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Abstract: In this research a new coding techmque for Space Time Block Code (STBC) n terms of code operator,
that could effectively handle the multipath fading (over rayleigh fading channel) is proposed. The proposed
coding technique has been built around a set of carefully chosen orthogonal polynomials. The proposed
coding scheme exploits the maximum diversity order for a given number of transmit and receive antennas
subject to the constramts of having a simple decoding algorithm. The proposed scheme is similar to the
generalized STBC. In the simulation worle Phase Shift Key (PSK) and Quadrature Amplitude Shift Key (QASK)
are used and perfect channel knowledge is assumed. At the receiver end, we use Maximum Likelihood (ML)
decoding. This proposed coding techmque results in a full diversity code with high coding advantage.
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INTRODUCTION

For wireless communication systems, the principal
radio design challenges arise from the harsh radio
frecuency (RF) propagation environment characterized by
channel fading, due to diffuse and specular multipath and
CoChamnel Interference (CCI) due to the aggressive reuse
of radio resources. Interleaved coded modulation on
transmit and multiple antennas on receive are standard
methods used by wireless system
designers to combat time-varying fading and to mitigate
interference. Both are examples of diversity techniques,
which can be provided using temporal, frequency,
polarization and spatial resources. However, the wireless
channel 1s neither sigmficantly time-variant nor highly
frequency selective. Hence the communication engineers
consider the possibility of deploying multiple antennas at
both the transmitter and receiver to achieve spatial
diversity and also provide high performance.

The Space-Time Codes first used in Tarokh et al.
(1998), achieve coding gain, with inputs mapped on the
vectors rather than scalars. Teletar et al (1995) and
Foshimi and Gans (1998) had shown independently that
the rich scattering wireless channel can support higher
data rates when multiple antennas are used at the
transmitter and the recewver. Alamouti (1998) gave a
sunple, single symbol decoding STBC for two transmitter
antennas from the complex orthogonal design matrix. The
simple design rule and an easy decoding technique

comimunication

stimulated a lot of researchers to work in this area and
since then many more STBCs, are proposed. Tarokh ef al.
(1999) generalized the Alamouti scheme and gave
STBC from Orthogonal design. Then many more
complex Orthogonal design matrices with rates less than
1 like those m Su and Xiz (2003) were identified.
Sethuraman ef af. (2003) proposed STBC from diversion
Algebra and extension field concepts to identify code
matrices. Damen et al. (2002) proposed a diagonal
algebraic space-time code that by construction are of full
rank and of rate 1. But these codes require some
parameters to optimize over for diversity and coding gain.
Mukkavilli et af. (2000) used the equal eigenvalue criterion
to maximize the coding gain and identified some codes
using this strategy.

The purpose of this research is to construct a new
Space-Time Block Codes from Orthogonal Polynomials of
full rank, full rate and low complexity. Sinulation results
conform that, the proposed space-time block code with
multiple transmit antennas, a significant performance gain
can be achieved with less processing expense, as the
proposed code scheme 1s configured as mteger only.

STBC DESIGN AND SYSTEM MODEL

STBC design: In Space Time Block Code design, the
essential design criteria are the provided transmit (Tx)
diversity, the symbol rate of the code and the delay. The
degree of Tx diversity is characterized by the number of
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independently decodable channels. For full diversity it
equals the number of transmit antennas. Tf multiple receive
(Rx) antennas are deployed the total diversity degree is
the product of the Tx and Rx diversity degrees. The
number of Rx antennas is however, irrelevant for the
design of orthogonal STBC. The symbol rate of the code
15 the number of symbols transmitted by the code per
time. The delay is the length of STBC frame. Depending
on the underlying modulaton scheme, the proposed
orthogonal polynomial based STBC 1s aimed to maximize
the rate and minimize the delay, keeping the full diversity.
In general if transmitting antenna 1s one and receiving
antenna 13 one then the pairwise error probability is
inversely proposanal to signal to noise ratio ( N, =1, N,=1
then PEP o SNR-1). If the transmitting antenna is one and
receiving antennas are more than one the pairwise error
probability is inversely proposanal to signal to noise ratio
of power of N, (N, = 1, N>1 then PEP ¢ SNR ™) If the
transmitting anternna 1s more than one and receiving
antenna i1s more than one the pairwise error probability is
mversely proposanal to signal to noise ratio of power of
N, and N, (N, >1,N>1 then PEP ¢ SNR-"") and Channel
capacity C1s defined as min {N, N }log (SNR). So the rate
and diversity 1s only based on STBC.

