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Abstract: In this study, we give some pomt coincidence theorems for non-linear hybrid contractions, that 1s,
contractive conditions mvolving single-valued and multi-valued mapping in non-Archimedean Menger
probabilistic metric space. By using our results, we can also give common fixed theorem for single-valued and
multi-valued mapping in metric space. The results presented in this research generalize and improve many
results in metric spaces and probabilistic metric spaces.
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INTRODUCTION

Let R denote the set of real numbers and R” the non-
negative real. A mapping F: R—R" is called distribution
funetion 1if its non-decreasing and left continuous with 1nf
(F) = O and sup(F) = 1. We will denote D by the set of all
distribution functions.

TLet H denote the specific distribution function
defined by:

0,x=0
H(x) =
(x) {1,){20
We shall also, for convemence, adhere to the
convention that for any distribution function F and for
any

x> O,F(%) 1, while F(%) —0

A probabilistic metric space (briefly, a PM-space) 1s
an ordered pair (2{, F), where, X is a set and F is a mapping
of FxF into D. ie., F associate a distribution function
F(p, @) by I, ., where the symbol I, . (x) will denote the
value of I, . for the argument x. the functions I, are

assumed to satisfy the following conditions:

(PM-DYF, =1 forallx=0iffp=q

(PM-2YF, , (0)=0.

(PM'B) Fp. q =Fq, o

(PM-4) IfF, =l and F_,{y) =1=F,  (xty) = L.

A probabilistically normed space (briefly a PN-space)
1s an ordered pair (X, F) where X 1s a real linear space, F 1s
a mapping of X mto D. (We shall denote the distribution
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functons by F (x) by f) satisfymng the followng
conditions:

(PN-1) £, (t) =1 for all t=0 if and only if x = 0.
(PN-2) £, (0) = 0,

(PN—3) fu(t)=fx(i‘) for allee R, = 0

(e 8

EN-HIF () =1 (,)=1=

f

x+y(t1 +ty)=1

If we take F, , = £ then the PN-space must be a PM-
space.

A triangle inequality is said to hold in a PM-space if
and only if it holds for all triple of points, distinct not, in
the space.

Let A: [0, 1] be a 2- place function satisfying the
following conditions:

(A-1) 0<A(a,b) 1

(A-2) Alc,d) zA(a,b) for cza,dzb
(A-3) A(a,b)= A(b,a)
A-4HAQD=1

(A-35)A(a,1) =1 for a =0.

Menger (1942) introduced, as the generalized triangle
nequality, the following condition:
(PM-5)F, , Gety) 2 A, GO F,, (y)) forall x, y=0, where A
15 2-place function satisfying (A-1) to (A-5).

A Manger PM-space 13 a PM-space in which the
condition (PM-5) holds universally for some choice of A
satisfying the conditions:

(A-2) Alc,d) = A(a,b)forc=a,d=b
(A—-3) Ala,b)= A(b,a).

(A—6) Ala,1) = a and A(0,0) = 0
(A—7) A(A(a,b).c) = A(a, A(b,c)).
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A triangular norm (briefly, a t-norm) is a 2-place
function A: [0,1]* [0,1]—[0,1] satisfying the conditions
(A-2), (A-3), (A-6) and (A-7).

RESULTS

We imtroduce the concept for compatibility for
single-valued and multi-valued mapping in non-
Archimedean Menger probabilistic metric spaces and give
some coincidence point theorems for non-linear hybrid
contractions that is, contractive conditions involving
single-valued and multi-valued mapping in non-
Archimedean Menger probabilistic metric space.

By using our results, we can also give some common
fixed-pomnt theorem for single-valued and multi-valued
mapping in metric space.

The results presented in this study generalize and
umprove many results of (Kaneko and Sessa, 1989), Nadler
and many others in metric spaces and probabilistic metric
spaces.

TLet G be the family of functions g: [0,1]—[0,e]
such that g is continuous, strictly decreasing, g (1) = 0
and g (0)<eo

Definition 1: Menger (1942), A Menger PM-space
(X, F, A) 1s said to be of type (C), if there exists a function
g € G such that:

gF, () 2gE, (D) +g(F,, () (1

forallx, y, ze Xand t>0.

