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Abstract: This study investigates the impact of safety factor on the continuous review inventory model
mvoelving controllable lead time with mixture of backorder discount and partial lost sales. The objective is to
minimize the expected total annual cost with respect to order quantity, backorder price discount, safety factor
and lead time. A model with normal demand 1s also discussed. Numerical examples are presented to illustrate
the procedures of the algorithms and the effects of parameters on the result of the proposed models are

analyzed.
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INTRODUCTION

Competition features of 90°s have evolved into Time-
Based Manufacturing (TBM). The two tine elements
considered in TBM are the replenishment lead time to
supply a product to the customer for a specific order and
the time to develop a product from concept to final market
delivery. Therefore, reducing lead time on product
supply is the strategic objective of the TBM company
(Bockerstette and Shell, 1993). Although the time
compression will inevitably raise the cost, a customer will
pay a premium to the supplier who can furmsh its product
faster and more reliably than the competition and the
premium may be respectable.

Silver et al. (1998) defined the replenishment lead time
as the time elapsed from the moment at which 1t 15 decided
to place an order, until it is physically on the shelf to
satisfy customer demands. Although lead time can be a
constant or a random variable, it 1s often treated as a
prescribed parameter (Silver et al., 1998) thus not
controllable. However, lead time can be reduced at extra
cost and shorter lead time is the primary driver to
achieving customer satisfaction in successful TBM
operations (Bockerstette and Shell, 1993). The benefits
resulting from reduced lead time include lower cost, less
waste and less obsolescence, greater flexibility to
response to change, closely linked orgamzation priorities
to customers’ needs, improved service, quality and
reliability and substantially accelerated supply system
improvements (Blackburn, 1991). Tersine (1994) and

Vollmann et al. (1992) attributed the replenishment lead
time mostly to manufacturing
addressed some guidelines for its reduction. Liao and
Shyu (1991) suggested that lead time could be
decomposed into # components each having a different
crashing cost for reduction. Ben-Daya and Raouf (1994)
generalized the Liao and Shyu model (1991) by
considering both lead time and the order quantity as
decision variables.

Ouyang et al. (1996) extended the Ben-Daya and
Raouf’s model (1994) to mclude a mixture of backorder
and lost sales i the model by assuming a predetermined
service level with both reorder point and backorder rate
being fixed. Moon and Choi (1998) suggested that it was
not appropriate to include the service constraint if the
shortage cost was explicitly specified and claimed that a
better solution could be obtained by allowing the reorder
point to be variable. Hariga and Ben-Daya (1999) also
revised Ouyang ef al. (1996) model by mcluding the
reorder pomt as a decision variable. Pan and Hsiao (2001)
presented two inventory models where shortage was
allowed with controllable back ordering.

This study considers a continuous review mventory
system 1n which the lead time 13 controllable and can be
decomposed into several components each having a
crashing cost function. Tn addition, shortage is permitted
and the total amount of stockout 1s a combination of
backorder and lost sale. It 1s further assumed that the
patient customers with outstanding orders during the
shortage period are offered a backorder price discount

considerations and
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and consequently the backorder ratio is proportional to
the magnitude of this discount (Pan and Hsiao, 2001).
Since the shortage cost is explicitly included, the reorder
point is also treated as a decision variable in this study
(Moeon and Choi, 1998).

There is form of lead time demand considered
following a normal distribution in the study. In this
models, the objectives are to sumultaneously optimize the
order quantities, back order discounts, reorder points and
lead times such that the total expected annual costs are
mimmized. Furthermore, an iterative algorithm 1s applied to
find the optimal solution for the case where the lead time
demand follows a normal distribution. Our model serves
as a ploneering work investigating the effects backorder
discounts and safety factor have on the integrated
inventory system.

NOTATIONS AND ASSUMPTIONS

The following notations are used throughout the
study.

