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Abstract: Through the proposed medel in this study, the production control with the consideration of
workforce scheduling for advanced manufacturing systems becomes realistically and concretely solvable. This
study not only meditates the concept of balancing machine productivity and human ability into the objective,
but also implements Calculus of Variations to optimize the profit for a deterministic production quantity. Tn
addition, the optimum solutions of dynamic productivity control and workforce scheduling are comprehensively
provided. Moreover, the decision criteria for selecting the optimum solution and the sensitivity analysis of the
critical variables are fully discussed. This study definitely contributes the applicable strategy to control the
productivity and workforce in manufacturing and provides the valuable tool to conclusively optimize the profit
of a machiming project for operations research in today’s manufacturing industry with profound nsight.
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INTRODUCTION

For many vears, the planning and scheduling of
discrete manufacturing systems have mostly focused on
the management of machines and the decision making
process at the shop-floor level has been addressed by the
complete idea in optimizing the usage of machines. Some
of the present researchers claim to also manage workforce,
but accomplish most of the time a local allocation of
operators to machines (Grabot and Letouzey, 2000). For
the corporations to efficiently adapt to new technologies,
the interactions between tasks and human ability must be
simultaneously matched. Therefore, the Just-In-Time (JIT)
philosophy (Xiaobo and Ohne, 1997, Hasgul, 2005) 1s
necessarily considered to promote a better balance
between the machine and workforce management into this
study. However, this 15 a combinatorial problem. Hence,
the workforce 1s defined as the working hours so that it 1s
introduced to be a continuous function during
production into this study. Besides, the cost of labor is
relatively small to the operational cost of machines;
hence, an upper mnteger of the optimum workforce will
reasonably represent the optimum manpower allocation.

A production line is generally configured by a
sequence of workstations and each workstation consists
of one or more parallel machines of the same type (Lan
and TLan, 2000). As modern Computer Numerical
Controlled (CNC) machines are widely used in the
computer-based manufacturing systems, the workforce

management 18 then condensed to the viewpomt of
material handling rather than machine operating in shifting
from workshops to Flexible Manufacturing Systems
(FMS) (Wang and Luh, 1996; Kim and Moon, 2007).
Therefore, to appropriately compose the manpower
scheme for material handling among a group of parallel
machines surely becomes consequential for operation.
Practically, the loading-unloading workforce on the
machine 1s normally one of the operator’s jobs and it 1s
considered fixed. Contranly, the workforce for raw material
and finished parts handling in between the machines and
storage varies with the production rate. Thus, the
workforce for material and part handling among a group of
parallel machines is then mathematically contemplated as
a function of production rate into this study.

Many simple models of workforce allocation have
been solved with Kuhn's Hungarian Algorithm
(Bazaraa et al., 1990). However, they all boiled down to
assigning a number of workers to a number of jobs.
Konno and Tshii (1995) have established a fuzzy analysis
to obtamn the optimal solution for a complex workforce
scheduling problem. But, without the specificity of
individual abilities from each worker, the mathematical
model will never be adaptable. A modification of genetic
annealing was developed through solving the real size
manpower allocation problem (Abbound er al., 1998;
Yong and Yong-quan, 2007), nevertheless, the
corresponding performance of the proposed model was
merely verified for small size versions and the optimal
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solution might not be obtainable from the real size of
human Thus, the average manpower
performance is practically presented to extend the
applicability n this study.

Production control is often modeled as optimization

TESOUrces.

problems for constructing optimal profits. As the marginal
operation cost is a linear increasing function of
productivity (Kamien and Schwartz, 1991), the marginal
operation cost of the machine is also considered to be a
linear increasing function of preduction rate in this study.
Tt is that the higher production rate results higher
operational cost such as machine mamntenance and
depreciation. For most researches with this viewpoint, the
production rate is fixed because of the difficulty in
controlling the variable production rate. Nevertheless,
through the modern computer-integrated nterface to
program the feed rate with fixed cutting speed and depth
of cut on Computer Numerical Controlled (CNC) machines
(Balazinski and Songmene, 1995; Wang et al., 2007), the
production rate 1s suited of bemng dynamically controlled.
In addition, while the machines are idle or breakdown, the
operation cost 1s negligible (Lan and Lan, 2000; Chen and
Lan, 2001 ). This is because that the consumption of input
resources does not exist and electricity fees of idle
machines are relatively small comparing with those of the
whole system. Although several models engaged m a
profit function were described by Kalir and Arzi (1998),
none 1s related to the workforce. Actually, the overall
profit and the productivity are both the most concerned
problems confronting manufacturing industry.