Definition 2: Nadler (1969); A non-Archimedean Menger
PM-space (X, F, A) is said to be of type (D)g if there exists
a point g € G such that:

g(AGs D) < gl8) + g(t) (2

for all s, te[0.1].

Theorem 1: Chang et al. (19%94a), If a non-Archimedean
Menger PM-space (X, F, A) is of type (D), and then it is
of type (C),.

8(E, (1) < g(F, , (1) + g(F,,. (1) 3
Theorem 2: Chang (1990, 1985, 1984). If (X, F,A)1s
a Menger PM-space with t-norm Ala,b) A, (a, b)
for all a, b €[0,1] and then it’s of type (D), for ge G type
(Dle.
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Definition 3: Menger (1942). Let (X, d) be a metric space
and CB (X) be the family of all non-empty closed and
bounded subsets of XL

Let & be the Hausdorff metric on CB(X) induced by
the metric d, that is:

3(A, B) = max {supd(x,B),supd(A, v)} (4)

Forall A, B € CB (X), where d(x,A)= in{d(x,y)
¥

Theorem 3: Menger (1942); (a) (CB(X), d) is a metric
space.
(b)If (¥, d) 18 complete then (CB (X}, d) 1s complete.

Theorem 4: Chang (1985);, Let (¥, d) be a complete metric
space. If we define F: XX—D as follows:

Fle,y)t) =F, (O)=H{t - d(x, ¥}

for all x,y € X andt € R then the space (X, F, A) with
the t-normA(a, b) = min{a, b} for all x,ye[0,1] is a
T -complet Menger PM-space.

Theorem 5: Michael (1951); If (X, F, A) is T-complet
PM-space with t-normA(a, b) =min {a, b} forall x, ye[0,1],
then (X, d) 1s a d-complete metric space, where the metric
d 13 defined as follows:

dix,y) =sup{t e [0,ILF, (<11} &)

forallx,y e X

Definition 4: Chang (1985). Let AcCB(X) and xeA. We
define the probabilistic distance F_ , between the point x
and the set A as follows:

E, ,(t) = H(t - d(x.A))

For all teR.
If we define F: CB(X)x CB(X) - D by:
F(AB)(t)=F, o(t) = H(t- 3(A.B))

Forall A, Be CB (X)and te R., then F 1s the Menger
-Hausdorf metric induced by F.

Definition 5: Michael (1951); Let (X, F, A) be a T-complete
non-Archimedean Menger PM-space of type (D), with the
continuous t-normA(a, b) = min {a, b} foralla, b e [0,1].
Let ® be the family of mappings ¢: (R"Y—R" such that
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each ¢ is non-decreasing for each variable, right-
continuous and for any t>0:

Ot 1,1,26,0) < w(t)

where the function | R® = R’ is non-decreasing, right
continuous and

W' (t) >0 Asn s o forallt=0.

Lemma 1: Chang (1990). Let y: R*— R* be non-
decreasing, right continuous and
Wy (t) > 0 Asn — « for all t > 0. Then we have the following:

(6)

wity<tforalt=>0

If t<y(t) then t = 0 @)
Definition 6: Chang (1990). Let f be a mapping from X into
itself and T be a multi-valued mapping from X into £,
where € is the family of all non-empty t-closed and
probabilistically bounded subsets of X. Then:

The mappings f and T are said to be commuting if
fTxeQ and fTx = Tfx for all xeX.

The mappings f and T are said to be compatible if
fTxel} and

lmg(iﬂxn,foh (t)) =0-

For all t~0, whenever {x} 1s a sequence in X such
that

lim Tx

n—yo

,=AeQand limfx =z A geG
n—oo

Theorem 6: Chang (1990). Any commuting mappings are
compatible, but the converse is not true.

Lemma2: Chang efal. (1994a). Let(Q, F, A) be a Menger
PM-space. Then a mapping F from Q=€ into D satisfying
the following conditions:

(1) F.g(h=1Foralt>0if and only if A=B.

