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Abstract: This study presents a heuristic approach based on Shifting Bottleneck (SB) for large scale job shop
scheduling problems. Subproblem solution procedure and reoptimization are two important factors m SB
approach that can increase computational efforts. In large scale problems, we need effective procedures to
decrease the computational efforts. This study, first, presents a modified Schrage algorithm for single machine
scheduling problems with heads and tails that is an effective subproblem solution procedure. Then we present
a heuristic approach for job shop scheduling that resolve reoptimization difficulties in SB. Finally, the proposed
algorithm is tested and validated. Experiment results show the superiority of our approach in comparison to SB
in large scale problems especially in computational efforts. This approach can be a good initial seed in using

search techniques.
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INTRODUCTION

The job-shop problem is regarded as one of the
hardest in combinatorial optimization (Brinldcotter and
Brucker, 2001). During the past decades, many researchers
have been focusing on the job shops and proposed
several effective algorithms for them. They can be
classified as optimization and approximation algorithms.
The optimization algorithms are usually based on the
branch and bound scheme (Brucker et al, 1994,
Carlier and Pinson, 1994). These algorithms have made
considerable achievement; however, ther implementation
needs high computational cost. On the other hand,
approximation algorithms are more effective for large size
problem instances. Among the heuristics, a successful
approach is the Shifting Bottleneck (SB).

SB was, first, presented by Adams et al. (1988). Later
Dauzere-Peres and Lasserre (1993), Applegate and Cook
(1991), Balas et al. (1995) and Mukherjee and Chatterjee
(2006) have enhanced this method. There have been
extensive computational experiments evaluating the
performance of several versions of SB routine on different
shop configurations (Demirkol et al., 1997, Holtsclaw and
Uzsoy, 1996, Uzsoy and Wang, 2000). The general
consensus is that the SB performs quite well compared to
various dispatching rules on almost all problem types.

The main strategy of the SB lies in relaxing the
problem into m single machine subproblems and solving
each single machine independently. This approach
consists of four functions: problem decomposition,

bottleneck identification, subproblem scheduling and
reoptimization. On a specified scheduling criterion, the
machine having the maximum lower bound is selected as
the bottleneck machine and the SB sequences the
bottleneck machine first while ignoring the remaining
unscheduled machines. After the machine 1s scheduled,
the reoptimization procedure 1s triggered. The SB
algorithm repeats the single scheduling
procedure until all machines are scheduled (Wu et af.,
2006).

Subproblems solution procedures (SSPs) that are
single machine problems and reoptimization are two main
functions in SB. Holtsclaw and Uzsoy (1996) tested the
quality and efficiency of the solution on 12 combinations
of machine criticality measures that used for selecting
shifting machines and subproblem solution procedures
(SSPs). According to their research, the more
sophisticated algorithm usually has the better efficiency.
Demirkol et al. (1997) found that the better SSPs and
reoptimization has higher solution quality. Uzsoy and
Wang (2000) modified the testing structure of
Demirkol ef al. (1997) to distinguish the bottleneck
machines from non-bottleneck. They found that a system
with more sigmificant bottleneck machines might have
higher search efficiency.

machine

In the large scale problems, implementing heuristic
approaches for subproblems solution procedure in SB can
decrease computational efforts. Although using the exact
approaches such as Carlier algorithm (1982) for single
machine (subproblems) can improve solution quality of
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the job shop problems, this increases computational effort
mn large scale problems. Wengi and Aihua (2004)
presented a heuristic as Schrage algorithm with
disturbance for solving subproblems, base on presented
umproved shifting bottleneck (ISB) and showed that it has
a better performance than SB. However, it has some
drawbacks. This study tries to resolve some of the
drawbacks and present a modified Schrage algorithm that
is more effective than previous Schrage algorithm and
Schrage algorithm with a disturbance (DS).

Reoptimization is one of the important problems in SB
that can increase computational efforts especially in the
large scale problems. This study presents a new approach
that can omit reoptimization.

Job shop problem: The job shop scheduling problem can
be described as follows: There are a set of jobs and a set
of machimes. Each job consists of a series of operations
and each operation with fixed processing time 1is
processed by a certain machine. The problem consists in
scheduling the jobs on the machines with the objective to
minimize the makespan the time needed to finish all the
jobs. Any schedule is subjected to two constraints: (i) the
precedence of the operations on each job must be
respected; (ii) once a machine starts processing an
operation it cammot be interrupted and each machine can
process at most one operation at a time.