General STBC model: We consider single-user wireless
communication links consisting of N, transmit antennas
and N, receive antenna. The received symbol r, can be
given as,

N(
= Z{th w1y,
i

Where, )= 1,2,..N. denote the receive antenna
and k =1,2,... T the time at which the symbol was sent, u,,
1s the code symbol transmitted from antenma I=1,2,... N,
at time k and h; the complex channel gain between the i
transmit antenna and the j* receive antenna. The noise
symbols n, are complex Gaussian with mean zero and
variance ¢’. In matrix formulation, this system can be

represented as,

R=UH+N
Where:
H = The channel matrix of dimension N, xN,
Uor) M = The code matrix of size TxN,
R = The received matrix of size T*N,
N = The noise matrix of size TN,

Here M 1is the space-time block code matrix.
The space-time block codes (STBC) spans a matrix of size

N,xT, where the i® row vector is transmitted by the i
transmit antenna and the t* column vector is transmitted
during the t* time slot. We assume quasi-static fading
channels where the channel matrix remains constant over
the code duration T. Perfect channel estimation at the
receiver end is also assumed and the systems have no
feedback. Channel estimation 1s done with traming/pilot
sequences in regular intervals during the transmission.
We focus on full diversity designs that have a simple and
effective decoding strategy.

PROPOSED ORTHOGONAL POLYNOMIALS
BASED STBC

The proposed space time block coding 15 considered
around a cartezian coordinate separable, blurring, code
operator in which the signal T results in the super position
of point source of impulse weighted by the value of the
object function f. Expressing the object function f in terms
of derivatives of the signal function I relative to the
cartezian coordinates and time is very useful for analyzing
the signal in order to achieve the diversity. Hence, the
initial requirements to analyse the diversity may be stated
as follows: Since the diversity can be achieved based on
the local properties of the signal, a local code operator is
required to be devised such that it 13 cartezian separable
and denoising operator. The two dumensional code
function M(x,y) can be considered to be a real valued
function for (x,y) € XxY where X and Y are ordered
subsets of real wvalues. In our case the x is
modeled to represent the space and vy
time slot and consisting of a finite set, which

represents

for convemence can be labeled as {0,1,2....n-1}, the
functions M (%, y) reduces to a sequence of functions

MLt = (), 1=0,1, 2, ...n-1 (1)

As shown in Eq. 2 the process of space -time block codes
analysis can be viewed as the linear two dimensional
transform coding defined by code operator, M (%, y)

M, t) =u (t)

Pm= ] | MEx)MnylxyDxdy (2)

xeX vwe¥
Considering both X and Y to be finite set of values
§0,1,2... n-1% Eq. 2 can be written in matrix notation as
follows

67| = ([M]e[M] ) 1] (3)

Where, the code operator | M| 1s
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u(te)  w(t;) u, ()
‘M‘: u,(t)y  ult) u, () 4)
M
uﬂ(tnfl) ut(tnfl) un*l(tnfl)

® is the outer product |B';| and |I| are the n® matrices
arranged in the dictionary sequence. |T| is the signal to be
transmitted and | ' ;|are the coefticients of transformation.
We consider a set of orthogonal polynomials u(t),
u,(t),...,u,, (1) of degrees 0,1,2,..., n-1, respectively. The
generating formula for the polynomials 1s as follows.
Uiy (1) = () (O-by () uy, (O for 121, (5)

u () =tpandu, (=1,

Where,
n 2
<, > (L
b1 (H): i — z: 1 2( )
<Up Ui x 3w (1)
and _le
p=—>t
11 t=1

Considering the range of values of tto be t = 1,1 =

1,2.3,....,n, we get
i*(n? —i%) 1o n+l
b(n)=———" pu=—>3t=—-—
() M4l -1 FoaE

We construct code operators |M|s of different sizes
from the above orthogonal polynomials as follows.

