objective function evaluation: Evaluate the
makespan of each chromosome

4651



J. Applied Sci., 8 (24): 4650-4655, 2008

Step 3: Producing next population:

(a) Sort the chromosomes based on makespan value

(b) Reproduction: Copy only the best chromosome to
the next generation

(c) Crossover operation: Apply crossover to
generate pc. (popsize-1) individuals of the next
population using roulette wheel selection strategy

() Mutation operation: Select pm. (popsize-1)
chromosomes randomly and apply the mutation to
make pm. (popsize-1) new individuals of the next
population

Step 4: Termination test: Check the stopping criteria, if
the stopping criterion is met return the best chromosome;
else go to step 2

Initial population generation: In order to generate the
initial population, first, we generate initial assignments,
then make the mitial population by randomly sequence
(randomly select a job) of them. To generate the initial
assignments we apply two ways proposed by
Pezzella et al (2008) as Assighment Rule 1 and
Assignment Rule 2. They followed the approach by
localization of (Kacem et al., 2002a, b) and modified it.
Assignment Rule 1 foresees to start from the operation
that corresponds to the global minimum in the processing
times data. Assignment Rule 2 foresees to permute
randomly the jobs and the machines before to apply the
approach by localization.

Chromosome representation: In order to perform our
algorithm, we use a string of triples (i, j, k), proposed by
Kacem et al. (2002a), one for each operation, in which

. 118 the job that operation 1s belong to;

. j is the progressive number of that operation
within job 1

. k is the machine assigned to that operation

The length of the string equals to the total mumber
of operations. For example, for the problem explained in
Table 1, a feasible solution can be represented like thus:
(1,1,1),(3,1,3),(2,1,2),(3,2,1),(2,2,3),(1,2,2), (1, 3,2),
(2,3.1), (2,4, 2). The Gantt chart of this solution is shown
mFig 1.

Genetic operators: To generate the next population, the
crossover and mutation genetic operators are applied We
employ four genetic operators that can be divided to
assignhment operators and sequencing operators.
Assignment operators which only change the assignment
nature of the chromosomes and the sequencing of

M, Oy [ O, | 1 O, |
M, YUy [ O, | O, | 16 |
M Oy | ] Oy |

01234567891011 121314 15 16 17 18 19 20 21 22 23

Fig. 1: Gantt chart

4 g
|1, 3.1,3)](2.1.2)[(3,2,1)](2.1,2)] (1,2,2)] (1.3,2)](2,3.1)| (2.4.2)|
Recordering
mutation

[(1.L.D]3.1.3)](1.2.2)|3.2.D](2.1.2)(1,3,2)] 2.2,3)|(2.3.1)]24.2)|
New individual

Fig. 2: Illustration of the reordering mutation

operations is preserved. Sequencing operators which only
change the sequence of operations in the chromosomes
and the assignment of operations 1s kept.

Mutation operators: In this study, we employ two
mutation operators namely, assignment mutation and
reordering mutation.  Assignment mutation only
exchanges the assignment of a single operation in a single
parent. In reordering mutation, we select two positions
and reorder the operations between randomly, with
observing the precedence constraints, as shown in Fig. 2.

Crossover operators: We also apply two crossover
operators, precedence preserving order-based crossover
(POX) operator of Lee ef al. (1998) and assignment
crogsover. In POX generates two children starting from
two parents. First, POX selects an operation from the first
parent, copies in the first child all the operations of the job
which the selected operations belong to, then complete
this new individual with the remaining operations, in the
same order as they appear in the second parent. The
symmetric process is repeated for the second parent and
the second child. POX preserves the sequencing
constramts (Pezzella ef af., 2008). Assignment crossover
exchanges the assignment of the subset of operations
between the two parents and generate new individual.

COMPUTATIONAL RESULTS

We coded proposed GA by C++ language and
implemented it on a 2 GHz Pentium TV processor, with 256
MB RAM. To evaluate the performance of our algorithm,
we tested it on the data set consist of 20 problems from
Fattahi et al. (2007) (Fdata) and compare our results with
recent results obtained by them.