Let N = {0, 1,..., n} denotes the set of operations
(with 0 and n the dummy operations .start. and .finish.),
M the set of machines, A the set of pairs of operations
constrained by precedence relations and E, the set of
pairs of operations to be performed on machine k and
which therefore cannot overlap in time. Further, let p
denote the (fixed) duration (processing time) and t, the
(variable) start time of operation i. The job shop problem
can then be stated as:

min t,

(-t > =p, (i.j) A,

t==0, 1N,

t-t>=pV t-t>=p, @) B, keM.  (P)

Any feasible solution to (P) 1s called a schedule. It 1s
useful to represent this problem on a disjunctive graph
G =(N, A, E), with node set N, ordinary (conjunctive) arc
set A and disjunctive arc set E (Balas, 1969). Conjunctive
represent precedence relations and pairs of
disjunctive arcs correspond to operations that must be

arcs

processed on the same machine. Figure 1 shows the graph
for a problem with 8 operations (on three jobs) and three
machines.
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Fig. 1. Digraphy an mstance

A selection 3, n E, contains exactly one member of
each disjunctive arc pair of E,. Actually, determining an
acyclic section on S, is equivalent to sequencing the jobs
(operations) on machines k. A complete selection S
consists of the union of selection S,, one ineach E,_ k eM.
In the language of disjunctive graphs, the problem is to
find an acyclic complete selection 3 < E that mmmimizes the
length of a longest path in the directed graph D

Shifting bottleneck: Shifting Bottleneck is a heuristic
approach that uses 1n job shop scheduling problems. The
main strategy of the SB lies in relaxing the problem into m
single machine subproblems and solving each single
machine independently. This approach consists of four
functions: problem  decomposition,  bottleneck
identification, subproblem scheduling and reoptimization.
On a specified scheduling criterion, the machine having
the maximum lower bound is selected as the bottleneck
machine and the SB sequences the bottleneck machine
first while ignoring the remaining unscheduled machines.
After the machme i1s scheduled, the reoptimization
procedure is triggered. The SB algorithm repeats the
single machine scheduling procedure until all machines
are scheduled (Wu et al., 2006).

Let M, be the set of machimes that have already been
sequenced, by choosing selections Sp (peM,). Let
(P(k, M;)) be the problem obtained by replacing each arc
set Ep (peM,) with the corresponding selection Sp and
deleting each arc set Ep (peM/MO-{k}). A bottleneck
machine meM/MO is such that vim,MO) = max {v(k,MO):
keM/MO}, where vik,MO) 1s the value of a good solution
to (P(c,MO)) Fig. 2 (Wenqi and Aihua, 2004; Adams et al.,
1988).

Let M, be the set of already sequenced (M, = ® at
the start).

In step 1, to identify the next bottleneck machine to
be sequenced, for each keM/M, the following problem
should be solved:

mint,

G =p, () e LS, peMy UA,
t==0, 1eN,
4> = PV et > = p, (i)eB keM. (P (k, MO))
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Step 1: Identify abottleneck machine m among the machine ke M/M,
and sequence it optimalty. Set My ~ Muu {m}.

Reoptimize the sequence of each critical machine ke M, while
keeping the other sequences fixed; i.e., set M’y = Mp-{k} and
solve P (k, M* O). Then if M, is equal to M, the algorithm
stops; otherwise go to step 1.

Step 2:

Fig. 2: Shifting bottleneck procedure

Also, to reoptimize in Step 2 the sequence of each critical
machine keM,, for each of such machines, a problem of
the form (P (k, M')) 1s solved for some subset M’, c M,.

The problem (P(k,M0)) is equivalent to that of finding
a sequence for machine k that minimizes the maximum
lateness, given that each operation 1 to be performed on
machine k has, besides the processing time P,, a release
time 1, and a due date d. Here, r, = 1.(0, 1) and d, = 1.(0, n)
L.(,n) + p, with L(i, j) the length of a longest path from i to
jinD,and T: =S, peM,). This latter problem in turn can
be viewed as a mimmum makespan problem where each
job has to be processed in order by three machines, of
which the first and the third have infinite capacity, while
the second one (corresponding to machine k in the above
model) processes one job at a time and where the
processing time of jobi is 1; onthe first machine, p; on
the second and ¢ : = L.(O,n) d on the third machine. The
numbers 1, and g, are sometimes referred to as the head
and tail of job 1 (Wenqi and Aihua, 2004, Adams ef al,
1988).