The length of lead time (decision variable)

The order quantity (decision variable)

The backorder price discount offered by the
supplier per unit (decision variable)

The safety factor (decision variable)

The reorder point

The gross marginal profit per umt

The average demand per year

The fixed ordering cost per order

The mventory holding cost per unit per year
The backorder ratio

The upper bound of the backorder ratio

The standard normal distribution;

The standard normal cumulative distribution
function

The safety stock

The expected shortage of a cycle

The total crashing cost of a cycle

EIN el
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The assumptions made in the research are defined as
follow:

The reorder point r = expected demand during lead
time + safety stock, that is, r = DL + kov L, where k is
a safety factor

The lead time I. has n mutually independent
components, where the ith component has a normal
duration T, and a minimum durationt,1=1,2, ..., n
and a crashing cost per unit time a,. These a's are
arranged suchthata, < a, < ... < a, The lead times
are crashed that should be first on component 1 and
then component 2 and so on.
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LetT, denote the length of lead time with component
1, 2, ...n, 1 crashed to their minimum values, then L,
can be expressed as:

L= Z?:ITJ 72‘]:1(1‘1 - tJ)
and L, 1s not cashed the length of lead time. Thus,
the lead time crashing cost R(L) per replemshment
cycle 1s given by:

R(L)= o, (L ~ L)+ 3 a (T~ t), for Le (L, L,.p)

The backorder ratio P is variable and is in proportion
to the backorder price discount offered by the
supplier per unit ., thus, p = Pyw/m,, for O <=1,
O<m, < m, (Pan and Hsiao, 2001 )

NORMAL DEMAND MODEL

The problem under study is to mimmize the following
total expected annual cost:

BAC(Q, 7.k, L)=0OC+HC+ SC+ CC

Where:
OC = Stands for ordering cost
HC = Holding cost
SC = Shortage cost
CC = Crashing cost
The annual expected ordering cost can be

expressed as:

C)C:A2

Q

The lead time demand X is assumed to follow the
normal distribution with mean pl. and standard deviation
oV L. Since shortage is allowed, the expected inventory
shortage at the end of a cycle is given by:

E(X-r)" = B(r) = oV LP(k),

Where:
Pik) = dk)-k[1 - D]
¢, ® = Standard normal distribution and cumulative

distribution function,
(Ravindran et al., 1987)

respectively

For backorder ratio B, the expected inventory at the
end of a cycle is PB(r) and the expected lost sale is
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(1-p)B(x). Therefore, the average inventory of a cycle is:

%+ E(r - X)+ (1 - p)B(r) =%+ (r-DL)+{(1- ﬁ)G\/E‘P(k)
= %Jr kovL + (1 - oL ¥(k)

Hence, the expected annual holding cost is:
HC = h[% + koL + (1-BiovL ¥ (k)]

The backorder price discount of a cycle 1s Pr,B(r) and the
expected lost sales is (1-P)B(r), so the profit lost due to
shortage is 7w,(1-P)B(r) and the expected annual shortage
cost can be expressed as:

sC- %[an £ BmJovLE )

Following the defimtion of L;, the lead time crashing
cost R(L) per replemishment cycle 1s given by:

i-1
R(L)=o @, -1-L)+ > a (T~ t), for [, <L <L,
=)
Hence, the expected annual crashing cost 1s:

D
CC=—RI(L
3 @L

D i-1
5 ail,, —L)-*—Z}a](”[‘J —tj)} for L, <L <L,
e

Consequently, the total expected ammual cost EAC(Q,
. k, L) 1s:

EAC@Q,m, kL) = A%+ h[% +koyL +(1- ProvLE(K)]

+%[I3nx LU P VT ER) (1)

D i-1
+6 ail_ —Li+ Z}al(TJ - tj)} for L, <L<L,
i

Taking the first partial derivatives of EAC(Q, m,, I, L)
with respect to Q, m, k and L, respectively, it follows
that:

FEAC(Qm, kL)

AD _h D{ﬁu )
ot | W, b T
aQ Q2

-B EX}GJE‘P(k)
(2)

FEACQ.7,.k.L)

B”h JDwi + 2 {
ar,

};J‘ Wil (3)

]

SBAC(Q,n, kL)

0 )
xoL (1 — Dk))

(4)
and
76EAC(Q’ﬁ“’k’L)=l{h[1—&ﬁx] [ﬁ” x4, —ﬁgﬂ:xﬂ
dL 2 T, Q (5)
oL W) + 1 hkcrL % 6a
Setting Eq. 3 to zero and solving for m,, it follows that:
Qo (6)