Computational experience proves that roulette wheel
selection strategy is suitable for performing crossover,
randomly selection is suitable for performing mutation and
the following values are more effective for our algorithm
parameters:
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Percent of assignment rule 1 (pal): 20%
Percent of assignment rule 2 (pa2): 80%
Probability of assignment mutation: 10%
Probability of reordering mutation: 10%
Probability of assignment crossover: 40%
Probability of POX crossover: 40%

Values of some parameters are different for each
problem (Small Flexible Job-Shop (SFIS) and Medium
Flexible Job-Shop (MFTS)) which are presented in
Table 2.

In Table 3 we show the best obtained result by our
GA after five runs and compare them with the other
results by mtegrated approaches by Fattali ef af. (2007)
on Fdata. They proposed two integrated approaches: TSA
(integrated approach with simulated annealing heuristic)
algorithm and ITS (integrated approach with tabu search
heuristic). The first column refers to problem name. The
second and third columns refer to the number of jobs and
the number of machines, respectively. The fourth column
shows the lower bound of instances. The fifth, 6th and
7th columns present the average of makespans, the best
makespan and the average of CPU times over five runs of
our GA, respectively. Other columns are the results of

Table 2: Parameter levels of GA

Problem Popsize ng
SFIS 1: 10 100 100
MFJS1: 5 1000 500
MFJS6: 10 1000 1000

Table 3: Comparison with the hierarchical approaches of Fattahi on Fdata

other algorithms we compare to. Also, relative deviation
of them with respect to our algorithm is presented in
Table 3. The relative deviation is defined as:

(1)

G - c"“‘}xloo%

Dev=| LT
Cf

which C,, 1s the makespan obtained by GA and C;1s the
malkespan of the algorithm we compare to.

Table 4 compares the results of our GA with the
results by hierarchical approaches by Fattahi ef al. (2007)
on Fdata. They presented four hierarchical approaches
HSA/SA, HSA/TS, HTS/TS and HTS/SA algorithms. In
Table 5, the Mean Relative Error (MRE) of the best
solution obtained by our GA and six different approaches
by Fattahi et al. (2007) is presented. The relative error (RE)
is defined as:

RE - [MJXIOO% 2
LB

which C,., is the best makespan obtained by the algorithm
and LB 1s the lower bound. In the following, we present
the schedule obtained by GA for problem MFIS5 of Fdata
with the makespan equal to 514.

M,: (O, 0-87)(0, - 87-301)
M,: (O, 0-65)(0;,:65-188)(O), ,; 188-318)(0, : 318-384)
(0, 384-484)

GA ISA 1T8
Problem n m LB AV(C) Chast AV(CPU)* Choset Dev (%) Chust Dev (%)
SFIS1 2 2 66 66.0 66 0.01 66 0.00 66 0.00
SFIS2 2 2 107 107.0 107 0.01 107 0.00 107 0.00
SFEJS3 3 2 221 221.0 221 0.01 221 0.00 221 0.00
SEIS4 3 2 355 355.0 355 0.01 355 0.00 390 +8.97
SFEJSS 3 2 119 119.0 119 0.01 119 0.00 137 +13.14
SEIS6 3 3 320 320.0 320 0.02 320 0.00 320 0.00
SEJS7 3 5 397 397.0 397 0.02 397 0.00 397 0.00
SFEJSS 3 4 253 253.0 253 0.02 253 0.00 253 0.00
SFI39 3 3 210 210.0 210 0.02 215 +2.33 215 +2.33
SFIS10 4 5 516 516.0 516 0.02 516 0.00 617 +16.37
MFIS1 5 6 396 468.0 468 2.51 488 +4.10 548 +14.60
MFIS2 5 7 396 450.2 448 2.59 478 +6.28 457 +1.97
MFIS3 6 7 396 467.6 466 2.85 599 +22.20 606 +23.10
MFIS4 7 7 496 563.6 554 327 703 +21.19 870 +36.32
MFJISS 7 7 414 526.8 514 334 674 +23.74 729 +29.49
MFIS6 8 7 469 634.0 634 7.01 856 +25.93 816 +22.30
MFIS7 8 7 619 888.8 881 8.63 1066 +17.35 1048 +15.94
MFJIS8 9 8 619 901.6 891 10.26 1328 +32.91 1220 +26.97
MEFIS9 11 8 764 1122.6 1094 12.38 1148 +4.70 1124 +2.67
MFJS10 12 38 944 1301.8 1286 14.36 1546 +16.82 1737 +25.96