Thus, the one-machine problems solved during the
algorithm are of the following form:

mint,
tn_t1 == P1+q= iEN*:
t>=r, 1€ N*,

(> = pV et > = p, (i)eB,, keMAM, (PR M)
Where, 1, and q; are defined as above and N* is the set of
jobs to be processed on machine k.

The problem (P*(k, M,}), 1s a single machine problem
with head and tail that is denoted the problem 1|r;, ¢f|Cmax
in the literature. Further we present a heuristic for solving
this problem.

A new heuristic for single machine: Tt is shown that the
problem 1fr, g|Cmax is strongly NP-hard. A number of
special cases of this problem are solvable in polynomial
time (Vakhama, 2004). The enumerative methods for
solving 1[r;, q|Cmax are studied by Baker and Su (1974),
McMahon and Florian (1975), Carlier (1982) and
Grabowski et al. (1986). The algonthm proposed by Carlier
was successfully tested even for 10000 jobs (Lawler et al.,
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1982; Grabowski et al., 1986). Shi and Pan (2006) present
three improved branch-and-bound algorithms based on
Carlier algorithm and other existing techniques that
substantially outperform Carlier algorithm m terms of CPU
time and robustness.

Schrage algorithm, a heuristic method suggested by
Schrage (1971), 1s an effective algorithm that is used in
single machine problem. The algorithms of McMahon and
Florian (1975) and Carlier(1982) are based on Schrage
algorithm (Lenstra (1977), Carlier (1982) and Potts (1980)
for generating a good selution of the 1|r;, g|C,, problem).
In both methods Schrage heuristic 1s used at every node
of a search tree to generate a complete solution. Thus, a
good solution of Schrage heuristic can decrease the space
of search in the enumeration approaches such as Carlier
algorithm. Also computational efforts of heuristic
approaches such as Schrage algorithm is lower than the
exact algorithms such as branch and bound (Carlier
algorithm) mn single machine problem. This can lead to
decrease computational efforts in the job shop problems
(Wengi and Aihua, 2004).

In a single machine problem with heads and tails, n
independent jobs should be sequenced on a machine: a
job 11s available for processing by the machine at time r,,
has to spend an amount of time p, on the machine and an
amount of time ¢ in the system after its processing by the
machine. The objective 1s to mimimize the makespan.

Carlier (1982) shows a sequence, m this problem, with
a conjunctive graph G = (X, U). The set X of nodes is
obtained by adding two nodes O and * to the set i of jobs:
X =11J{O,*}, where, O is a job beginning and * a job end.
The set U of arcs includes three sets: U = ULUUUUL. Let
U, ={(0,1)] ieT}; arc(Q,1) is valued by 1, so that job 1 cannot
start before the point in time 1. Let U2 = {(1,*)| 11}; arc
(1,*) 18 valued by g+ p;since job 1 has to spend an amount
of time q+p, i the system after its beginming of
processing by the machine. Let U3 = {(i,j)| job i precedes
job j in the sequence}; arc(i,j) is valued by p; these arcs
set the sequence. The aim s to find a sequence that
minimizes the value of the critical path in the associated
conjunctive graph.

Schrage algorithm (Carlier, 1982): In the Schrage
algorithm the job ready with greatest g; 1s scheduled first.
In this algorithm, U is the set of jobs already scheduled
and U is the set of jobs to be scheduled and t is the time.
The steps of this algorithm are shown in Fig. 3.

In Schrage algorithm, presented by Carlier(1982),
when r;<r; and g>q the algorithm can generate the optimal
solution and when ri<r, and ¢g<q; it may result in weak
solution (Wengi and Aihua, 2004; Carlier, 1982).
According to the Step 2 of the Schrage algorithm, in each
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Step1: = MiLn(r); U=0©0

Step 2: At time t, select a job from U with r; < t, such as job j with
the largest q; (if there is a tie, breaks it with the largest p; and
if there is still a tie, breaks it with random selection), then set
t=tand U=UU{}.

Step 3: St t = max {t; + p:Min(n)}.

=T, stop
Otherwise, return to Step 1.

