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Abstract: The objective of this study is to show the best stability of a regulation system using a
nonconventional corrector like that carried out compared to system of regulation using a traditional corrector.
The input impedance of the electronic component realized has a fractional order in a frequency band called
fractal area. This property suggests their use in the practical realization of analogical controllers of a non-integer
nature. In this article, a fractional controller of order ' is realized by using an electronic component based on
the fractal structure of Hilbert. Some simulations and experiments have demonstrated that the proposed
component is useful for the realization of % order fractional controller.
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INTRODUCTION

In a number of previous studies, control systems,
based on fractional order correctors and  using
theoretical methods, have been depicted. Those
mathematical analyses have brought to the fore, the better
performances of control system using PI'"D* (proportional
Integral Derivative with fractional order). Here, A and p are
non-integer order; as opposed to systems using the
basics types of PID with integer order. These research
works, especially those of Joaquin et al. (2006) have
proved the systems using the new types of correctors to
be more robust and interference free.

Our findings are to emphasize the above. In other
words, our results, one more, have practically confirmed
the better performance exhibited by the feedback system,
applied to a capacitive structure (Haba et al., 1997, 2005)
with fractional order impedance. The experiments done on
those structures have helped showing that they have,
over a certain range of frequencies, an nput impedance
whose modulus is of the form |[Z]e<(iw)™. Where 1 i3 a
fractional and 6 a constant argument of the form
0 = -nxm/2.

This useful property will be used n this study, for
the making up of fractional correctors whose usefulness
has been brought out by the worls of Oustaloup (1999),
on the Non-Integer Order and Robust Command (NIORC).

Some studies like those of Le Méhauté and Crepy
(1983) once again highlights the interest of these
structures in electric circuits. They bring forward the

concept of fractance which is a new kind of electric circuit
with intermediate properties, between those of resistance
and capacitances. These new type of circuits have
experimentally been tested by Oldham and Zoski (1983),
Nalkagawa and Sorimachi (1992) as well as by Yifei et al.
(2005). In this study, we are going to look at the fractional
correctors of % orders, which are in fact, electronic
devices having a purely capacitive structure with Hilbert
Fractional impedance.

HILBERT’S FRACTAL STRUCTURE
COMPONENT DESIGN

The fractal structures are geometrical shapes that are
obtained by an iterative process (Le Méhauté, 1990,
Gouyet, 1992). Hilbert’s is obtained starting from an
initiator pattern (< 0 » iteration structure), square shaped
having one its sides deleted (Fig. 1). Each remaining side
15 of length L. On the four imtiator pattern peaks, N = 4
square shapes 1dentical to the mitial squares, but reduced
in length by a factor ¢ = 2 are constructed. These new
squares are centred on the peaks of the initiator square
before being mtercormected by segments of length
L/a.

The structure obtained in this way at iteration 1,
constitutes the fractal structure generator pattern.

To advance to the next higher iteration level, the
principle of the previous generation is applied to all
the elementary squares of the cwrrent iteration. The
knowledge of the reduction factor ¢ and of the number N
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Fig. 1: The generation process of Hilbert’s fractal structure

Fig. 2. Hilbert’s fractal structure component and its
equivalent electrical layout

of squares created at each iteration, permits to determine
the fractal dimension of the structure using Eq. 1. In this
the Hilbert fractal structure has as a fractal dimension
of 2.

D, = Losth) (1)
Log(a)

The electronic compenent is manufactured by a
micro-electronic process. Each component (Fig. 2) can be
considered as a Metal-Oxide-Semiconductor (MOS)
capacitor. One of the capacitor plates is made up of a
silicon substrate. The fractal pattern transfer on this plate
is obtained by photolithography. On the back side of the
other plate, a fine aluminium layer is deposited in order to
constitute the electrical ground level. The two plates are
separated by the silicon oxide (Si0,) which is an
msulator. The contact studs are planned to permit an
interconnection with the test circuit by micro-soldering.