The optimal production and workforce control to
balance machine productivity and human ability n
computer-based manufacturing systems is rebellious and
crucial to industrial management. Tn addition, to complete
an order earlier will freeze the capital, raise the inventory
cost and indicate the sub-optimal resource utilization. On
the other hand, an order accomplished later than the
production deadline may lose customers. Therefore,
meeting the production deadline is also the most desirable
objective of management (Soroush, 1999, Qiu et al., 2007).
With the reasons above, it is necessary to not only
econormically solve the workforce scheduling problem for
material handling among all parallel machines, but also
competently optimize the production rate for a
deterministic production quantity and punctually match
the production deadline to reach the maximum profit. With
the model proposed in this study, this issue becomes
realistically and concretely solvable.

ASSUMPTIONS AND NOTATIONS

Assumptions: Before formulating this study, several
conditions are assumed. They are described as follows:
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The production project is a continuous machining
operation with no breakdown. And, the order
quantity 1s equivalently assigned to each parallel
machine.

No delay or scrapping of parts occurs during the
machining process.

The raw materials are shipped just in time from
inventory to manufacturing for all parallel machines.
All manufactured parts are collected and held in the
shop until the whole production quantity 1s done.
The marginal operation cost of machines is a
linear increasing function of the production rate
(Kamien and Schwartz, 1991).

The operational cost for idle or breakdown machines
15 negligible (Lan and Lan, 2000, Chen and Lean,
2001). That 1s, the operation cost is considered only
from the parallel machines assigned for production.
The workforce for material handling is defined as the
working hours and considered as a continuous
function of production time.

All products are shipped and sold at a given price
immediately at the time the order quantity 1s done.

Parameters and Notations: Throughout the study, the
parameters and notations are used. They are defined and
listed as follows:

B Meaximum production rate of the machine,
which is limited by the maximum machining
conditions

Marginal operation cost for each machine at
the production rate x'(t), where b 1s a constant
Operational cost for each machine at time t
Product holding cost for unit part per unit time
Average labor cost of material handhing per
umit workforce

Average material handling ability per unit
workforce, which denotes the average number
of parts that 1s capable to be handled by umt
workforce

Number of parallel machines assigned for
production

Sales price per unit product

Order quantity of the production project
Production deadline that i1s given by the
customer or production schedule

Bx'(t)
Bx (1)
C

Cy

L

[ O]

Decision variables

k(th = Waorkforce scheduling for material handling at
time t, which 1s defined as working hours for
material handling at time t

x(t) = Cumulative parts manufactured per unit

machine during time interval [0, t]
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x'(t) = Production rate per unit machine at time t,
which means number of parts manufactured per
umit time

MODEL FORMULATION

The production quantity distributed to each parallel
machine, (/m, 1s not particular to be an mnteger. Therefore,
to meet the production quantity of the machining project,
a larger quantity Q + m is necessarily considered for
production. In order to practically introduce the JIT
philosophy m  balancing the productivity and
workforce, the constraint thk(r)dr —mx(f) 15 also applied
for vte[0,T]. ’

In this study, pQ describes the total revenue of the
production quantity and J’ ;clk(t)dt represents the

workforce cost during the production peried [0, T]. In
addition, mIT[bx'2 () +exit)]a express the operation cost
o

and part holding cost during the production period [0,T],
respectively. Thus, the mathematical model in achieving
the maximum profit and its constramts are then formulated
as follows.

m?{x%pQ ~ [ akttydt - mf "[bx* () + cx(t)]dt}

st L D k(t)dt = mx(t)
0=x'(1)<B

X(0)=0 and x(T)= 2+M
m

OPTIMAL SOLUTION

Set (x*, k*) to be the optimal solution of the
mathematical model. And, assume that the time mterval
[0.] is the maximum subinterval of [0, T] to satisfy Euler
Equation (Kamien and Schwartz, 1991; Chiang, 1992).
There are two feasible situations to be discussed in this
study.

