Journal of
Applied Sciences

ISSN 1812-5654

science ANSI@??
alert http://ansinet.com

Journal of Applied Sciences 9 (6): 1046-1055, 2009
ISSN 1812-5654
@ 2009 Asian Network for Scientific Information

Components Interaction Markup Language for Mediator Connector

H. Sanatnama, A.AA. Ghani, R. Atan and M.H. Selamat

Faculty of Computer Science and Information Technology,
University Putra Malaysia, 43400, Serdang, Malaysia

Abstract: The concern of interaction or collaboration between components can be found when evolution of
software engineering came a long way from machine-level language to procedural programming and then to
object-oriented programming and now to component-based software development. An interaction is a set of
activities that happens for a specific use case in a system, based on the ability of components (requires and
provides services) to send messages to each other. This study introduces Component Interaction Markup
Language (CIML) as an improvement of the attachment uses by mediator connector we proposed in earlier
study. CIML aims to make the attachment well-formed as a generic framework for component composition based
on interactions between components. CIML supports component composition based on interactions between
components and has language constructs for description of component instantiations, component
initializations and component interactions,

Key words: Composition language, interaction, component composition, mediator connector, deployvment

phase
INTRODUCTION

Composition of software components is a
fundamental 1ssue within the component-based software
development. Component composition is the process of
creating component instances, configuring and assembled
them together to form composite components or
application. Unfortunately components provide little
support for automatic composition of components
(Selamat er al., 2007).

The mediator connector proposed by
Sanatnama et al. (2008) for composing decoupled
software components; need a way to build up a system in
a generic way. Composition of software components via.
mediator connectors requires encapsulation of
interactions between components which should be
considered as a separate issue.

The concern of interaction or collaboration between
components can be found when evolution of software
engineering came a long way from machine-level language
to procedural programming and then to object-ornented
programming and now to component-based software
development. An interaction is a set of activities that
happens for a specific use case in a system, based on the
ability of components (requires and provides services) to
send messages to each other.

An interaction is a sequence of method calls to
components connected to a mediator connector.

Therefore, it requires a language to describe how
components interact with each other. Sanatnama er al.
(2008) does not suggested how to do this. Hence, the
problem we are interested in can be formulated as follows:

* How to design an interaction language, which can be
seamlessly integrated in the mediator connector?

In this study, we propose Component Interaction
Markup Language (CIML). The CIML is a declarative
language where the interactions between components can
be described. A CIML instance (document) contains
different parts, which are instantiation, initialization and
interactions.

CIML 1s influenced by Business Process Execution
Language (Oracle, 2004, 2006), which has emerged as the
clear standard for composing multiple synchronous and
asynchronous services into collaborative and
transactional process flows. BPEL uses Web
Services/WSDL (Rayan, 2007) as component model and
XML as data model (data loose-coupling).

MATERIALS AND METHODS

In recent years, XML (W3C, 1998) has been one of

the most exciing developments in information
technology. At its simplest, XML is a markup language
for describing information regardless of the platform or

Corresponding Author: Hamid Sanatnama, Faculty of Mathematic and Computer Science,

Shahid Bahonar University of Kerman, Kerman, lran

1046

J. Applied Sci., 9 (6): 1046-1053, 2009

Table 1; XML markup tvpes

Markup type Description
Processing instruction Prowides information to application during processing
Comments Blocks of text that provide documentation or noles

Entity references
CDATA sections
DOCTY PE declarations

Start and end tags <> and </>
Empty clement </

application that may uwse it. However, other markup
languages such as HTML and voiceXML, which is
designed for creating audio dialog that feature
synthesized speech, digitized audio and recognition of
spoken, requires specific applications to make them
useful.

XML is little more than a text file and are stored as
files on a hard drive. XML documents consist of
intermingled character data and markup. Markup
differentiates some character data from character data in
other files. The markup texts are embraced in angle braces
to produce self-descriptive elements known as markup
tags. Table 1 show that the XML specification defines
different kinds of markup and serve different purposes.

