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Abstract: This study examines the effects of moving loads on viscously damped axial force Rayleigh beam. The
authors especially tried to find the effect of the moving mass and moving force in connection with the length
of the span of a Rayleigh beam. The authors also examined the effect of the lengths of the beam and of the load.
It was observed that as mass of the moving load increases the deflection along the length of the beam alos
mcreases. [t was further observed that the deflection of the moving mass is greater than that of the moving

force.
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INTRODUCTION

From historical viewpoint, the problem of moving
load back to the beginning of the nineteenth century, the
time of erection of the early railway bridges. A lot of work
has been done during the past years on the dynamic
response of railway bridges and later of highway bridges
under the influence of moving masses. A comprehensive
review of work done, as a matter of fact, can be found 1n
Fryba (1972).

The problems of moving loads are bemng studied n
technically advanced countries world over especially
Czechoslovakia, TJSA, Germany, Switzerland, France and
Japan to mention but a few. Both the theoretical and
experimental information on the effect of moving on
structures were made available.

Relevant publications are; Stokes (1849), Krylov
(1995), Teffcolt (1929), Inglis (1934), Kolousek (1961),
Bolotin (1964), Steele (1971), Knowles (1968}, Oni (1991),
Ghorashi and Esmailzadeh (1995), Kiylov (1995), Lee
(1994), Lin (1996), Idowu (1998), Dada (2002), Adetunde
(2003) and Akmpelu (2003).

The present study 1s an extension of the earlier
research of Adetunde (2007), in which the axial force 1s
taken mto consideration (Axial force beams simply means
beams which do experience compression when no external
force is applied i.e., artificial creation of stresses in
structure before loading.

The purpose of this paper is therefore to:

¢ Find the effects of moving mass and moving load in
connection with the length of the beam.

»  Find the effect of the length of the load on the beam
»  Make a comparison between the deflections due to
the moving mass and that of the moving force.

Under the assumption that the beam 1s prismatic
while rotary and damping are taken into consideration.

MATHEMATICAL FORMULATION

Comnsider the simply supported axial force Rayleigh
beam, shown in Fig. 1 above, of length T, having a uniform
cross-section with constant mass per unit length m and
flexural stiffness EI. The beam 1s traversed by a constant
load P having mass M moving at a constant velocity V,
which assumed to strike a finite axial force Rayleigh beam
from the left end of the beam at time t = O (where, t 1s
measured from the time the load enters the beam) and
advancing uniformly along the beam. Before the instant,
the deflection throughout the length of the beam is
assumed to be zero.

The govemning differential equation of motion for
axial force Rayleigh beam when rotatory and damping are
considered is given as:

Mathematical formnlation
Y, M
EHE v
X 1
-+ vt [s2]=] B
g
L

Fig. 1: Mathematical model of the problem
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Where:

a, = The stiffness proportionality facto(damping
complex or radius of gyration)

Wi(x,t) = The transverse displacement response

X = The spatial coordinate

¢(x) = The external damping force per unit length

N(x) = The axial force

P(x,;t) = The transverse loading inertia

The transverse load inertia takes the form described
below.

P(Xt)_—[ Mg MA][H[X—@+%J—H[X—§—§H (2

H(x):{o X0 3)
I x>0
And
2 2 2 a2
A=TW gy W VOW (4)
at axat X
Where:
g = The gravitational force

= The heavyside umt function of the beam

= The fixed length of the load

A particular distance along the length of the beam.
We employ the Dirac delta function

B(Xfé';):é[H[XfﬁJr%JfH[Xf&Jr%ﬂ

The mass M of the load P 15 not negligible but of
comparable magnitude with the mass of the total beam mL.
As aresult of this, we consider the effect of Coriolis force
(Complementary acceleration) and of centripetal force
(Acceleration related to cuwrvature R of the deflection
curve) associated with the mass M of the moving load
P =Mg.

mem

(3)

Substituting Eq. 4 into Eq 2 we have

aw

P(x,t)= l{—
=

{H(x—wzJ—H(x—%—%ﬂ
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OPERATIONAL SIMPLIFICATION OF THE
GOVERNING EQUATION

A series solution m terms of normal moedes can be
sought in the form.