TEX
D 2

Setting Eq. 2 to zero and substituting Eq. 6 into 2 to solve
for Q, thus:

ZD[A + {1 - %J oLl W)+ a,(L,, - L)+ le a,(T, - tj)}
Q= il
h[l - h;F“cL%‘P(k)}
2Dm,

(7

Setting Eq. 4 to zero and substituting Eq. 6 into 4 to solve
for k, then:

DKy =1— h @
)
2D 2 QL4 n,D 4

It can be shown from Eq. 8 that hQ/D< =, so
Dk)=0.5 holds for nonnegative safety factor k.
Consequently, the value of m, derived in Eq. 6 will
automatically lie between 0 and m, as specified in
assumption 4th.

For fixed values of Q, m, and k, EAC(Q, &, k, L) is
concave i the range Le(L,, L, ], since:

EAC(Q, 7, kL) hk ol =

aL! 4 3 (9)
{h[lﬁun J —[&nz + 7 - By, HGL_“P(k)<0

T, Q

For fixed Le(L, L, ]. denote the values of Q, 7, and k
found from Eq. 6-8 by Q* mnx* and k*, respectively.
In addition, for fixed Le(L,, I,,], the determinant of
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Hessian matrix of EAC(Q, n,, k, L) is positive definite at
(Q*, m.*, k*) as shown in Appendix.

The following algorithm can be used to find the
optimal values of the order quantity, backorder discount,
reorder point and lead time.

Step1l:Fori1=0,1,2, ...,n

(1) Setk,= 0 (implies P(k,) = 0.39894)

(ii) Substitute P(k,,) into Eq. 8 to evaluate Q,,

(111) Use Q, to determine (k) from Eq. 8, then find kin
from @k, ) by checking the normal table. Letk, =k,

(iv) Repeat (i1) and (ii1) until no change occurs in the
values of Q) and k;. Denote these resulting solutions
by Q,and k..

(v) Use Q and Eq. 7 to compute the backorder price
discount ;.

(vi) Use Eq. 1 to compute the expected total annual cost
EAC(Q, 1. k;, L).

Step 2: Set EBAC(Q*, %, k*, L") = Min{EAC(Q, 7. k. L),
i=0,1,2,....n}.

Step 3: (Q*, m,*, k*, L*) 1s a set of optumal solutions.

NUMERICAL EXAMPLE AND ITS SENSITIVITY
ANALYSIS

Congider an inventory system with the following
data: D = 600 units/year, A = $200 per order, h = 320 per
unit per year, 0 = $150 per umt, 0 = 7 umt/week and the
lead time has three components with data shown in
Table 1 (Pan and Hsiao, 2001). Apply the proposed
algorithm to solve the problem for the upper bound of the
backorder ratio B, = 0.95, 0.80, 0.65, 0.50, 0.35 and 0.20,
respectively. The resulting optimal solutions are
summarized in Table 2. Also included in Table 2 are the
results obtained from the associated Pan and Hsiao model
(2001) by setting k fixed at 0.85, along with the
corresponding saving on the total expected annual cost

Next, we study the effect of change in the model
parameters such as D, A, h, 0 and 1, under 3, = 0.5, the
optimal order quantity (Q* = 121), the optimal backorder
price discount (1,* = 77.0157), the optimal safety factor
(k* = 1.88), the optimal lead time (L* = 4) and the
carresponding total cost (EAC* = BAC(Q*, m.*, k*, L") =
2947.72) keeping the same parameter values in Example.
The sensitivity analysis is performed by changing each of
the parameter by -50, -25, +25 and +50%, taking one at a
time while keeping remaining unchanged. The results are
shown in Table 3. Let EAC(8) denote the percentage
difference between the new total expected annual cost
obtained from changing the wvalues of these factors
and the original total expected annual cost, that is,
EAC(8) = (the new total expected annual cost-the original
] total expected annual cost)/(the original total expected
annual cost).