The promising wide acceptance of XML (Bray et al.,
2004) and the integration into software tools convinced us
o use XML based syntax for CIML. Because of the
nature of XML, CIML consist of XML elements. This also
makes CIML scripts created and used by software tools
rather than by human beings.

The XML is considered to be useful in the field of
software engineering, especially in describing
components interactions. In this research, the X5D has
been adopted to define the CIML structure, mainly
because it has been widely used in the industry.

REQUIREMENTS FOR CIML

The design objective of the Components Interaction
Markop Language (CIML) is to provide a canonical
representation of any interaction diagram suitable for
mapping to existing languages. CIML should provides a
highly language-independent method to describe
components interaction,

CIML factors any component interaction description
into following questions:

* What are the parts comprising the CIML?

* What is the content used in CIML?

* What is the behavior of the CIML (e.g., when some
component send a message to another component)?

* What is the mapping of the parts to CIML controls in
some development environment (e.g., Java
Language)?

References to entities such as character data or XML; used to insert character data that may be considered markup
Character data that do not need to be parsed or treated as markup

Indicate a DTD containing the constraints for an XML document

Define the beginning and ending of elements

Defines an element with no bady or content

The purpose of his section 1s to identify the
operations CIML should contain in order to support
above questions. The following objectives must be

supported be the CIML:

* Loosely coupling: The main objective of mediator
connector is providing loosely coupling. Therefore,
CIML must be able to declare the instantiation of the
components

« Initialization: Sometimes it is necessary to initialize
a component explicitly before using it. But this can
be optional

* Interaction: The aim of CIML is in a well-formed
constructer describe the interactions between
components. It should support to describe the set of
activities that happen for a specific use case in a
system, based on the ability of components (requires
and provides services) to send messages to each
other

Mediator connector initiates and coordinates method
calls to the components and handles their results. Thus,
it encapsulates communication. From another view
mediator connector 1s similar to a hub of communication.
The origination of control from mediator connector leads
to total loosely coupling between components and
mediator connectors,

Figure 1 shows the process of building up a
system by composing component in deployment phase.
The behaviors of the components in a svstem are
described in sequence diagrams, which show the set of
components involved in the interaction. The sequence
diagrams will be mapped to a CIML document according
to its syntax. Mediator connector loads and parses the
CIML file, where all components instances and their
relations, based on the description in the CIML file, will be
created.

Mediator connector will parse the CIML
document and build up the system by creating all
components and the connections (method calls)
described in each interaction. Each interaction can

be run by invoking the run method in mediator
connector giving the name of interaction as in-
pammet{er.

1047

J. Applied Sci., 9 (6): 1046-1053, 2009

Interaction diagram

wediaton

—l.. » 10
X1
=
o4 A
|
-i-- .|
f-——l—:l'—-'] -
s
» -
-[ﬂ--r-——i--u——-l

Fig. 1: The Process of building up a system using CIML and mediator connector

Table I: CIML Syntax

<Ciml= = <Contains> <Initialize=7 <Interaction=
<Contains> ;= <Component=+

<Initialize= ;= <Initcall=+

<Interaction=:= <MName= <Operationcall =+
=Component= ;= <ldentificr> <ClassName:s
<Initeall= ;= <Componentld= <Name> =Inparameters>"

=Operatiocall> := (<Componentld= | (<Referenceld> <ClassName=)) <Name=

<Inparameter="7 <Outparameter="?

<Inparameter: ;= (<ldentifier= | <Referenceld>) <ClassName> <Value=?
=Dutparameter> ;= <ldentificr> <ClassNames=
<ldentifier> := “ldentifier” “=" <Stnng=

<Referenceld= ;= “Referenceld” “=" <5String> <Digit=?
<MName> = “Name” =" <String> <Digit>"
<Componentld> = “Componentld” =" <String> <Digit>?
<ClassName> = “ClassName™ "=" <Siring>