Fig. 3: Schrage algorithm

stage, only the ready jobs, (r,<t) from set U, are
sequenced. In the following we denote these jobs by the
set R. However, it is possible that there exist a job k (k U)
so that r,>t while the tail of job k (1e., q) 18 very larger
than the tail of job 1 (¥ 1 € R). In this situation it 15 logically
better to take mto account job k in the set R. This problem
may lead to mcrease makespan. Therefore, we need to
expand the scope of the set R to all jobs in U so that the
jobs with large tail that are not ready have chance to be
selected.

Schrage algorithm with DS (Wenqi and Aihua, 2004):
For solving a single machine problem the Schrage
algorithm is easy to be implemented, but the quality of the
solution that it produces usually leaves much room for
mnprovement. Wengi and Athua (2004) mnproved the
Schrage algorithm and presented a more effective
algorithm with a disturbance (DS). They stated that in
the Schrage algorithm when the priority of 1, p, g not
respected strictly, much better solutions are probably
obtained. In the situation that the value of r from a job is
small while the value of q from this job 1s not large
enough, the algorithm might delay this job. Therefore,
they applied a distwbance (DS) on the priority rules
based on Schrage algorithm. The steps of Schrage
algorithm with DS are shown in Fig. 4.

Here, & is disturbance coefficient. The degree of
disturbance that determines the performance of DS 1s
affected by the value of the coefficient 8. So, the suitable
selection of 8 in DS 1s an important 1ssue. The experiments
show that if the value of d is too small or too large, the
performance of DS 1s poor (Wenqi and Athua, 2004). The
former makes the machines idle too frequently to get
enough rewards and the latter makes DS degenerate into
the Schrage algorithm. DS probably obtains the best
solutions when the value of & is between 1.0 and 6.0
(in their experiments, it is seldom over 6.0) and it tends to
obtain the same solution with different values of 8.

The Schrage algorithm with
disturbance presented 1s correct, 1.e., in the situation that

semantic of the

995

Step 1:
Step 2:
Step 3:

t=min {r; i V,} and R =Vk.

If r; = t, then u; = g &x(1; - t); otherwise, u; = g, where i€R.
Choose a job from R, say j and with the greatest u; {If there
are ties, break them by giving preference to the greatest q;. If
there are still ties, break them by giving preference to the
greatest p). Set t;=max {t; r;}, R = R\ {j}.

If R = @, stop; otherwise, set t =max {t + p;; min{r; icR}}
and retum Step 1.

Step 4:

Fig. 4: Schrage algorithm with DS

the value of r of a job is small while the value of q of this
job 1s not large enough, the algorithm might delay this
job. In this algorithm, in each stage, all of the jobs can be
sequenced (i.e. R = ) and the tail of the jobs that are not
ready (their ready time (r,) is larger than t), 1s adjusted by
8% (r-t). The decision criterion for sequencing is v, where,
U= q-0x (1;- t) forr, > tand u, = q,, for r; < t. But there are
three main problems in modeling of DS. First, decision
criterion 1, can not be sufficient alone for sequencing. For
example if we have job 1 withr, =10, p, =4, q, =10 and
job 2 with r, =15, p, =10, q, = 41, by this algorithm; u, =
10, u, =11 (assumed that & to be in extreme i.e., 6), then
job 2 is sequenced earlier than jobl. This result is wrong
and can be lead to increase the makespan. Because when
1,1, +p,, there 1s not any rational reason to delay job 1.
Therefore, we need a more comprehensive decision
criterion to resolve this important 1ssue. Second, in each
stage, all of the unscheduled jobs are checked; this
problem increases the computational efforts m the large
scale problems. Third, the quality of sclution depends on
coefficient § but there is not any semantic for selecting
this coeflicient. Also, if the coefficient & varies, then the
computational effort will be high.

Modified Schrage algorithm: As stated in the previous
section, an important area for improvement in the Schrage
algorithm 1s considering the jobs with large tail even if
they are not ready. It means that we must expand the set
R by adding those jobs to the set. But the main problem
rises which jobs can be added? In other words, in Schrage
algorithm, if r, < rand q,> g, 11s earlier sequenced j that 1s
logically true and proved m literature (Carlier, 1982). But
if r, < ryand q; < ¢y we deal with this challenge that which
of them must earlier be sequenced. This problem is
studied by the following theorem.