(2) Fas(0)=0

(3) FA,E = FE,A

Fuplt + 4,12 A, . (1)1 o(t,)) Forall AB,Ce Qand t,,t, 2 0.

“4)

Theorem 7: Let f be t-contimuous mapping from X mto
itself and

(LY

be a sequence of T-continuous multi-valued mappings
from X into Q satisfying the following conditions:
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T, (X) cf(X) forn=1,2,3,...

f and T, are complete for n =1,2,3,...
g(f;, -, () < wimax {g(, , (0).8(T, 1, (1)),
gy 1, (0.8 (F, 1, (60, gCFy -, ()}

Forallx,yeX, t20and1#3,1,]=12
where, g€ G and |y € P.

Suppose further that for any x€ X andae T, x,
n= 12, ... there exists a point b € T., a Such that
F, (02F . (Oforall t~0. Then there exists a point z
€ X such that fzeT, forn =123, ..., thatis, z1s a
coincidence point of f and T,

Proof: Since T (X)<fiX) forn=1,2, ... by condition (4) and
g € G for an arbitrary x, € X, we can choose x, € X such
that fx, € T ;x, € Q.

For this point x, there exists a point x,€ X such that
fx,€T,x,€Q and
8(Fy, 5, (1) < 8(Fy,, 1, (0)
for all t=0. Similarly, there exists a point x,€X such that
fx, e Tix, e Qand gk, ,, (D) < g(Fszl,T3x2 ()
for all t=0. Inductively, we can obtain a sequence {x,} in
X such that &,eTx,_,€Q and
gl g, (D)< g(FTnxn_l,men ()8
for all t=0.

Now, we show that the sequence {fx} 1s a cauchy
sequence 1n X. In fact by lemma 2 and conditions (3), (4),
since geG we have:
g(fomfo {ty < g(FTnxn,l,T““xn (t)) (8)
< Wmax{g(Fy, o (0.8F, 1. O
gy . O08F, o O, . O
<Wmax{g(F, . O)gE, . O, , )
sg(foh_l,ﬁ(M (t))sg(Fﬁch_l,fxn {th}.

If gFe, &, () <gl o, (L) for some t;>0, from Eq. 8
and lemma (1), it follows that:

8T, g, D) < Wimax{g(l, . G0l - GDel o ()
8(Fy ., (D2 F, s, ()
£ g(fo“,fxml (tu ))
Which is a contradiction. Thus, for any t£>0, we have

g(F &, (=<glF, o ()

Forn=1,2, ... and so, by (8),
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g g, M < VEE, . ()
? )

LWNE, L, (O)

For all t-0. Hence, for any positive mtegers m,n with
m=>n and t=0,

(=2 g, O+ +gF, )

<5 W, () 0

8T e

wom-1>Fnem

as n—eo, which implies that Fs s, (0 —Llasn—e, for any
positive integer m, that is, {fx} is a cauchy sequence in X.

Smece (X,F.) is t-complete, the sequence {fx}
converges to a pomnt z in X. On the other hand, by

condition (7) and (9), since we have:

g(Fﬁc“,ﬁ:mm )< g(FT T,

n¥n-1s et ¥n

() < Po((Fs &, (O

n4>00=g(FTx T

n¥n-1s et ¥n

(t)—1 as n—< for all t==0, that is,
{Tx..} a cauchy sequence in (QF.A), but (QF,A) is

Letting t—>0sothat Fy, o .

T-complete the sequence {T,x,,} converge to a set AcQ.
Next, we shall show that zeA. Indeed, we have:

g, ) <, O)+gE, ., O)+gFE, )
= g(Fz,fx“ )+ g(fon frn )+ g(FT“x“,,,A(t))

as n—co which implies F_,(t)—1, as n— for all t=0. Thus,
since AeQ), zeA. Therefore, smce fand T, forn=1.2, ...,
we have

g(Fer (D) £ gFe, (0)+ 2y 1)
< 8, () + 8T, 7. (0)
< 8, D) +8Fr,  rs )+l 4.0
—=0

as n—e that is, F1. (0 =1 as n—ee. Since T,ze(), we have
fzeT,z forn=1,2, ... . This completes the proof.