From an electric point of view, each elementary
segment of the fractal pattern can be modelled by a cell of
the R.C.R, type of cell (Fig. 2). R, and C; characterize the
resistance and the capacity of the semiconductor bar. The
leakage resistance R; in parallel with C,, permits to
account for the grid oxide quality. We have shown that
this model is quite suitable to describe our component
behaviour (Haba et ai., 2005).

&0

COMPONENT BEHAVIOR AS A FUNCTION
OF FREQUENCY

The tests carried out on the component under study
permitted to obtain the curves shown in Fig. 3 which
show the variations in the modulus and the phase of the
input impedance of the compenent in the 10 Hz at 10° Hz
frequency band. These curves are plotted on a semi-
logarithmic scale.

As we can perceive, our Hilbert fractal structure
component 1s characterized by complex input impedance
which possesses a constant phase within a given
frequency band that we term fractal zone. The Constant
Phase Angle (CPA) has a value of -45° and the fractal
zone extends from approximately from 2.10° Hz to 10° Hz.

This zone 1s also characterized by a decrease mn mput
impedance modulus following to a negative fractal order
slopes 1. This slope of -0.499 is very close to -0.5. Also,
we can establish in the fractal zone, the expression for the
input impedance 7, (jw) of our component in which B is a
constant that one can easily determine from the nput
impedance modulus plot:

|Z(.m)|:£:1.5.106
ZGuw =Bx (9> o G (2)
Arg(Z, (jw)]=-45°

This result 1s interesting in case, within the fractal
zone, the input impedance expression of our component
is very simple and that the argument of this impedance
has a constant value equal to -45°. These characteristics
can be put to advantage in the design of certain circuits
such as analogic controllers. Indeed, ouwr component of
fractional impedance of order 1/2 can serve to advance by
45° the phase of an insufficiently stable process, in order
to ensure a comfortable stability for it along with offering
1t a good compromise between the mitial rapidity and the
stabilization speed.



J. Applied Sci.,

8§ (1): 59-67, 2008

CPA Zone

L 48

Fractal slope {~-0.499)

% 52 s
—__54 | -54 g.
g | L -56
10 | 58
| -60
—=— Modulus (Z) 62
—0— Argument (Ze) - -64
10t T r T T T -66
10' 10° 10° 10* 1¢° 10°
Frequency (Hz)
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Fig. 4: Derivative (a) and mtegrator (b) circuits realized with the Hilbert’s fractal structure component

The circuits of Fig. 4 are those of a differentiator and
an integrator of order 1/2 realized with our component.
This 135 electrically symbolized by a-3 terminals block. The
input impedance is measured between input and ground
terminals. The ouput terminal S; puts the component in
cascade with another.

If Z.(p) denotes the operational impedance of our
component, the circuit transfer functions of the Fig. 4 are
respectively:

_ R Ry 3
Cone (P 7. B \/]; (3)
Cen(p) = i (4)

Refp

These transfer functions are those of fractal order
controllers whose importance was highlighted by
Oustaloup (1999) in his approach to CRONE. As a matter
of fact, contrary to the conventional controllers whose

phase advance varies with the process gain, that of the
fractal order controller is theoretically constant. This
ensures a degree of strong stability with in relation to the
gain variation.

In previous study, we looked at how these silicon
structures could be used to make electronic devices
embedded in a case, for their characterization. After that
the electrical modeling was completed, we nvestigated
the behavior of the mput impedance of these structures
with non-integer dimension. This allowed us to point out
their specific characteristics, when comparing them to
those with integer structure.

In addition, we were interested in the influence of the
R,, Cpand R parameters of the electrical model. This was
done over the interval with fractional slope and Constant
Phase Angle (CPA).

In the present study, we are gomng to focus on how
these electronics devices can be used in the field of
control engineering, for optimal stability improvement.

&1
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Owr objective in what follows, is to bring into
evidence the possibility of realizing fractional order
controllers with our component. The performances of this
type of controller will be on the one hand, compared with
the conventional controllers and on the other hand,
analyzed from the point of view of the robustness with
respect to the gain variation. To do that, we will present
initially, the results of simulation obtained during PD and
PI of corrections process, ahead of the experimental
results that we programmed during a PI correction
integrating our fractal structure component.