Theorem 1: Tn one machine sequencing problem, if there
are two jobs i and j with properties O<r;<r; and g<q, a
necessary condition for sequencing j before 1 1s (g=m+ g
and p, > m) where, r-t =mand p; = 0.
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Fig. 5: Associated conjunctive graph

Proof: We demonstrate the sequence of jobs with a
conjunctive graph G = (X, 1T) similar to Carlier algorithm
(Fig. 5).

Let U be the set of jobs already scheduled, U be the
set of all other jobs and ¢, be the completion time of the
jobs belonging to set U in stage k. job i is a job with
minimum r in the set U. Let t be max (¢, ;). Assume that
the Job j is a job withr,so that ;> t and q > q, We prove
that a necessary condition for sequencing | before 1 1s:
q > m+q, and p, > m, where, r-t =m and p, > = 0. Here,
there exist two options as follows:

Option 1: job i to be scheduled before job j
Let L;' be the length of path that pass through O, 1, 1, *
and L;' be the length of path that pass through 0, 1, j, *
and L, = Max (L', L;"). Thus we have:
L, =Max (tpitg, thptpita) (1

Option 2: job j to be scheduled before job 1
Let L?be the length of path that pass through 0, 1, 1, * and
L’ be the length of path that pass through 0, 1, j, * and
L, = Max (L. L"). Then,

Lo =Max (5+ptq, 1HpHpig) 2
Assume that job j is sequenced earlier than job i thus 1.,
must be lower than I, because the aim is to minimize the

longest path through O to *. Therefore, the formula (3)
should be true.

Max (1+ptg, 5p+ptg)< Max(ttprq. thptpitg) (3)
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This means the formulae (4) or (5) should be true:

Max (ritpitq, Hpripitq)< tpg 4

Max(rptq, rpptg)< tiptptq (5

The formula (4) 1s true if the formulae (6) and (7) both are
true.

LtpHq < Hpg, (6)
(7)

PPt thprtg;s

The formula (5) is true if the formulae (8) and (9) both are
true.

1t < tpphgg (8)
rHptptg < thptptg, 9
Let r-t=m=r=m-+t (10)

By replacing (10) n the formulae (6), (7), (8), (9),
respectively we have:

m Htiphg <tiptg =g <gtp-pm D)
m -+t HpHp g thptg = m+py <0 (12)
m +HHptg; < tptptg = pm (13)

m +Hp+ptg < thptptg = g>gtm (14)

By the assumption: p; = 0 and m > 0, thus, the formula
(12) 1s false. That means the formula (7) is false, then the
formula (4) 1s false all the times. The formulae (10)and (11)
by the assumption are true. That means the formulae (8)
and (9) are true. So the formula (5) 1s also true all the times.
Thus, the formula (3) is true that means L,<I., and the
theorem is proven.

If the job j to be critical i.e. belonging to critical path
then as mentioned above necessary condition for
sequencing  before 118 (g, > m + g and p, > m). But if the
jobs j is not critical then sequencing it before i can be lead
to increase delay (r-t) and makespan. We define
historically a condition for criticality of the job j by
following.

thptptg>h(s) he =t + 2 p,+ Ming, (15)
kelly =

Proposition 1: Instage sandk e U
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Step 1: Let t = M{nr} L, p=p; U=0, [isindex of t = Minri

Step 2: Find r; < = t+p; ieU, If 1; < t, then u, = g, elseif r;>t and

thptpg t+ Z P +I;£%n & , kel then u; = g~ (r-t);
kells *

otherwise u;, = 0.

Choose job with the greatest u, (If there are ties, break therm
by giving preference to the minimum 1, If there are still ties,
break them by giving preference to the greatest g and are still
ties, break them by giving preference to the greatest p;) , Set
t=max{t; r,}, U=TUU{j}.

Set t = max {t +p; I"Eunr 1. IfU =1, stop; otherwise, return

Step 3:

Step 4:

to Step 2.

Fig. 6: Modified Schrage algorithm

h®) =t + > p, +I¥£iﬁl‘1qk

keli

1s a lower bound on the optimal makespan.

Proof: Carlier (1982) proved that for all cl

h(l,) =Minr + 3 p, + Ming,

iel

I

3

is a lower bound on the optimal makespan. Since U < T,
therefore h(s) 1s a lower bound on the optimal makespan.
Now we present a modified Schrage algorithm according
to theorem 1. the steps of algorithm are shown in Fig. 6.

