——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com




Tournal of Applied Sciences 9 (1): 113-120, 2009
ISSN 1812-5654
© 2009 Asian Network for Scientific Information

A Non-Parametric Statistical Approach for Analyzing Risk Factor
Data in Risk Management Process

'S.M.H. Mojtahedi, 'S.M. Mousavi and *A. Aminian
"Department of Industrial Engineering, Graduate School,

Islamic Azad University, South Tehran Branch, Member of Young Researchers Club,
No. 209, North Iranshahr Street, P.O. Box 11365/4435, Tehran, Iran
*Department of Industrial Engineering, Islamic Azad University, Gachsaran Branch,
P.O. Box 1694913445, Gachsaran, Iran

Abstract: The aim of this study 1s to propose one practical approach to use non-parametric bootstrap techmque
in risk management processes especially for analyzing risk factor data, because of the fact that in most decision
making cases data sizes and expert's comments are too small for analyzing risk factor data or often there are no
parametric distributions on which significance can be estimated; therefore, standard statistical techniques do
not always provide answers to complex risks questions. The non-parametric bootstrap 1s a powerful technique
for assessing the accuracy of a parameter estimator in situations where conventional techniques are not valid
and also non-parametric bootstrap technique is extremely valuable in situations where data sizes are too small.
Bootstrap techmque for decreasing the SD of risk factor data 1s described as well. Confidence intervals for risk
factors are also obtained by means of bootstrap resampling technique. To make it more understandable, an
application example is also provided. Tt can be concluded from the example that bootstrap will produce more
accurate results in comparison with conventional techmques.
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INTRODUCTION

Risk 1s a concept that denotes a potential negative
impact to some characteristic of value that may arise from
a future event, or we can say that risks are events or
conditions that may occur and whose occurrence, if it
does take place, has a harmful or negative effect.
Exposure to the consequences of uncertainty constitutes
a risk. In everyday wusage, risk 15 often used
synonymously with the probability of a known loss. Risk
communication and risk perception are essential factors
foe all human decision making (Cooper ef al., 2005).

A systematic process of risk management is divided
mto risk identification, risk analysis and risk response
(L1 and Liao, 2007; Duine et al., 2008). Risk identification
requires recognizing and documenting the associated risk.
Risk analysis exammes each identified risk issue, refines
the description of the risk and assesses the associated
impact. Finally, risk response identifies, evaluates, selects
and 1implements strategies in order to reduce the likelihood
of occurrence or mmpact of risk events.

Risk analysis has several objectives (Cooper et al.,
2005):;

Tt gives an overview of the general level and pattern
of risk facing the project

It focuses management attention on the high-risk
items in the list

It helps to  decide where action i3 needed
imnmediately and where action plans should be
developed for future activities; and it facilitates the
allocation of resources to support management's
action decisions

Depending on the available data, risk analysis can be
performed qualitatively or quantitatively or semi
quantitatively (Chapman and Ward, 2004; Groen et al.,
2006). Chun and Ahn (1992) and Smith (1999) are trying
to propose r1isk analysis techmiques m various
environments. Risks are prioritized according to their
potential implications for meeting the stakeholders'
objectives. The typical approach to prioritizing risks is to
use a look-up table or a probability and impact matrix. The
better results emerge m the cost and time planming fields,
in which the causal distribution of random events is
analyzed to improve predictions. Although numerous
techmiques are at present available to practitioners for risk
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assessment (Dikmen et al., 2008) sophisticated simulation
techniques or statistical techniques can be with difficulty
adapted to technical risk multidimensionality.

Risk management has been developed mostly on the
basis of cost and time risk, while technical risk analysis
has not yet aroused wide interest on non-quality risk. Risk
management is becoming an important management
method in the planming of a reliable, suitable, adequate
and subsequently more efficient real system, as it plays a
key role in the quality management field toward a suitable,
adequate and subsequently more efficient quality system
for building in conformity to specifications (Kerzner,
2006). Quality planning, environmental control and safety
planning require holistic approaches in process
representation and a basic qualitative risk assessment.
The Failure Mode and Effects Analysis (FMEA)
(Hu et al., 2008), plays an effective role for a qualitative
failure process analysis and provides a systematic,
indexed order of technical risks.