Corollary 1: Let f be t1-continuous mapping from X into
itself and S, T be t-continuous multi-valued mappings
from X into Q satisfying the following conditions:

SCOUTE)=(X),

The pair £, S and f, T are compatible,

8(E, -, (0) = Pmax {g(F, . (0).8(F, 5, (0).8(F, ., 1)
8(F,, o, (.8 (E, 5 (tH}.

for all x,y € X and t>0 where geG and ¢ed.
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Suppose further that for any x€X and zeX there
exists a point beTa such that:
E () 2K, (0, for all, then there exists a point
zeX such that fzeSxnTz, that is,
coincidence point of the pairs f, S and £,T. t=0.

zZ s a

Proof: Taking T,., =Sand T,.,=T.n=01, ., in
theorem 7, the result follows immediately.

Corollary 2: Let f be t-continuous mapping from X mto
itself and (T}, be a sequence of T-contimuous multi-
valued mappings from ¥ into 2 satisfying the following
conditions:

For any xeX and aeT x, n = 1,2, there exists a
point beT,,asuch thatF, (b= E . () forall t=0.
glEy, 1, () < W (max{g(E, ,(),8(E, 1, (D,8(F, 7 (1),

8(F, 1L, g 4, (D))
for all x,yeX and t>0 where geG and $ped.

Then there exists a point ze€ X such that zeT,z for
n=1.2, ..., thatis; the point z is a common fixed point of
T

n-

Proof: Taking f = I; (the identity mapping on X) in
Theorem 7, the proof follows immediately.

Definition 7: Menger (1942). A metric space (X, d) is
said to be non-Archimedean if the following condition
holds:

dix, yy<max {d(x.z), d(z,y)}, for all x,y,zeX

Theorem 8: Chang ef al. (1994b). Let f be a t-continuous
mapping from X into itself and {T,};, be asequence of -
continuous multi-valued mappings from X into £
satisfying the conditions:

TXycf(X)yforn=1,23,....

fand T, are compatible forn=1,2,3, ... .

For any x€X and aeTx, n = 1,2, ... , there exists a
pomt beT,, a such that F,, 0 = F, . () for all t=0.
There exists a constant k> such that :

Fror, (D) 2 min (B, (<0.F, o (k0).Fy o (KD,
By 1y (kt), By, 1, (kD))
for all x,yeX and t=0.

Then there exists a point zeX such that fzeT,z for
n=1,2,3 ..., Thatis, zis a coincidence point of f and T,
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Theorem 9: Let (3{,d) be a complete non-Archimedean
metric space and C(X) be the family of all non-empty
compact subsets of X. Let f be a continuous mapping
from X into itself and {T,};,, be a sequence of continuous
multi-valued mappings T, from X into C(x) satistying the
followmg conditions:

T(X)cf(X) forn=1.2, ...
fand T, are commuting forn=1,2, ...
There exists a pomt ¢e(0,1) such that

8(Tx, Ty) £ omax{d{{x, {y),d(fx, Tx).d(fy, Ty),
difx, Ty),d(fy, Tx )}
Forall x,yeX and I[#71,)=1.2,, ...

Then there exists a pomt zeX such that fzeT 7 for
n=1,2, ..., thatis, z is a coincidence point of f and T,

Proof: By definition (4) and condition (3), we have:

g, (1) = H(t - 8(T;, T}))
2 H(t - omax{difify), d(fx,Tx) d(fy, Ty),
difx, Ty),d(fy, Tx)}

- H(é‘ max{d(Ex,£), d(fx, Tx), d{fy. Ty),
difx, Ty),d(fy, Tx) }

. t t t
= mm(fo,fy(E)stx,—gx (a)’F‘fy_ij(a)’

BTy ()

5

Forallx, yeXandi=#j,ij=12, ...
Moreover, for any xeX and aeT x forn=1,2, ..., there
exists a point beT . a such that:

dia,b) <&(Tx.T ,a)

and so we have

F,,(t)= H(t — dia,b))
> H(t - S(THX, Tn+la))

= ?TX“,T“Ha(t)
for all t=0.