IMPLEMENTATION OF FRACTIONAL
CONTROLLERS

The functional diagram of the servo-system that we
would study is shown in Fig. 5, where V| represents an
external interference entering the servo-system.

Proportional and Derivative (PD) based correction: In this
part, we presume that V_ = 0 and that the process transfer
function corresponds to that of a double integrator:

Gp) =2 .
P

This process 1s at the limit of stability. The objective
1s to render it stable by intending a series correction. The
Open Loop Transfer Function (OLTF) of the corrected
system 1s: C(p)*G(p).

The standard PD controller utilized to unprove the
phase margin is the phase advanced controller whose
transfer function has an expression:

)

Cone(P) =k LraTp With a=1
1+Tp

This controller (PDC) brings to the system a phase
advance

>

.Aq:o:'ar(:sinEl !
a+l

which depends on the cut-off angular frequency w¢, and
thus on the open loop system gam.

The fractional PDF controller that we propose,
guarantees the system a phase advance of 45°
mdependent of the magmtude of gain Its transfer
function can be put under the form:

U

Brrore o) Corrector C(p)

R[

Coor(P) = kyofp with k, == and B =16.10° (6)

In order to simulate these two different corrections,
the analogue circuits have been realized in Fig. 6.

At the start, the controllers have been synthesized
so that their step response is near identical for the
nominal adjustment i.e. the open loop gain K of the
corrected system 1s equal to 1, at the cut off angular
frequency wg.

The Table 1 regroups the results determining each
circuit compenent for the nommal adjustment, fixing .,
with 25132 rad sec™ (f; = 4 Khz) and researching for a
phase margin Ad = 45°.

The step response of each of the two servo-systems
is given in Fig. 7 for different values of K: 0.21, 1 and 5.

We remark that the over-run of the step response of
the system provided with a standard PD controller 1s
variable and increases with the gain K, which is translated
results into system stability decay with the rise in gain K.
On the opposite case, for the fractional PD controller, the
step response conserves the same overshoot. The fact
that the step response in the case of the fractional PD
controller retains the same shape with varying gain means
that the degree of stability is maintained i.e., the phase
margin. The corrected system is thus robust related to the
gain variation. However, we remark a time-axis expansion
with rising K. In other words, the rise-times are more
important with the fractional PD controller.

Proportional and Integral (PI) based correction: In
the functional diagram of Fig. 5, C(p) is actually a PT
controller and the process transfer function is now:

Gp) = =

s

The conventional PI controllers and fractional PI
controllers that we would use of in our simulation, have
the following transfer functions:

L+Tp and Cpp(p)= ﬁ (8)

Tp Jﬁ

Coe = k3 ’

The principal objective of the servo-system is to
make the output voltage Vs follow up the input consigned

P

‘i
Process G(F)

Fig. 5: Block diagram of the servo-system under study
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Fig. 6: PD Correction: (a) conventional and (b) fractional

Table 1: Synthesis of the correctors proportional derivative and proportional

fractional derivative

Systemn settings

Traditional corrector PD (PDC)

Fractional corrector PD (PDF)

Process transfer function

Desired performances

Data R=1k; C=0.1
Transfer function in open loop of the corrected system Al +aTp)
TP+ TR
Calculation of components he oy
(RCY
fp=45° = a=38
! -
T= mqua_ = T=16.5.
mcﬂz -
b-gp = k-2

R, =kR, =R, =131kQ

A

I3

Gp)=

= 25132 rad sec™" and A = 45° with |Cw)G(wg) = 1

WF, Ry =Ry =Ry =R; =5k

e
2 2
P
SeC
1 5
=— = A=10
(RCY
32
=20 —p,-om

R, =16x10%, =R, =63 6 kL2

or referenced voltage V.. It 1s thus a voltage follow-up for
which can arise certain tracking (follow-up of the directive
without any disturbance) or control (rejection of voltage
interference) problems. We are interested in the first place

in tracking problem (V, = 0). The electrical cireuits realized
for our different servo-systems are mdicated mn Fig. 8.