Resampling techmques have been conventionally
used as a means of tackling problems which are too
complicated to be solved analytically. Over the past
30 years, the theoretical foundations for this technique
have been expanded and substantiated (Efron and
Tibshirani, 1993). These techniques are particularly
suitable for hypothesis testing and for determimng the
accuracy of non-parametric or complex statistics for which
closed-form formulae, if they exist, depend on extensive
assumptions.

On the other hand, nsk data analysis often
encounters situations in which:

Tt cannot be answered in a parametric framework for
which closed-form formulae for accuracy exist

It may need to be examined by standard, existing
tools, but the results exhibit a bias that influences
inference

It can only be assessed by specially tailored
algorithms or procedures that, in turn, require
objective validation. As the occurrence and impact of
risks are random; therefore, statistical approaches are
required for analyzing risks effectively

For these reasons, as well as due to the availability of
fast computers, in this paper bootstrap resampling
approach 1s proposed to use for analyzing risks. This
approach is flexible, easy to implement, applicable in non-
parametric settings and requires a mimmal set of
assumptions (Tak, 2004). In this study we hope to
contribute to this area by providing a comprehensive
framework for the application of bootstrap technique to
data obtained from experts' judgments. Reduction of SD
for risks is shown in this study significantly by using
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non-parametric bootstrap technique. Moreover, the non-
parametric bootstrap has been applied to estimate
confidence mtervals for the Risk Factors (RFs) in risk
management process.

The normal (Gaussian) distribution is characterized
by two parameters; the mean and SD. Statistical
techniques that assume the Gaussian distribution of data
are called parametric. Nonparametric or distribution-free
statistical techniques are used to analyze data that do not
assume a particular family of probability distributions. Tt
1s 1n this latter category of data that bootstrap techniques
are valuable (Efron and Tibshirani, 1993; Henderson,
2003).

The bootstrap resampling technique developed by
Efron (1979) has been used widely 1n statistical problems.
It can be used where standard techniques cannot be
applied, for instance in situations in which few data are
available, so that approximate large sample techniques
are not applicable. The bootstrap has subsequently been
used to solve many other problems that would be too
complicated for traditional  statistical analysis
(Ait-Sahalia and Duarte, 2003; Stark and Abeles, 2005).
In simple words, the bootstrap does with the computer
what the experimenter would do m practice, 1if it was
possible, he or she would repeat the experiment
(Modarres et al., 2006, Walters and Campbell, 2005). The
main advantage of using the bootstrap resampling
technmique 1s that good estimates can be obtamed,
regardless of the complexity of the data processing. In
this study, we show that the bootstrap resampling
technique 1s well suited for estimating and decreasing SD
for risk data.

PROPOSED APPROACH

Risk data sizes are always too small and also there are
no parametric distributions on which significance can be
estimated for mnisks data; therefore, non-parametric
bootstrap technique 1s extremely valuable m situations
where data sizes are too small. Moreover, the bootstrap is
a powerful tool for assessing the accuracy of a parameter
estimator in situations where conventional technicues are
not valid (Armitage et al., 2002; Heiermann e al., 2005,
William and Toseph, 2005).

Having considered all above mentioned reasons, here
one practical approach 1s proposed to use in risk
management process in three steps. In first step, principle
of non-parametric bootstrap 18 described in order to
resample risks data from original observed risks data. In
second step, the bootstrap principle for estimating the SD
of RFs 13 demonstrated n order to compare bootstrap
resampled risk data with original observed risks data and
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finally in third step, the bootstrap principle for calculating
a confidence interval for the mean of RFs is presented for
better decision making in risk management process.

The non-parametric bootstrap principle (Step 1): Based
on the first step of proposed approach, the bootstrap
technique 1s a tool for uncertamty analysis based on
resampling of experimentally observed data. Application
of the bootstrap is justified by the so-called plug-in
principle, which means to take statistical properties of
experimental results (= sample) as representative for the
parent population. The mam advantage of the bootstrap
1s that it is completely automatic. It is described best by
setting two Worlds, a Real World where the data is
obtained and a Bootstrap World where statistical
mnference 1s performed, as shown in Fig. 1.

The non-parametric bootstrap principle is as follows:

*  Conduct the experiment to obtain the random sample
®x={X.X;... X,} and calculate the estimate & from
sample x

+  Construct the empirical distribution, ¥, which puts
equal mass, 1/n, at each observation, X, = x,, X, = x,,

G, T X,

e From the selected ¥, draw a sample,
x ={xX].X}..., X, ], called the bootstrap resample

+  Approximate the distribution of & by the distribution

of & derived from x*.