In this algorithm, in each stage, both ready jobs and
the jobs with large tails (based on theorem 1) can be
sequenced. This improves the result of sequencing. Also
in spit of DS algorithm, all of the unscheduled jobs are not
candidate and are limited by the necessary condition. This
can decrease computational effort n each stage especially
in large problems. Furthermore, this algorithm does not
depend on any coefficient such as 8.

We coded the three algorithms: Schrage Algorithm
(SA), Schrage algorithm with disturbance (DS) and
Modified Schrage Algorithm (MSA), with MATLAB and
have tested 1000 problems. For each problem with n jobs,
3n integers have been generated with uniform
distributions between 1 and 1., Poae Qs (Carlier, 1982).

We set po., = 50, I, = Que— 1k and examined 50
values for k and 20 values forn =50, 100 ...., 1000. The
problems are solved by the above three algorithms and
enumerated the best solutions for problems (minimum
makespan). Table 1 shows the comparison of the best
solution between our algorithm and two others and the
CPU time for running 1000 problems for each algorithm.

Of the 1000 problems, MSA gets the best solution in
880 cases. The results show that MSA got better results
than SA and DS. The CPU time in SA is less than the
other algorithms and DS spent too much CPU time.
Since DS algorithm m each stage, computes the measure
u for the remaining jobs unscheduled and checks all
of them, thus in large scale problems it makes more
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Table 1: Results of three algorithms on 1000 random problems

SA DS MSA
No. of the best solution 450 690 880
Average CPU time for 56.9 563 151

running 1000 problem (second)

computing efforts. In the proposed algorithm using the
proven theorem, computing the measure u 1s limited to a
few jobs and lead to decreasing CPU time and the
complexity. M.A.S gets much better solutions than DS
and SA and can be ignored a few mcreasing in CPU time
respect to SA.

Proposed Approach for job shop scheduling problem: The
SB algorithm secuences the bottleneck machine first while
ignoring the remaining unscheduled machines. After the
machine is scheduled, the reoptimization procedure is
triggered. The SB repeats the single machine scheduling
procedure until all machines have been scheduled.
subproblem solution procedure and reoptimization are two
important factor in SB approach. In the previous section,
we presented an efficient heuristic for subproblem
solution that can decrease computational efforts. This
study also presents a new approach for omitting
reoptimization m SB procedure.

In the proposed approach, the ready operations are
sequenced first while the operations on critical machine
should be preferenced. This can omit the reoptimization
efforts. In ow approach similar to SB, the job shop
problem is decomposed to m single machines, but by the
deferent way. In this approach, the ready operations on
the same machine lie n a block and each of them 15 a
single machine problem. In each stage, the operations in
a block should be sequenced by a subproblem solution
procedure, while the other unscheduled operations on the
machine should be considered in the problem. If the
operation on the block has not been prioritized, it would
have delayed.

For the sake of simplicity, we define critical machine
in each stage as follows:

(16)

m* = rﬁs}\tﬂx(minr‘ﬁr qu); j=L2.m,i=12.n

oyl oyl
Subproblem solution procedure is base on modified
Schrage algorithm presented in the pervious section. In
this procedure, the prioritization is base on the head and
tail of the operations (1), however as sated above, we
should prioritize the operations of critical machines.
Criticality can be considered as a fuzzy concept. All of the
machine can be critical by a membershup degree.
Membership degree of a machine can be calculated as
follows:



J. Applied Sci., 8 (6): 992-999, 2008

Step 1: Let t = Minr,
oyl
Step 2: p=p; !is index of Minr,
Find ry < t+p; o5];,
If'r < t, o3V, then ;= gy,
Elseifry < t, oy¢ Vj, then uy = gy sqrt(l-md?),
Elseif p+p;+q;> 2 Py +Miln q; and oye'V, then u, = g (i-t),
e 7l
Elseif prpytop> Z[: Py +1§;§511111 q, and oV, then
u; = (gy-(y-t) *sqrt(1-md);
otherwise 1; = 0.

Step 3: Choose operation with the greatest v (If there are ties, break
them by giving preference to the minimum r;. Tf there are still
ties, break them by giving preference to the greatest g;and are
still ties, break them by giving preference to the greatest p;) ,
If og*e’V; Set sty = max{t; r}, T = IU{oy}, U =TUllog}, o5*
is labeled in set V; otherwise, stop.