<Value= := "Value™ "=" ¥

V = <Integer> | <Double> | <String=

<String= = (<String>+ text)<Digit>" | {text <Digit=")
<Integer> = <Digit=

<Double> = <Digit= "." <Digit>

<Digit= = <D+

<D =0 | 17 2713714 157 1% | "7 | '8 | '

text ="A'I'B" ' C I DI EI'FI'GIHITIYI'KILTI'MI'NIOIP|IQIR IS T IO WX 1Y
A I -l 0 e - i 1 Ol ¢ T sl A S

CIML specification: The Component Interaction Markup
Language (CIML) is the Extensible Markup Language
(XML) which describes interaction between components.
CIML is influenced by Business Process Executable
Language (BPEL) (Leymann, 2007; Keller, 2007) and the
syntax of some CIML elements is influenced by IMB’s
Bean Markup Language (Weerawarana er al., 2001),
Component Markup Language CoML (Birngruber,
2001).

By CIML we try to provide a practical and cost-
effective means for component composition trough
mediator connector, The CIML specification is the
document that describes the structure of CIML i.e.,
defines what the elements (vocabulary) are and how these
elements are used (grammar) to create CIML. CIML files
must conform to the XML 1.0 specification, as published
on the World Wide Web Consortium (W3C) website.

The promising wide acceptance of XML (W3C) and
the integration into software tools convinced us to use
XML based syntax for CIML. Because of the nature of
XML, CIML consist of XML elements. This also makes
CIML scripts created and used by software tools rather
than by human beings.

EBNF grammar for CIML: The syntax of CIML is
summarized in an EBNF-like form as shown in Table 2. for
above description rules of CIML. All symbols on the left
side of production rules are bold and on the right hand
side we have alternatives, which consist of both symbols
and terminals. The reserve words are enclosed in quotes

()

Component Interaction Markup Language (CIML): Here,
we introduce the XML based language CIML. Right at the

1048

J. Applied Sci., 9 (6): 1046-1035, 2009

Table 3; CIML elements (tazs)
Element name Description

Ciml Indicates the start of a CIML document

Contains Declares a list of existing components
Component Declares a component

Initialize Declares a list of initiating method calls
TranCall Declares an imtalize method call
Interaction Declares an interaction in the system
OperationCall Declares a method call

Inparameter In-parameters to the method
Cutparameter Return value from a method call

beginning, we present a list of CIML elements as
shown in Table 3. The limitation of CIML elements,
keep CIML as simple as possible. CIML provides
elements for:

* Describing components by a unique id and its class

name

* Describing eventual explicit initialization of
components

* Describing the component composition in form of an
interaction

The syntax of some CIML elements is influenced
by IMB's Markup Language (BML)
(Weerawarana er al., 2001), Component Markup Language
(CoML) (Bringruber, 2001) and Business Process
Executable Language (BPEL) (Leymann, 2007; Keller,
2007).

Table 3 describes briefly all elements defined in a
CIML document, in order tw declare all possible
interaction between components in a system. Each of
these elements are described in details mentioned
furthers, XML elements can contain only text or contain
other elements or attribute.

Bean

Component declaration: Components are accessed via
interfaces and have an implementation. The element
Contains describes a list of components whereas the
element Component denotes a component declaration
whose value (i.e., the component) is to be used as the
argument of the enclosing element.

Component element has an Identifier and a Class
Name attribute, respectively, The Identifier has to be
unigque within the current CIML document. Components
will be created based on the ClassName attribute. Table 4
shows the Contains and Component elements, their
attribute and their definitions.

Example 1: This example declares a component list with
three components of different types and two components

Table 4; Element descriptions for components declaration

Element Attributes Definition

Contains - Collection of components in the system

Component ldentifier, Declares component’s identifier and class name
Class Name

[2 Com][b: Coms][e ComC][dt:ComD

[d2: Coml]

Fig. 2: Components (objects) in an interaction diagram

of the same type ComD. This example shows that CIML
supports also multiple (i.e., components of the same type)
instance declaration,

il

< onlainss

<Componenet Identifier="al"” ClassName = “ComA™/ =
< Componenet Identifier ="b" ClassName = “ComB™/ =
< Componenct Identifier ="¢” ClassName = “ComC"/f =
< Componenet Identifier ="d 1" ClassName = “ComD"/ =
< Componenct [dentifier ="d2" ClassName = “ComD"/ =
</Contains=

reveals the interaction (sequence) diagram that
corresponds to the above example. At the top of this
diagram we see the rectangles that represent components
(objects). As in interaction (sequence) diagrams, the
names of the components (objects) are underlined to
distinguish them from classes. Also the object name is
separated from the class name by a colon. Interaction
(sequence) diagrams show the elements that are involved
in the interaction and also represents time proceeding

(Fig. 2).