Makes the sensitivity analysis in view of various
parameters, the obtained data result has the following
discovery.

k*, Q* and EAC™* all increases while % decreases
with an increase in the value of the model parameter
demand rate D. The obtained results show that . *
and k* are lowly sensitive and Q* and EAC™* are
middling sensitive to changes i the value of D.
Moreover, L* 1s unchanged in D.

%, Q* and EAC* mcreases while k* decreases with
an ncrease 1n the value of the model parameter A.
The obtained results show that n.* and k* are lowly
sensitive and Q* and EAC* are middling sensitive to
changes in the value of A. Moreover, L* is
unchanged in A.

m.* and EAC* increases while Q* and k* decreases
with an mcrease i the value of the model parameter
h. The obtained results show that 7.* and k* are
lowly sensitive and Q* and EAC* are middling
sensitive to changes in the value of h. Moreover, L;*
is unchanged in h.

Table 1: Lead time data of the exarmples

of the proposed model over that of Pan and Hsiao (2001). ;Z?ﬂ;ﬁ;;ﬁiogf?;;ﬁ) 2;_0 202_0 16%0
Tt is interesting to observe that the saving increases as B, Minimum duration ti (days) 6.0 6.0 9.0
decreases. Unit fixed crashing cost ai ($/day) 04 1.2 5.0
Table 2: Summary of the results for example (L; in weeks)
The proposed model Pan and Hsiao (k = 0.85)

Savings (%)
Bo Q* . * k# L* EAC(+)(1) Q* . * L* EAC(+)(2) (@-ID
0.95 121 77.0180 1.82 4 293215 155 77.58 4 3340.64 1239
0.80 121 77.0171 1.84 4 2937.62 156 77.61 4 338241 13.15
0.65 121 77.0164 1.86 4 2942.81 160 77.66 3 3417.50 13.89
0.50 121 77.0157 1.88 4 2047.72 161 77.69 3 3447.60 14.50
0.35 121 77.0150 1.90 4 2952.40 162 7771 3 3477.46 15.10
0.20 121 77.0144 1.92 4 2956.85 164 77.73 3 3507.08 15.69
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Table 3: Effect of changes in the parameters of the continuous review
inventory models
Change in (%)

Change in
Parameter Q* 7k* k* L* EAC
Parameters  values (°0) (%) (%0) (%0) (%) Q% 7k, * k* L*)
D -50.00 -28 1.17 -8068 0 -24.26
-25.00 -13 043 -3.52 0 -11.04
+25.00 1 -029 2.66 0 9.66
+50.00 21 -0.50 4.79 0 1835
A -50.00 =25 -0.65 6.39 0 -19.20
-25.00 -11 -0.30 2.77 0 -8.93
+25.00 10 0.27 -225 0 8.01
+50.00 20 0.51 -4.15 0 1533
h -50.00 39 079 8.07 0 -33.15
-25.00 15 -037 342 0 -15.51
+25.00 -10 033 272 0 14.14
+50.00 -17 0.63 -4.99 0 27.29
om -50.00 -5 -0.06 1.28 50 -11.30
-25.00 -1 -0.03 0.26 0 -5.39
+25.00 1 0.03 -0.26 0 5.38
+50.00 2 0.06 -0.53 0 10.75
mky -50.00 0 -4868 -16.85 0 -2.60
-25.00 0 -2434 -077 0 -1.05
+25.00 0 2434 5.06 0 0.79
+50.00 0 48.69 9.08 0 1.43

n,*, QFf and EAC* increases while k*and T1.*
decreases with an increase in the value of the model
parameter 0. The obtained results show that m,* and
* are lowly sensitive and Q* and EAC* are middling
sensitive to changes in the value of 0. Moreover, 1;*
is highly sensitive to changed in 0.

m.*, k* and EAC* all increase with an increase m the
value of the model parameter 1,. The obtained results
show that EAC* are lowly sensitive, k* are middling
sengitive and m,* highly sensitive to changes in the
value of m,. Moreover, L;*and Q* 1s unchanged in 7.