* Av(CPU) is the average computing time in seconds
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Table 4: Comparison with the integrated approaches of Fattahi on Fdata

HSA/SA HSA/TS HTS/TS HTS/SA
Problem LB GA Choat Dev (%) Choat Dev (%) Choat Dev (%) Choet Dev (%)
SFEJS1 66 66 66 0.00 66 0.000 66 0.000 66 0.000
SFIS2 107 107 107 0.00 107 0.000 107 0.000 107 0.000
SFEJS3 221 221 221 0.00 221 0.000 221 0.000 221 0.000
SFIs4 355 355 355 0.00 355 0.000 355 0.000 355 0.000
SFEJSS 119 119 119 0.00 119 0.000 119 0.000 119 0.000
SFIS6 320 320 320 0.00 320 0.000 320 0.000 320 0.000
SEJS7 397 397 397 0.00 397 0.000 397 0.000 397 0.000
SFIS8 253 253 253 0.00 253 0.000 253 0.000 256 +1.170
SEJS9 210 210 210 0.00 210 0.000 210 0.000 210 0.000
SFIS10 516 516 516 0.00 516 0.000 516 0.000 516 0.000
MFJS1 396 468 479 +2.30 491 +4.680 469 +0.210 469 +0.210
MFIS2 396 448 495 +9.49 482 +7.050 482 +7.050 468 +4.270
MFIS3 390 466 553 +15.73 538 +13.380 533 +12.570 538 +13.380
MEFIS4 496 554 656 +15.55 650 +14.770 634 +12.620 618 +10.360
MFJISS 414 514 650 +20.92 662 +22.360 625 +17.760 625 +17.760
MFIS6 469 634 762 +16.80 785 +19.240 717 +11.580 730 +13.150
MFIS7 619 881 1020 +13.63 1081 +18.500 964 +8.610 947 +6.970
MFIS8 619 891 1030 +13.50 1122 +20.590 970 +8.140 922 +3.360
MEFIS9 764 1094 1180 +7.29 1243 +11.990 1105 +1.000 1105 +1.000
MFJIS10 944 1286 1538 +16.38 1615 +20.370 1404 +8.400 1384 +7.080

Table 5: Mean relative error on Fdata

GA HSA/SA HSA/TS HIS/TS HTS/SA ISA ITS
MRE 1429 2429 26.48 20.61 19.9 2027 3384
M.: (O,,:0-100)(0; : 100-245)(0,,: 245-369)
M,: (O,,: 0-154)(0, ,: 154-304)(0, ,: 318-468)
M,: (0, 65-238)(0,,: 238-338)(0,.,: 369-514)
M,: (0, 238-374)(0,,; 384-479)
M,: (0, 87-232)(0, ,: 232-318)(0,: 318-498)

CONCLUSION

In this research, a genetic algorithm investigated for
solving flexible job-shop scheduling problem. Tn this
study, the proposed approach is explained in detail by
solving benchmark problems and programmed in C++
language. As shown in Table 3 and 4, our GA is effective
to overcome mentioned problems. Obtained results are
comparable properly with the best results of other
authors. We have some recommendation on future works:

¢ Studying in this field with additional constrains, such
as maintenance requirements or breakdowns can be
interesting

¢ Developing the meta-heuristics to optimize the other
objectives in this field, such as earliness and
tardiness will be remarkable
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