Initialize declaration: Initialize element is another part of
a CIML document which has no attribute but contains a
list of element InitCall. InitCall indicates if some
components should be initialized explicitly before using
them in an interaction. It has two attributes Componentld
and Name. Table 5 shows the Initialize and InitCall
elements, their attributes and definition.

Example 2: This example declares a list of different
initialize method calls in three different components,

1049

J. Applied Sci., 9(6)

" a:ComA][b:ComB \H eoComill][o Coml]

Initialize () Imit {}

InitComponent ()

Fig. 3: Initializing in an interaction diagram

Table 5; Element descriptions for initial method calls

Element Attributes Definition

Initialize Collection of initialize method call
TraeCall Componentld, Mame Initial method call

<Ciml

<Initializes

<Initcall Componentld =" ComA™ Name="initialize™/ =

< Initcall Componentld =" ComB™ Mame="init"/ =

< Initcall Componentld = ComD” Name="inilComponent™ =

</ Iminalize=

<Ciml=>

Figure 3 shows the interaction (sequence) diagram
that corresponds to the above example, where
components (objects) have a method call to themselves.

Interaction declaration: Interaction element is a part of a
CIML document where describes interactions between
components as a set of activities that happens for a
specific use case in a system. Interactions are based on
the ability of components (requires and provides services)
(o send messages to each other. Interactions have unigque
names which can be distinguished from each other.
Table 6 shows the Interaction and its sub-element,
OperationCall. OperationCall indicates a message send to
a specific component with specific Inparameter and

Outparameter, in order to do a task in a system.

Example 3: This example describes an Interaction called
DisplayMap. The interaction starts when the svstem
receives a telephone call. The telephone number sends to
the ComA by calling its getAddress() method. ComA
returns the address assigned to the telephone number.
The returned address sends to the ComB by calling
getPostCode() method in order to get the posicode
assigned to that address. Finally the postcode sends to
the ComD by calling displaymap() in order to show the
map for the ambulance driver,

P 1046-1033, 2009

[mi M Frame][a:ComA][cComB][d:ComD
1

petAddress

GietPosiCode (address)
PostCode

b4

DisplavMapi postCode)
|

-

Fig. 4: Interaction description part

Table &: Element description for an interaction

Element Attributes Definition
Interaction Name Declares an interaction
OperationCall Componentld, Name, A method call
|Referenceld]
Inparameter ldentifier, ClassName, An eventual input parameter to a
[Referenceld], [Value] method call

Outparameter Identifier,ClassName An eventual output parameter

<Ciml=
<Interaction name="DisplayMap”=

<OperationCall Componentld=" ComA™ Mame="getAddress">
<Outparameter Identifier="address" ClassMName="5tring"/>

</ Outparameterl=

< OperationCall Componentld =" ComB™ Name="getPostCode™/=
<Inparameter Referenceld="address™ ClassName="String"/>
<Chitparameter ldentifier="postecode™ ClassName="5tring"/>

< OrperationCall Componentld =" ComD™” Name="displayMap™/ =
<Inparameter Referenceld="postCode” ClassName="5tring" >

Inleractions

<Ciml=

Figure 4 represent interaction between components
(objects) where a use case scenario shows as ordered
steps. This interaction (sequence) diagram corresponds
to the above example.