CONCLUSIONS

This study extends the Pan and Hsiao model (2001)
to study the impact of safety factor on the continuous
review inventory model involving controllable lead time
and backorder price discount with mixture of backorder
and partial lost sales. The objective 13 to mimimize the
expected total annual cost by sunultaneously optimizing
order quantity, backorder price discount, safety factor and
lead time. Tt is found that the expected total inventory cost
tends to decrease as the upper bound of the backorder
ratio increases while all the other parameters stay fixed.
The results of the illustrative example also show that the
expected total inventory cost and the safety factor
mcrease for a given the upper bound of the backorder
ratio decreases. The savings of the total cost on
considering safety factor that is decision variable are
demonstrated in the examples as well.
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APPENDIX

The Hessian matrix H of EAC(Q, 1., k, L) for a given
value of L 1s:

FEAC(Q.x, kL) FEAC(Qr kL) &FEACKQ,n kL)

aQ? Qo ok
;.| PEACQr kL) FEACQr.kL) FEACQ.r, kL)
= 6thaQ ani a‘ﬂ:xak
FEACQ,n, kL) EAC(Q,x kL) FEACKQ,r kL)
&aQ 6‘k6‘:rtx éki
(10)
Where:
FEACQ 7, kL) _2AD 2D[f,

Q<

2D
=

7

o LR ﬁunx}cﬁw)

(T ti)}

Ty

{ -1

a,(L_ -L)+>a

j=1

FEAC(Q,x, . k.L) 2D
o’

%

Qf“ L

8

PEACQ,m, kL) _FEACQm kL) _ D

FEACQ,n, .k, L) B

B
ok? N

] + R[Eni +7, — By, ch'fq)(k)
Qlm

0

%nx —ﬁu}r\/f‘}’(k)
s

2Qor, om, 00 of
8°EAC(Q,m, kL)  F°EACQm, kL) | B D28 _

kon, N am ok hnn ol Bo) [V~ o)
and
FEAC(Q,m kL) &FACQmn_ kL) D[P »

o ey |a b ol )

Next, evaluate the principal minor of H at point
(Q*, mx*, k™). The first principal minor of H 1s

24D 2D (B, .-

Hy|=——+——| =% +7, - B *, L¥(k*

[H| quﬁ[%n +_n By }c«/‘ k") an
+—é]§;{ai[Li_l—Lﬁ;a][T]—t])}>0

Since from Eq. 7 that w.* = hQ*/2D + 7 {2, the second
principal minor of H 1s:

2.0 K il
L v+ S
RDELE Y
+7Q*’

[FLao| = (1 2)

(=) >0
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Therefore, after substituting m.* from Eg. 6 and ©(k*)
from Eq. &, we obtain
o

hQ Ml_ﬁ”
D~ R,

_ 2
1-®k)

2
1-®(k)

)2+ﬁu(4—ﬁu)ﬂ

The third principal minor of H 1s:

K i
‘Hss‘ = {M{A + |:31(L:—1 -L)+ Zl:aJ(TJ - tj)i|}
=

Q* Ty
2 2
4 BD7 TR0 “;L*? & (4—130)}
= h lfB—”n*X +E* B—”n*i +m, — Bt Lok
Ty Qim

- D2|:ﬁ”n*§+nn—ﬁun*x}cv{fl’z(k):| < 2P g ey

Q% | x, Q* =,
2 1M - i1

- o {A+[ax(L‘1 L)+;a](Tj t,-)}}

x{h[lﬁun”‘xJJrD[Buﬁﬂ +EUBDE*XHGJE¢(1<*)
Ty Q”= Ty

+M(4—ﬁu)xh 1—&n*x « oL gk*)
Q" Ty

+

Dot GJEW*)[%(%)E e %)} «Fgesy (13)
0

Where, F(k*) = Bo(4-Bo)d(k* )P (k*) - 2Bo(1-B(k™))*

{2

.
1- k)

1
==
4

2 : By
ﬁu*J[Z*@*l}uJ +ﬁu(4ﬁu)J +ﬁu(14)‘|
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For Vi* € [0, o0) and 0 < B, <1, F(k*) is positive. Hence, we
have |H,;|>0. Consequently, the results from 11-13
show that the Hessian matrix H is positive define at

(Q*, m", k™).
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