u{ty)  ulty) u,, ()

|M|: u,(t,) wit,) w, (1)
M

u(t, ) wlt, ) u,,(t, )

fornz 2andt =1+1
Note: For the convemence of code operations, the
elements of are scaled to make them integers.

Construction of code operator: Here we present the
construction of the code operator of size n. It can be
noted at this juncture that some of the STBC which are
proposed in the literature are related with the code
operator of even size only. Also special techniques are
devised to use Hadmard matrix for construction of odd
size code operator. But our proposed orthogonal
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polynomial based STBC is designed to have any width.
For the sake of computational simplicity, the finite
cartezian coordinate set XY are labeled as {1,2,3} to
model the space and time slots respectively. The code
operator in Eq. 4 that defines the linear transform of
signals can be obtamed as ® where M 18 computed as
scaled from Eq. 5 as

u(t) oty uwty) Bo-1 &) 1 -1 1
IM|=u,(t) w(t) wit)=1 o = o 27
u(t) oty wdy) B o+ 111
The set of 9 two dimensional basis operators Oy, (0<i,j<2)

can be computed as follows.

n At

O;=u, @u,

Where, 1n1 1s the (1 +1) st column vector of The
complete set of the basis operators of size (2x2) and (3%3)
are given below:

Polynomial basis operators of size (2x2) are

M es -7 ]

IS RS
|

Polynomial basis operators of size (3%3) are

|

-1

Where, |M|—F
1 1

111 -1 01
[On]=[1 1 1o ]=[-1 0 1),
111 -1 0 1
1 21
[on]=[1 -2 1
1 21
-1 -1 -1] 0 -1
[0on]=]0 o o|[o}]= 0 0/,
11 1 10 1
(-1 2 1]
[0%]=]0 0o o
1 2 1
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1 1 1 -1 0 1
(0% ]=|-2 -2 —2|]oj]=|2 o -2
1 1 1 -1 0 1
1 =2 1
0L =2 4 2
1 =2 1

The following symmetric finite differences for
estimating partial derivatives at (x,y) position of the signal
I are analogous to the eight fimite difference operators
O, excluding Oy,

! X, y= i [I(X—i,y+1)—1(x—i,y—1)]

6y i=-1
al 1 . .
—y= 2 [Ix+ Ly -i)-1(x -1y -i)]
6X 1=—1 (8)
2
I
C ky= 3 [1x-i,y— D= 20(x ~i,y)+ I(x— i,y + 1)]
1=—1
B .
§X,y: > [I(X—i,y—l)— 2I(X,y—i,)+1(x+1,y+i)]
1=—1
and so on
In general.
8i+] 8i+JI
aay iz ©)
=PB,0<i,j<2andi=j=0
Where, || mndicates the arrangement in dictionary

sequence and (.) indicates the mmer product and [} are
the coefficients of the lmear transformations defined as
follows:

[Pl=[M (19)
Where, |M| 1s the 2-D code operator defined as

IM] = [M]e [M].

Theorem : The orthogonal transformation (Eq.10) defined

by the orthogonal system |M] is complete.

Proof: We obtain an orthogonal system

normalizing |M|as follows

|H| by

[H = MMM
Consider the following orthonormal transformations
Z] = [HIT] = (MM [MIT] = (MM B

Since,|H| 1s unitary,

[1=[H]Zl=M] [B=2. > B, |0

1]
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Where

(MM B (11)
As per Eq. 11 the signal |I| can be expressed as a linear
combination of the 9 basis operators of which |Oy| is the
local averaging operator and the remaining 8 are finite
difference operators (Eq. 9). From Eq. 11, we obtain the
completeness relation or Bessel’s equlity as follows.