The PI parameter
determination was carried out by referring the servo-

conventional controller
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Fig. 7: Variable gam Step function of the servo-system: (a) conventional controller PD and (b) fractional PD controller

Table 2: Synthesis of the correctors proportional fractional integral and proportional integral

System settings

Traditional corrector PT (PIC)

Fractional corrector PI (PTF)

Process transfer function

Desired performances
Data
Transfer function of tracking (V,= 0)

Transfer function in loop closed

FEF - AU TR
I etp+t
k. P +Lp

Calculation of components

T,
R =—-=Ri=55 kQ
Ci
28

T, =—2=Ti=56 usec
@

i
'

Iy = TLo; =k3i=3.52

B-Mio et sk
k;

1
@)=

wy, = 25132 rad sec™!; £ = 0.7 with |C( w,) G(j w,)| =1
R=1kQ; C=0.1 uF; R, = 5kQ

Transfer fimction in loop open

FTBO:%
Tp

T=Rc =T =100 psec

T=Rc =T=100 psec

Iy = Tay* =kt =398 5

LR
k,

system to a second order system having a natural angular
frequency w, = 25132 rad sec™’ damping
coefficient £ = 0.7. These values guarantee a mimmal
response time and a sufficient stability margin of 45°. For
the PT fractional controller, the nominal adjustment has

and a

&4

been realized for w. = @, = 25132 rad sec". The different
PI correction circuit compoenent values obtamed under the
created conditions are available in Table 2.

The follow-up simulation plots are represented on
Fig. 9, for different values of the capacitance C which
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Fig. 8: PI correction: (a) conventional and (b) fractional

permits to adjust the open loop gain. We remark that the
gain variations do not affect the overshoot of different
step responses concerming the fractional correction.
Moreover, the pseudo-oscillatory regime is practically
mexistent. In the case of the conventional P controller on
the other hand, the indexed response oscillations are clear
and overshoots vary greatly with the gain. The degree of
stability 1s thus weak for certain values of K.

It 1s equally important to indicate that m both cases,
the position static error is null. The static precision is thus
satisfactory. Moreover, in the two cases, the steady state
operation 1s attained all the more rapidly as the gain
decays. However, the PI fractional controller permits to
attain this regime more rapidly with a better response of
the system.

We have also recorded (Fig. 10) the responses of the
two servo-systems in the presence of a step disturbance
V,, shifted in time with respect to a consigned constant
step voltage.

The rejector behaviour of the two systems facing
disturbances is clearly visible. However, as it was to

65

expect, the disturbance rejection of the fractional PI
controller leaves a trail caused by the fractional controller
order. Indeed, the signal recovery 1s slower in the case of
an integrator of order 1/2 than of an integrator of the order
1 because of the memory effect.

Practical implementation of our component in a PI
correction: The results obtamed during simulations
motivated us to put into practice a PL correction
provided with a fractal structure component. The
Fig. 11 presents our circuit representing fractional PT
controller. The oscillograms readings are
Fig. 12

We ascertain that the experimental results correspond
to those of simulation:

shown 1n

» In the follow-up, the system response time is
reduced, the oscillations are rapidly damped and the
static precision is good.

» In regulation, we assist to the rejection of the
disturbances with, however, a remarkable trail.
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Fig. 12: (a) Real time step-function response of the servo-
system follow-up and (b) regulation (y-axis: The
magnitude of the output signal Vs)

CONCLUSIONS

We have shown in this article which our Hilbert
fractal clectronic component presents a fractional
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impedance of order 1/2 that we profitably implemented in
the design of proportional derivative and proportional
integral fractional controllers. The simulations and
experiments carried out have demonstrated that the
fractional controllers equipped with our fractal structure
component permitted:

* In PD correction, to ensurc an adequate degree of
stability independent of the value of open loop gain.

* In PI correction, to obtain a perfect static precision in
follow-up and a light trail in regulation.

These results, characteristic to the fractional
controllers, indicate that the utilization of our Hilbert-
fractal structure component which presents the advantage
of being casily obtained using micro-clectronic process,
is convenient for the realization of a fractional controller
of order 1/2.
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