Situation 1: x'(t) will never reach the maximum limit B
before T(i=T)

The optimum selution for situation 1 1s shown as
follows:

iy E g2 Q+m_£ (1)
U= T
“iy=SppEm_cl (2)
A R T,

k(= 0¢y, Qem_ meT, (3)
ML U TL 4uL

The detail 1s described in Appendix A.

With Eq. 2 and 3, it is found that the optimal
production rate x*’(t) and the optimal workforce scheme
are both linear mereasing functions of t before touching
the maximum limit.

Before discussing the other situation, one
PROPERTY is proposed and described as follow:

PROPERTY: If the line y = x*'(t) touches the line y = B,
two lines should overlap to be y = B from the touch point t
to the end pomt T.

The proof of PROPERTY 15 discussed m Appendix B.

Situation 2: x'(t) will reach the maximum limit B before T.

(T<T
¥ - T-Lpm-26B- 2% ()
c L
c ., Q+m cT ) ~
X'(ty= o TCar Tt T el )
x(D+B(t-D) i tedT]

< Q+m cT ) 3
X*f(t)z{%“—( T _E) Af te[0,1] ©)

B Af te(DT]

me Q+m mcT

LY B telof]

T E A PR (7)
mB if te(dT)
L

The detail 1s described in Appendix C.

Decision criteria: With Eq. 4, two possible decision
criteria are classified as follows:

»  When pm < 2pp+ M4, it means {=T. This contradicts
L

the assumption of Situation 2. It 1s that the optunal
production rate x*'(t) will not touch the maximum
limit B within the production deadline T. The optimal
solution is situation 1.

s When py.opp 29, it meanst<T. This is that the
L

optimal production rate x* '(t) will reach the maximum
limit B within the production deadline T. The optimal
solution is situation 2.
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SENSITIVITY ANALYSIS

The sensitivity analyses for situation 1: It is considered
that x*(t), x*'(t) and k*(t) are the decision functions in
this case. Q, m, T and 1. are the relevant parameters in the
analysis.

From Eq. 1 and 2, it 1s claimed that the optimal
cumulative products per umt machine x*{t) and the
optimal production rate per unit machine x*'(t) are both in
inverse proportion to the production deadline T and are
both in direct proportion to the order quantity Q. In
addition, 1t 1s derived from Eq. 3 that the optimal workforce
scheduling for material handling k*(t) is an increasing
function of both the order quantity Q and the number of
parallel machines m. On the other hand, k*(t) 15 a
decreasing function of the production deadline T and the
average workforce ability L.

The sensitivity analysis on x*(t), x*'(t) and k*(t)
with respect to g, m, T and L for situation 1 1s shown n
Table 1.

The sensitivity analyses for situation 2: Tt is considered
that T, x*(1), x*'(t) and k*(t) are the key variables in this
case. p, b, B, Q, T and L are the relevant parameters in the
analysis. From Eq. 4, it is claimed that T is directly
proportional to the marginal operation constant b, the
maximum productivity B and the production deadline T
and 1t 18 mversely proportional to the sales price per unit
product p and the average material handling ability per
unit workforce L.

In addition, it 15 asserted from Eq. 5 and 6 that the
optimal cumulative products per unit machine x*(t) and
the optimal production rate per unit machine x*’(t) are
both mereasing functions of the order quantity QQ and the

Table 1: The sensitivity analyses for situation 1

Parameters
Decision
variables Q m T L Reference
x*(t) + # - # Eq. 1
x*(t) + # - # Eq. 2
K*{t) + + - - Eq. 3

+: Decision variable is an increasing function of the parameter, -: Decision
variable is a decreasing fimction of the parameter, # Decision variable
depends on the changes of other relevant parameters

Table 2: The sensitivity analyses for situation 2

Parameters
Decision
variables p b B Q T L Reference
T -+ + # o+ - Eq. 4
x*() # # + + # # Eq. 5
x*(t) # # + + # # Eq. 6
k*©) # # + + - - Eq. 7

+: Decision variable is an increasing function of the parameter, -: Decision
variable is a decreasing fimction of the parameter, # Decision variable
depends on the changes of other relevant parameters

maximum production rate B. Moreover, through Eq. 7, the
optimal workforce scheduling for material handling k*(t)
1s a decreasing function of the production deadline T and
the average workforce ability L and it 18 an increasing
function of maximum productivity B and the order
quantity Q. )

The sensitivity analysis on t, x*(T), x*'(t) and k*(t)
with respect to p, b, B, Q, T and L for Situation 2 are
shown in Table 2.