WexU= 20600 )
1=1
Where
¢, (x)’s = The shape function for the nth mode of the
freely Vibrating prismatic beam while
Yty = The comresponding modal amplitude that has

to be determined. Introducing Eq. 7 into Eq. 1
and 6, we have

Zm(x)¢ @Y. +Zc(x)¢ T+ i d
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e ues s

Multiply Eq. & by ¢,(x)and integrate along the length
of the beam and applying the two orthogonality
relationships, to the Eq. 8

w3 T .00, 0ds +00)
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Putting equations (9a-g) into Eq. 9, we have
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Remarks: Clearly all terms in the series m the third term
of Eq. 9 go to zero except for i = n the modes are
obviously uncoupled as far as the stiffness proportional

damping is concerned. Coupling will be present, however,
due to c(x), unless it takes on a form allowing only the
term with i = n to remain in the series. This is indeed the
case for mass-proportional damping, that is, if we let
o(x) = agn(x) = agm, mn which the proportionality constant
a, has a dimension of t* then we have
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Introducing the damping ratio for the n™ mode, we have

Cn

4,0 12
M, o, (12)

&=

Hence Eq. 11 now becomes
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SIMULATIONS

Simply supported beam: We shall now consider a simply

supported beam configuration whose normalized
deflection curve 1s given as
o, (%)= (A‘) sin— n=1,213 4
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We can write

nn? [MEIL J n=1,2,3

By putting Eq. 14 into the rh.s. of Bq. 13, after a lot of
simplification had been done, we finally have

(14a)
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The above Eq. 15 1s the exact governing equation of
a simply supported viscously damped Rayleigh beam. We
now use the finite difference methoed to solve the above
Eg. 15 numerically. To obtain the results, we malke use of
central difference formula, which finally resulted into a
system of equations which was in tum solved by a Visual
BASIC program.

NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results in both tabular and
graphical forms are presented. The numerical analysis 1s
mn two folds. The first one concerns a viscously damped
axial force Rayleigh beam moving mass whilst the second
concerns a viscously damped axial force Rayleigh beam
moving force.

The mathematical model discussed herein is related
to the work done by Adetunde (2007) in which the
following data were used.

m (Mass per unit length of beam) =70kg m™

M (Mass of the load) =7.04,8,10kgm™"
g =98l msec”’

T =22/7

L =10m

E =vt+e?2

€ =0.001m,00lm,01m
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=333msec’
=0.5sec
=1.0sec
=1.5sec

=0.01
=1.04x10""m*
=2.07=x10"N m™
=05

=n'r [M L4J g, =1

Hence, we have the followings.

il vs Bl B =~

('On

Table 1-4 and Fig. 2-5 show the varation of deflection
of the beam acted upon by a moving mass and moving
force.

Tt is observed from Fig. 2 above that as the mass of
the moving load increases the deflection along the length
of the beam increases

It is observed from Fig. 3 above that as the
length(Eps) of the moving load mcreases the deflection
along the length of the beam mcreases.

It 1s observed from Fig. 4 above that as the mass of
the moving force mereases the deflection along the length
of the beam ncreases

Table 1: Effect of mass of load on deflection of the beam under moving

mass

Deflection

X m=10 m=38 m=7
0 0 0 0
1 -1.93E-06 -1.54E-06 -1.35E-06
2 -345E-07 -2.76E-07 -2.42E-07
3 4.11E-06 3.29E-06 2.87E-06
4 9.78E-06 7.82E-06 6.84E-06
5 1.47E-05 1.18E-05 1.03E-05
3] 1.74E-05 1.39E-05 1.22E-05
7 1.71E-05 1.37E-05 1.20E-05
8 1.36E-05 1.08E-05 9.49E-06
9 747E-06 5.98E-06 5.23E-06
10 -3.11E-08 -2.49E-08 -2.18E-08