CIML implementation: The CIML schema, which is an
XML Schema Definition (X5D), (Fallside and Walmsley,
2004, 15 vsed to implement the CIML specification. A
CIML instance is a CIML document. The CIML schema
will be wused by XML analyzer to carry out the
validation of rules made by CIML. It provides the means
for defining the structure, content and semantics of CIML
documents,

1050

J. Applied Sci., 9 (6): 1046-1035, 2009

The CIML schema diagram: The CIML schema diagram
shown in Figure 5 depicts the different parts of CIML
document.

The CIML XML schema definition: Figure 6 is the XML
Schema Definition (XSD) for CIML. XSD defines the
elements and structure of CIML, including the relation
and cardinality among elements.

Figure 7 is an example of a CIML instance
document for a simple bank system with one ATM, two

BankConsortium and four Bank components. There are
five interaction descriptions in this document:
CheckPassword, getBankName, Withdraw, Deposit and
Balance.

Future work: CIML uses by mediator connector for
component composition at deployment phase. To
investigate capability of CIML for design phase
composition, where composite component can be deposit
to a repository for further composition,

—n: | ; Contains E'—[—I-I-l—)ﬂ— rn:1 :C

B (=)=

Component inleraction
markup language

pessssmassmsmas

—|n il lntcractinn! : |

Eﬂtl.ributes‘

E Component Id &

= Attributes

=TT Trsrwasrrwners,. | ppmamsss mEn L]
—(_]ﬂ-m- Ern :1: Inparameter |;|— -----------
- = + Class Nam-..

| esessssnes

: ‘lr’ulus: h ,

A R e R R E R

E.ﬂdlrihultsl

mu'll:uulus|

< Reference Id

Il-ll-l-l-l-ld-ll-.'

— e o am o mm P | s sszsasassamae

Fig. 5: XML Schema for CIML components composition structure description (Altova, 2007)

1051

J. Applied Sci., 9 (6): 1046-1053, 2009

<xgachema smins s ="hup s, w3 org/ 2001 MLSchema " smilns:na] ="hitpufwww, wischools,com’
argetMamespace="hitp2fwoww w3schools.com” elementFormDe feuli="gualified "=
cxselement name="Ciml">
B T T T TR et
<xsdocumentaton=Component Interaction Markup Language 3 xs:documentition s
=/ %5anmation>
<xsicomplexTypes
G IEBUEnCE
<xsielement name ="Contains">
<ksicomplexTypes
SRSIRSUenCe
=xselement mame="Component” maxCocurs="unbounded "=
<xscomplexType=
<xsatirabute mane="Tdentifer" />
<asatinbute mme="ClassMume ">
ixscomplexType>
=fasielement=
< nsseguences
=ixscomplexType=
</ wselement>
<xs:element name="Iniahze" minDccurs="T">
wxscomplexTypes
CXAIREqUENCEs
=xsielement mame="Tnitcall” minOceurs="0" maxOccurs="unhounded "=
xscomplesType=
XA SEUenCe >
<xzelement mame="Tnparameter” minCecurs=T" maxOecurs="onhoanded ">
=xscomplexTypes
exsiattribute name="Tdentifier" />
<xsattribute name="classMName "/=
<xsatribute nme="Yaloe" >
< as:complexTypes
= waelement=
< K5 sequences
s atinbute mme="Componentid "=
=xsiatimbute name="Mame ">
afuscomplexTypes=
<f wsielement >
<l NEISegUenCes
lascomplexType=
< wselement=
<xselement name ="Intersction” maxOccurs="unbounded ">
xsicomplexTypes
CERISEENCE
<xselement mame="0Operatiocall * maxOccurs="unbounded ">
xscpmplex’ype>
AR SCUenee >
<aselement mone ="Tnparameter” minOccurs="1" maxOecurs="unbounded ">
<xscomplexType=
<xsattribuie name ="Referenceld" /=
xsattribute mame ="Tdemifier” >
sxsatlribute mme="ClassName "/ >
wxsattribule name="Yalue"/>
< nsicomplex Type>
<fsselement>
<xselement name ="Outparameter” minCccurs ="{(17>
wxszeomplex Type s
<xsiattribute noe="Tdentifier" =
xsatlribute mome="ClassName ">
<xucomplexType>
= gaelement>
<! K5sequence>
<xsiatinbute pame ="Componentld />
<xz attribute mame="Referenceld” />
<aaiarbote mame="ClassMame "=
<xsaltrbule mange="Mame"/=>
ixscomplexType=
afxselemeni=
E RN el e
exs:attribute nume="Mame ~/=
=/iscomplexTypes
<fxselement=
= KEISCqUence=
fasicomplexType=
= xselement >
<35 schema =