CONCLUSION

The interest of productivity and workforce
management grows up in manufacturing systems with the
necessity of being more and more flexible. The production
quantity, number of parallel machines, maximum
production rate, operation cost, product holding cost and
the average ability of workforce are considered
simultaneously in balancing humans and machines to
optimize the profit for a manufacturing project. This 1s an
extremely hard-solving and complicated i1ssue and the
existing researches are far from giving the satisfactory
answer to this viewpoint. However, through our proposed
model, the problem becomes practically and concretely
solvable.

In addition, with the optimum solution and the
decision criteria, the operational scheme on both
production control and workforce scheduling 1s then
precisely determined. Therefore, the production planning,
production cost estimating and even the contract
negotiation can be further approached through this study.
With this viewpomt, the applicability of the proposed
model 1s significantly extended.

The production rate and the workforce are both
important control factors of a machining project. Besides,
the control of machine productivity and the manpower
scheduling are also critical for production planners. This
study surely generates the idea of managing both
machines and humans and also contributes the solution
to optimize the overall profit matter.

Fuhure researches for managing the machines and the
humans under floating sales prices and variation of
production quantities or orders are encouraged in this
approach. In sum, this study surely generates a reliable
and applicable 1dea of optimal control to the techniques
and also provides a better and practical solution to this
field.

Appendix A: The optimum solution for Situation 1.

With the boundary condition

Q+m

x(T)=
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and the constraint
1
LIDk(t)dt =mx(t) -
the objective function is then rearranged as

me,x(T)
L

max {p[l’l’lX(T) -m]- - mj;[bx’z(t) + cx(t)]dt}

From Euler Equation (Kamien and Schwartz, 1991; Chiang,
1992), 1t 1s found

c= %[be’(t)]

There exists a constant k, satisfying

x’(t):z—i)tJrkl (A1)
Integrating Eq. Al with t, then
X(t) = %tz +kt+k, (AZ)
Using the boundary conditions, x{(0) = 0 and
X(T) = Q+m
mto Eq. A2 separately; we have
k, =0 (A3)
_Qrm_cl (Ad)
" mT 4b

Applying Eq. A3 and A4 into Eq. Al and A2, x*(t)
and x*'(t) are thus obtained.

Substituting x*(t) into the constraint
then k*(t) 1s found.

Lj;k(t)dr = mx(t)

Appendix B: The proof of PROPERTY.

From Eq. 2, x*'(t) is a strictly increasing linear
function of t. And 1t holds for any subinterval during
[0, T] satisfying O <x*'(t)<B. Therefore, x*<(t) in the time
interval [t.T] (shown in Fig. 1) cannot exist because it
contradicts to be a decreasing linear function of t, the
PROPERTY of is thus verified.

840

¥y (Production rate)
h y=B

v

F

N

Cannot happen

y=x*()

Pt (time)

-

Fig. 1: Possible condition of line v = B and y = x*'(t)
Appendix C: The optimum solution for Situation 2.

Before reaching the maximum hmit B, Eq. 1, 2 and 3 are
satisfied for this situation either. By applying the
PROPERTY into the objective function, it is then
modified as:

—min j:[bx” (t) + ox(t) |dt + bB (T - 1) + ex(i)(T - ) +?(T2 -t
—¢BI(T - 1) - p[mx(D) + mB(T - 1) —m]

+%[x(f)+ B(T-)] }

From the transverality condition of salvage value for
free end value x(i) (Kamien and Schwartz, 1991; Chiang,
1992), it is obtained that

2bx" (D) + c(T—f)—pm+%:0 (C1)

Using x(1)=B into Eq. C1, the optimal time i’ to
reach the maximum limit is obtained.

Tntroducing © and the PROPERTY into the Eq. 1 and
2, the optimal solution x*(t) and x*’(t) are then found.

Substituting x*(t) into the constraint Lj;k(r)dr = mx(t)
then k*(t) is found
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