Therefore all conditions of Theorem 8 are satisfied
and hence this theorem follows immediately. This
completes the proof.

Corollary 3: Let (X.d) be a complete non-Arclimedean
metric space and C (X) be the family of all non-empty
compact subsets of X. Let f be a continuous mapping
from X into itself and T be a sequence of continuous
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multi-valued mappings T from X into C (x) satisfying the
followmg conditions:

T,
f, T are commuting.
There exists an he(0,1) such that:

8(Tx,Ty) <hd (fx, fy), for all x,ye3X. Then there exists
a point ze X such that fzeTz.

Proof: By Defimtion 4 and condition 3, we have:

E 7, (0 =Ht - 3(Tx,TY))
= H(t - hd(fx, fy))

- H(% —d(fx, fy)

t
= Fﬁg’fy (H)

forallx,y € X.
Moreover, for any xeX and acTx, there exists a point
beTa such that:

d(a,b) < &(Tx,Ta)
And so we have

F,.(t)= H(t - d(a.b))
= H(t—8(Tx, Ta))
=B, .

for all t=0. Therefore, by theorem 8 there exists a pomnt
zeX such that fzeTz. This complete the proof.

Lemma 3: Kaneko and Sessa (1989). Let (X,d) be metric
space. Let { be a mapping from X into itself and T be a
multi-valued mapping from X into C(X) such that the
mappings fand T are compatible. If fze Tz for some zeTz
for some zeX, then Tz = Tfz.

Theorem 10: Let (X, d) and C(X) be as in Theorem 9. Let
f be a continuous mapping from X into itself and T be a
contmuous multi-valued mapping from X mto C(X)
satisfying the following conditions:

TX)=E(X),
fand T are compatible,
There exists an ¢e(0,1) such that

&(Tx,Ty) < emax {d(fx,fy), d(fx, Tx),d(fy. Ty)
d(fx, Ty), d(fy, Tx)}
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for all x,yeX. Suppose also that, for each xeX either
(a) fx # f* x implies fx ¢ Tx or (b) fxeTx implies
limf'x =z

for some zeX. Then f and T have a common fixed
point in X.

Proof: Taking T, = T in Theorem 9 then there exists a
point ze X such that fzeTz, i.e., z is a coincidence point of
fand T. Then by Lemma 3, we have {Tz = Tfz

Now, by defimition 4 and condition (3), we have:

F

Tx, Ty

=H(t-38(Tx,Ty)
= Ht — amax {d{fx,y),d(fx, Tx),d(fy,. Ty),
difx, Ty, dify, Tx)}

= H(i — max {d(fx, fy),d(fx, Tx),d{fy. Ty),
(¢4
d(fx, Ty),d(fy, Tx)}

: t t t
= min {fo,fy (=) fo,Tx =) FFY,T Y(_)’
vl o &

By 2 (DB ()
(¢ (e

For all x,yeX.
Mareover, for any xeX and aeX forn=1,2, ..., there
exists a point beTa such that:

d{a,b) < 8(T x,Ta)
and so we have

F.(0=H(t-d(a,b)
=H(t— 3(Tx,Ta))
= ~Tx,Ta (t)

Since T(X{)cf(X), for arbitrary x,€X, we can choose a
point x,€X such that fx,€Tx;. For this point x,, there exists
a point x,eX such that fx,€Tx, and

Fos 02y o

For all t>0 Inductively, we can obtain a sequence n
X such that fx €Tx_,, and

fon,fxml (t) 2 FTxn,lTx“ (t)

for all t=0.
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Then {x,} is a cauchy sequence in X. But (3X.d) is
complete, then x,—x.

Also the subsequences {fx}, {Tx, } converges to x.

Now, since f, T are continuous then fx —fx Tx
fx,—Tx. This shows that x is a common fixed point of f, T.
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