Fig. 6: The CIML XML schema definition

1052

J. Applied Sci., 9 (6): 1046-1055, 2009

Tuml version="1.0" encoding="uif-8" 7=
<Ciml smins="hitp:fwww,w Ischools.com™ smins: xsi="hitp:www,w dorg/ 20017 XM LSchema-instance”
usizschemal.ocation="http:www.wischools.com C:\Users\FSKTM\DesktophCIMLsVCIML_Schemad.xsd ">
<Contains >
wComponent Identifier="B1" ClassName ="BankSysPackapge. Bank" /=
=Component ldentifier="B2" ClassMame ="BankSysPackage.Bank” /=
<Compoenent Identifier="B3" ClazsMame ="BankSysPackage. Bank" /=
wComponent Identifier="B4" ClassMame ="BankSysPackage. Bank" /=
=Component Identifier="BC 17 ClassMame ="BankSysPackage. BankConsortium " /=
<Component Identifier="BC27 ClazsName = "BankSysPackage. BankConsortiom ™ />
=Component ldentifier="atm " ClassName="BankSyvsPackage. ATM" />
=Containg =
<Imitializes
=Initcall Componentld="B1" Name="initialize ">
<Inparameter Identifier="hankname " ClassMame=TJjava.lang.String " ¥Value="CIMB Bank" />
< Initcalls>
=Initcall Componentld="B2" Name="initialize ">
=Inparameter Identifier= "bankname " ClassMame= Javalang Siring " Valve="May Bank ™ /=
</ Initcall=>
=Initcall Componentld="B3" Name="initialize ">
hnparameter Identifier= "bankname " ClassName= Jjavalang. Siring " Value="HBE Bank” /=
=S mitcall=
<lnitcall Componentld ="B4 " Name ="initialize ">
=Inparameter Identifier= "bankname " ClassMame= Javalang Siring " Valve="Islamic Bank" /=
=S nitcall=
< Initialize=
<Imteraction Name="CheckPassword ">
=Dperationcall Componentld="tel” Name = "getCardNumber ">
<Outparameter [dentifier="cardNum " ClaszName="java.lang.5tring " /=
= Dperationcall=
=Operationcall Componentld="tel” Name = "get Password ">
<Chitparameter Identifier="pass W" ClassMName ="java.lang.String " /=
</ Operationcall=
=0perationcall Componentld="atm" Name="checkPassword ™
<Inparameter Referenceld="cardMum " ClazsMame ="javalang.String ™ /=
<Inparameter Beferenceld="passW" ClassMame = "javadang.Siring " />
=Uhtparameter [dentifier="hool” ClassName="java.lang.Boolean” />
<'Operationcall=
<fInteractions
<Interaction Mame="getBankMName">
<Operationeall Compoenentld="tel" Mame ="getCardMNumber "=
<Chutparameter [dentifier= "cardMom2” ClassMame ="javadang. String * /=
=fOperationcall=
cUperationcall Componentld="atm" Nome="geiBank Conld >
<Inpurameter Referenceld="cardNom2" ClassName = "javalang.String ~ />
<Ouitparameter [dentifier="BC_TIF ClazsName = "java.lang String " /=
< Operationcall=
<Operationcall Referenceld="BC_ID" ClassName = "BankSvsPackage. Bank Consortiom " Mame="get Bankld>
<Inparameier Referenceld="cardNum2" ClaszMName ="javalang.String ~ />
cOutparameter [dentfier="B_1DV ClassMame ="javalang String " /=
</ Dperationcall=
<Operationcall Beferenceld="B_ID" ClassMame = "BankSysPackage. Bank" Mame="getMame™=
<Chutparameter [dentifier="name " ClassMame="javadang.String " /=
</Operationcall=
<fInteraction:
<Interpction Mame="Withdraw "=
={Iperationcall Componentld="tel"” Mame= "get{fard MNumhber "=
sCutparameter [dentifier= "cardMom " ClassMName="javalang.String " />
</Operationcall=
=Operationcall Componentld="tel” Name ="get Amount ">
=Outparameter [dentifier="amount " ClassMame ="javalang. Double " /=
<Operationcall>
=Operationeall Compoenenild="atm" Mame="geiBankConld"-
=Inparameter Referenceld="cardMum " ClassMame ="javalang. String ™ /=
<Outparameter Identifier="BC_1D7 ClassName = "javalang String ' /=
< Dperationcall=
<Dperationcall Beferenceld="BC_ID" ClassMame = "BankSyvsPackage. Bank Consortium " Mame="gelBankld">
<Inparameter Heferenceld="cardMNuom " ClassName ="javalang String ” />
=Outparameter Identifier="B_ID" ClazssMame="java.lang.String" /=
< Operationcal]=
=Operationcall Referenceld="B_1D" ClassMame = "BankSysPackage.Bank " Name="Withdraw"=
<hnparameter Referenceld="cardNum " ClassName ="javalangString " />
<Inparameter Heferenceld= "amount” ClassMame ="javalang. Double” /=