Step 4: Set t = max {st; +p; Minr, }. If all operations of set V.,
labeled , stop;
otherwise, return to Step 2.

Fig. 7: Subproblem solution procedure

minr;+ Zpii
md. — oyel  oyell
T
mahi((mm L+ > py)
P oyl el

(17)

;j=12.m,i=12..n

The delay on critical machine can increase makespan but
n no critical machine the operations can be delayed. We
use this concept in our approach. In the proposed
approach, the criticality of machines takes in to account
in subproblem solution procedure (Fig. 7). The symbols
used in this algorithm are as follows:

N =DNo. of jobs

M = No. of machimes

3 =1Jobi

m; = Machine j

o, = Operationrelated to job 1 on machine

U = Set of scheduled operations

1 = Set of unscheduled operations

r; = The release time (head) of operation o;

q; = The delivery time (tail) of operation o,

Py = The processing time (tail ) of operation o
V, = Set of the ready operaticns on machine

I, = Set of unscheduled operations on machine |
S; = Set of the successor operations of the operation o,

The proposed algorithm for the job shop problem
base on shifting bottleneck is shown in Fig. 8.

Calculations of heads and tails are based on all
conjunctive arcs and the fixed disjunctive arcs
(Brucker et al., 1994).

For the sake of simplicity, we can define tail of
operations as follows:
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LetU=@

Calculate ry g

Find critical machine (m*).

Find the ready operations of set U (ry = 0), cluster the ready
operations in same machine and find V;

If'V; = @ sequence the operations of set V; by the subproblem
sohition procedure, Wi £ M.

If U = @, stop; otherwise, return to step 2.

Step 1:
Step 2:
Step 3:
Step 4:

Step 5:

Step 6:

Fig. 8: Proposed approach

Table 2: Comparison of the proposed approach to SB for instance problems
Shifting battleneck  Proposed approach

Optimum

Problem n  m (IBUB) Makespan CPU(S) Makespan CPU(S)
FT6 6 6 55 55 0.6 55 0.6
FT10 10 10 930 1015 4.0 1024 2.8
FT20 20 5 1165 1290 1.4 1346 4.0
ABZ5 10 10 1234 1306 2.3 1324 1.9
ABZ6 10 10 943 962 5.1 978 4.1
ABZ7 20 15 656 730 47.5 742 26.8
ABZ8 20 15 (645 669) 774 50.5 780 28.4
ABZ9 20 15 (661 679) 751 37.7 778 25.7

94 = Z Py (18)

]

This approach generates a feasible solution for job
shop problem. Then, we can use reoptimization phase of
SB approach for improving solutions.

EXPERIMENTAL RESULTS

The algorithm is coded in MATLAB. We used a set
of job shop scheduling problems from benchmark
problems (Fisher and Thompson, 1963; Adams et al.,
1988; Wengqi and Aihua, 2004). The proposed approach 1s
compared by SB procedure. Comparisons are base on two
main factors; solution quality (makespan), CPUJ time as
computations efforts. The results of experiments are
represented in Table 2.

Experimental results show that our method in small
size until 6x6 gives us optimal solution. Also in large
scale, the algorithm gives us good solutions. CPU time in
our method 1s much lower than SB procedure while the
makesapn of the proposed approach is comparable with
SB. In sum, Experiment results show the superiority of our
approach in comparison to SB in large scale problems
especially 1 computational efforts. This approach can be
provided a good seed in the iterative methods as a initial
solution. Presenting hybrid approaches by iterative
heuristics such as tabu search, simulated annealing and
genetic algorithm can be future researches.

CONCLUSION

Subproblem solution procedure and reoptimization
are two important factors in SB approach that can increase
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computational efforts. In large scale problems, we need
effective procedures to decrease the computational
efforts. This study, first, presents a modified Schrage
algorithm for single machme scheduling problems with
heads and tails that is an effective subproblem solution
procedure. Then, it presents a heuristic approach for job
shop scheduling that resolve reoptimization difficulties in
SB. Finally, the proposed algorithm 1s tested and
validated. Hxperiment results show the superiority of our
approach in comparison to SB in large scale problems
especially in computational efforts. This approach can be
a good imtial seed in using search techmques. Presenting
hybrid approaches by iterative heuristics such as tabu
search, simulated annealing and genetic algorithm can be
future researches.
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