(-=(2

The code word difference matrix AM is defined as the
difference between the transmitted code word and the
word received by the receiver. Where AM has the same
structure as the code matrix M shown above and explicit
evaluation of the determinant shows that the value will be
zero only when the code matrix and received matrix are
same. As determinant 1s non-zero the code difference
matrix is full rank and hence satisfies the rank criteria.

1,1

2 2
: 2 2
) ,Z\)l.e., I[=y3Zino
i i=0j=0

Maximum-likelihood decoding: Here we follow the ML
decoding as described by (Damen et al., 2003) and the
same is detailed below. In several communication
problems, the received signal s given by a linear
combination of the data symbols corrupted by additive
noise, where linearity is defined over the field of real
numbers. The mput-output relation describng such
channels can be put in the form of the real multiple input-
multiple output (MIMO) linear model
Y=Bx+z (12)
Where, x €R" y, z, € R*® denote the channel input,
output and noise signal and BeR ™ is a matrix
representing the channel linear mapping. Typically the
noise components z, j = l...n are mdependent and
identically distributed  zero-mean Gaussian random
variables with a common variance and the information
signal x 13 umformly distributed over a discrete and fimte
set C = R ™ representing the transmitter code book. Under
such conditions and assuming B perfectly known at the
receiver, the optimal detector of  that mimmizes
the average error probability. gy —>xol

P(e) i P(;ISDX)

1s the maximum-likelihood (ML) detector given by

aE ] 5
X= argmm‘nyX|
xeC

(13)
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For the sake of simplicity, we assume that C = X", where
X is a pulse shift key modulation (PSK) signal set
(Proakis, 2002) of size Q,

le,

}A(:{u:?n(qfl/Q)} (14)

withZ,= {01,...Q}

Under the assumption (14), by applying a suitable
translation and scaling of the received signal vector (13)
takes on the normalized form

oE ) 3
X= aIgm1n|y— BX|

zO2g

where the components of the noise z have a common
variance equal to 1.

SIMULATION RESULTS

Here, we present the simulation results for STBC
constructed usmg the proposed orthogonal polynomial
based coding scheme. In our simulation experiment we
use the number of symbols to be 300, with SNR ranging
from 10 to 22 dB. With a fixed 3 transmitting antennas and
one receiving antenna, we simulate the proposed
orthogonal polynomial based STBC. For the modulation
type PSK, the Bit Error Rate (BER) obtained by the
proposed STBC, is plotted against the SNR range and is
shown in the Fig. 1. For the medulation type QASK, the
bit error rate by the proposed STBC, agamst the same
range of SNR is shown in Fig. 2. In order to measure the

3 bpw/Hz, 1 receive antenna, 64 PSK modulation
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Fig. 1: BER performance comparison of PSK (3Tx and 1
Rx) OPSTB C=--*— GSTBC = --"--

3 bpe/Hz, 1 receive antenna, 64 QASK modulation
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Fig. 2: BER performance comparison of QASK (3Tx and 1
Rx) OPSTB C = --*—-, GSTBC = --°--

performance of our proposed STBC, we also conduct
simulation experiments with the same inputs on the
GSTBC. The output of the GSTBC is shown in dotted
lines in the Fig. 1 and 2. From the outputs, it is evident
that the proposed orthogonal polynomial based STBC is
superior than GSTBC.

CONCLUSIONS

In this research, a new space time block coding based
on a set of orthogonal polynomials that could effectively
handle multipath-fading has been proposed. The
proposed coding is of full rank, full rate and low
complexity. The proposed coding technique exploits the
maximum diversity order for a given number of transmit
and receive antennas. The proposed STBC is also
compared with the GSTBC. Simulation experiments are
conducted with PSK and QASK modulation schemes. At
the receiver end the ML decoding 1s used. It 1s mteresting
to note that the proposed STBC 1s superior to GSTBC
the sense of configuration of code operator of any size
{odd or even). The proposed STBC also fully satisfies the
code design criteria.
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