Fig. 7: Continued

1053

J. Applied Sci., 9 (6): 1046-1035, 2009

</ Dperationcall=

</ Imeractions

=Interaction Name="1Deposit” =

Operationeall Componentld="tel” Name ="getCard Number "=
<Outparameter ldentufier= "cardMum " ClassName="javalang.String " />
<fperationcall=

<Operationcall Componentld="tel” Name = "get Amount "=

<Chutparameter Identifier="amount " ClassMame ="javadang.Double " /=
=/Uperationcall=

<Chperationcall Componentld="atm" Name="getBankConld">
<Inparameter Referenceld= "cardNum " ClassName ="java.lang. String ~ /=
<0utparameter Identifier="BC_ID" ClassName = "javalang String " />

< Dperationcall=

=Operationcall Referenceld="BC_ID" ClassMName = BankSysPackage. Bank Consortinm " Name = "getBankld>
=Inparameter Referenceld="cardMum " ClassName =Tjavalang.String ™ />
sOutparameter Identifier="B_II¥ ClassMame ="javaJang.String " />
<fOperationcall=

<Dperationcall Beferenceld="B_ID" ClassMame ="BankSyvsPackage. Bank" Mame ="Deposii ™=
<Inparameter Referenceld="cardMom " ClazsMame ="javalang. String ™ /=
=Inparameter Referenceld="amount” ClassName="java.lang.double” /=
</ Operationcal]=

<fInteractions

<Interaction Mame="HBalance "=

<Dperationcall Componentld="tel" Mame ="getCardNumber ">
<Outparameter ldentifier="cardNum " ClassName="javalang.String " />
<'Operationcall=

Cperationcall Componentld="tel” Name = "get Amount ">

<Outparameter ldentifier="amount * ClassMame =" javalang. Double " />
</Operationcall=

<Dperationcall Componentld="atm" Name="getBank Conld"=
<Inparameter Referenceld= "cardNum " ClassName ="java.lang.String ~ />
<Chitparameter Identifier="BOC_ID™ ClassName = "java.lang String " />

</ Operationcall=
=Operationcall Referenceld="BC_ID" ClassName = "BankSvsPackage. Bank Consortium ™ Name="getBankld -
<Inparameter Referenceld="cardMum " ClazsMame ="javalang.String ™ /=
<Cutparameter [dentifier="B_1DV ClassMame="javalang.String " />
=fOperationcall=

<Operationcall Referenceld="B_IIN" ClazsMame ="BankSyvsPackage. Bank"” Name="getBalance ™
<Inparameter Beferenceld="cardMom " ClassMame ="javalang. Siring ~ /=
</ Dperationcall=