Table 2: Effect of load length on deflection of the beam under moving mass

Deflection

X Eps=1 Eps =2 Eps =3
0 0 0 0

1 -1.93E-06 -1.92E-06 -1.88E-06
2 -3.45E-07 -3.49E-07 -3.38E-07
3 A11E-06 4.07TE-06 4.00E-06
4 9.78E-06 9.69E-06 9.53E-06
5 1.47E-05 1.46E-05 1.43E-05
6 1.74E-05 1.73E-05 1.70E-05
7 1.71E-05 1.69E-05 1.66E-05
8 1.36E-05 1.34E-05 1.32E-05
9 T4TE-06 7.39E-06 7.25E-06
10 -3.11E-08 -3.08E-08 -3.02E-08




Table 3: Effect of mass of load on deflection of beam under moving force

Deflection

X m=10 m=8§ m=7

0 0 0 0

1 -1.90E-06 -1.50E-06 -1.30E-06
2 -3.40E-07 -2 70E-07 -2.40E-07
3 4.10E-06 3.28E-06 2.87E-06
4 9.76E-06 7.81E-05 6.83E-06
5 1.47E-05 1.17E-05 1.03E-05
6 1.74E-05 1.39E-05 1.22E-05
7 1.71E-05 1.36E-05 1.19E-05
8 1.35E-05 1.08E-05 9.48E-06
9 T4TE-06 5.97E-05 5.23E-06
10 -3.10E-08 -2.50E-08 -2.20E-08

Table 4: Effect of load length on the deflection of beamn under moving force

Deflection
X Eps=1 Eps =2 Eps=3
0 0 0 0
1 -1.90E-06 -1.90E-06 -1.90E-06
2 3.40E-07 3.40E-07 3.30E07
3 410E-06 4.05E-06 3.97E-06
4 9.76E-06 9.64E-06 9. A4E-06
5 1.47E-05 1.45E-05 1.42E-05
6 1.74E-05 1.72E-05 1.68E-05
7 1.71E-05 1.68E-05 1.65E-05
8 1.35E-05 1.34E-05 1.31E-05
9 TATE-06 7.37E-06 7. 02E-06
10 -3.10E-08 -3.10E-08 -3.00E-08
000027 e m = 10
—m-%
oooo1s] — =7 /
F

£ 0.00001

é

A 0.000005

0N
-0.000005 5 10 15
Distance along beam

Fig. 2: Deflection of beam under moving mass for different

masses of load
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0.00015 1

0.00001 1

0.000005 1

-0.000005 -
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Fig. 3: Deflection of beam under moving mass for different
load lengths
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000027 e m =10
— m=8 -
——m=7
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9 1
by 5 10 15
-0.000005- Distance along beam

Fig. 4: Deflection of beam under moving force for different
masses of load

0.00027 ..o Epa = 1
— Eps=2
-—— Eps=3
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g 0.000014
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U L] LE 1
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Fig. 5: Deflection of beam under moving force for different
lengths of the load

Tt is observed from Fig. 5 above that as the length
(Eps) of the moving load increases the deflection along
the length of the beam increases.

CONCLUSIONS

The dynamic response of loads on viscously damped
axial force Rayleigh beam was carried out.
The results obtained can be summarized as follows:

1. The deflection of a viscously damped axial force
Rayleigh beam under a moving mass or moving force
increases with increasing mass of load

2. The deflection of a viscously damped axial force
Rayleigh beam under a moving mass or moving force
increases with mcreasing span of load

3. The deflection of beam due to moving mass is greater
than the deflection due to moving force.

The dynamic respeonse of loads on viscously damped
axial force Rayleigh beam i1s studied. The theory 1s based
on orthogonal functions and the results mdicate that the
governing differential equation can be transformed into a
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series of coupled ordinary differential equations which is
the solution for the corresponding moving distributed
force. The resulting goverming differential equation is
solved by numerical approach (Finite central difference
method).

In conclusion, the deflection due to moving mass is
greater than that due to moving force.
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