</ Interaction=

</ Ciml >

Fig. 7: A CIML instance document for a small bank system

To develop a Component Composition GUI Tool in we consider that connector should be just a platform for
order to help software developers to compose software connecting, where interactions must be considered as a
components by either point and click or drag and drop. separate issue. CIML is where the interaction of
The development will also help in creation physical components will be described which later will be parsed

weaving lines between software component interfaces; by mediator connector.
carry out data type validation and verification, providing CIML doesnt support concurrency. The
contextual composition analysis for software developers. composition of components using a composition
language should promise correct synchronization
CONCLUSION among components. Supporting concurrency and
composition at design phase (ie., composite
CIML presented in this study i1s as an improvement components are component and they can be stored in
of the attachment used by mediator connector proposed a repository) if considered as future work to this

by Sanatnama et al. (2008). However, CIML is well-formed research.
as a generic framework for describing the components and

the interaction between them. Mediator connector is (o ACKNOWLEDGMENT
encapsulate control to mimimize coupling between
components. We find out the important issue in This research is supported by eScience Fund SF0704,

composing components is the interaction between them Ministry of Science Technology and Innovation,
(i.e., how they invoke each other’s methods). That's why Malaysia.

1054

J. Applied Sci., 9 (6): 1046-1035, 2009

REFERENCES

Altova, 2007, XMLSpy XML editor, data management,
UML and web services tools. http:/fwww.xmlspy.
Com.

Birngruber, D., 2001. CoML: Yet another, but simple
component composition language. http:/fwww.cs.
lastate.edu/=lumpe/WCL200 1/birngruber.pdf,

Bray, T., 1. Paoch, C.M. Sperberg. E. Maler and F. Yergeau,
2004, Extensible Markup Language (XML) 1.0, 3rd
Edn. http:/fwww.w3.org/ TRZ2004/REC-xml-20040204.

Fallside, D.C. and P. Walmsley, 2004, XML schema part (0
Primer, 2nd Edn. http://www.w3.org/TR/xmlschema-0).

H. Sanatnama, A.A A, Ghani, N.K. Yap and M.H. Selamat,
2008. Mediator connector for composition of loosely
coupled software components. J. Applied Sci., Vol. 8.

Keller, C., 2007, BPEL in real world, OASIS webcast,
http:/fwww.oasis-open.org/committees/download.
php/23069/The%2520Business%2520Value% 25200
f%2520WS-BPEL%2520for%2520Business
Go2320Analysts%2520and % 2520Managers % 2520-
Ge2520Part%e25202%2520%9%2528Chris%2520Kellere
2529 pdf.

Leymann, F., 2007, OASIS BPEL webinar. http:/fwww.

pasis-open.orglevents/webinars/.,

Oracle, Corp, 2004. Oracle BPEL process manager.
http:/fotn.oracle.com/bpel.

Oracle, Corp. 2006, Quick start tutorial-oracle BPEL
process manager 10.1.2.0.2. http:/fotn.oracle.com/
bpel.

Rayan, F., 2007. W5-BPEL 2.0 Technical overview for
developers and architects part 1. www.pasis-
Open.org.

Selamat, MLH., H. Sanatmama, A A A, Gham and R. Atan,
2007, Software component models from a technical
perspective. Int. J. Comput. Sci. Network Security,
T 135-147.

Weerawarana, 5., F. Curbera, M.I. Duftler, D.A. Epstein
and J. Kesselman, 2001. Bean markup language: A
composition language for JavaBeans components,
Proceedings of the 6th USENIX Conference on
Object-Oriented Technology System (COOTS 2001),
January 2001, USENIX, San Antonio, Texas, USA.,
pp: 173-187.

World Wide Web Consortium, 1995, Extensible Markup
Language (XML) 1.0 W3C recommendation.
http:/fwww.ist-world.org/ResultPublicationDetails.
aspx?ResultPublicationld=3ee695c¢99a68434 1 ad46b
14a04825¢9c¢.

1055

	JAS.pdf
	Page 1