The bootstrap principle for estimating the SD of RF
(Step 2): Based on the second step of proposed
approach, the bootstrap principle for estimating the SD of
RFs is as follows:

¢ Experiment. Conduct the experiment and collect the
random data mto the sample x = {X,, X,,....%_}

Bootsirap sample
Estimated
prohabilitymo%cl - Xt = )

Unknown Observe data ‘
bability »— N
pnl:’[ﬂdeltg X*={x, %, X} fi= F(x‘) -
Bootstrap replication
Bootstrap world
6=Fx)
Statistic of interest

Fig. 1: Schematic diagram of the bootstrap techmique
according to Efron and Tibshirani (1993)

¢+  Resampling. Draw a sample of size n, with
replacement, from x

»  Calculation of the bootstrap estimate. Evaluate the
bootstrap estimate 8+ from x* calculated in the
same manner as © but with the resample x*
replacing x

»  Repetition. Repeat steps 1 and 2 many times to obtain
the total B bootstrap estimates 61 62 65 Typical

value for B are between 25 to 200
+ 8D estimation of 8. Estimate the SD, & of 8, by the
sample SD of the B bootstrap estimates:

sl R LAY
c=\/ﬂ;[ebB g{ebJ (1)

The bootstrap principle for calculating a confidence
interval for the mean of RF (step 3): In accordance with
third step of proposed approach, the bootstrap principle
for calculating a confidence mterval for the mean of RFs
is as follows:

Conduct the expermment. Suppose

, X} with /, the mean

»  Experiment.
present sample1s x = {X,, X, ...
of all values inx

s Resampling. The bootstrap principle

»  Calculation of the bootstrap estimate. Calculate the
mean of all values in x*

s Repetition. Repeat steps 2 and 3 a large number of
times to obtain a total of n bootstrap estimates

AA
®

ITHRTISTYS
»  Approximation of the distribution of &. Sort the
bootstrap estimates in to increasing order to obtain

fo.8 o o f, where # s the kth smallest of
Py =Hegy == ey Moy

P -

My Mg, My

* Confidence mterval. The desired (1-¢) 100%

bootstrap confidence interval is % ., where
(oo Mgy )

q, = [Ne/2] and q, =N-g,+1

Finally, for better understanding, Fig. 2 shows the
proposed approach. As it is evident, the approach for
risk  analysis  consists of two main steps; risk
observaton data or original samples and non-
parametric bootstrap. Tt is  highly appropriated to
mention that this approach is iterative, this means that
we have to resample original samples with different B
until SD for risks will be decreased, typical value for B
are between 25 to 200. For instance B can be selected
from B = {m, = 25, m, = 35, ..., m;, = 200} or any other
similar set.
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Start
Risk data
gathering
&
EF
Probability index (P) g4
impact index (1) _% E.
=38
| 38
Calculating mean risk]
fctor (RF_) '
Non-parametric 4 1
bootstrap method Step 1
B=m) | ¥
! 3
Calculating SD for
i=itl each rigk Swpf .
£
2
:
g
3
Step 3
¥ ¥

Fig. 2. Proposed non-parametric statistical approach for
risk evaluation (Iterative Process)

APPLICATION EXAMPLE

Risk management process can be applied in various
fields such as financial, msurance, project, operational,
business, market, Health, safety, environment and so
forth. Here, proposed approach based on non-parametric
bootstrap is applied in  project field A project, as
defined m the field of project management, consists of a
temporary endeavor undertaken to create a umque
product, service or result (Cooper et al, 2005). Project
management tries to gain control over project's variables
such as risk; therefore, risk analysis 15 essential for all
projects.

Apply the proposed approach in project risk analysis:
The risk management process aims to analyze risks in
order to enable them to be understood clearly and

Table 1: Risk observed data
Sample 1  Sarmple 2

Rample 3 Sample 4 Sample 5

Risk P I P I P I P I P I

08 07 0% 08 07 08 08 08 09 07
04 02 03 03 02 03 04 03 03 04
03 06 05 04 05 06 06 05 04 06
07 05 08 06 06 08 07 06 08 07
09 07 08 07 08 09 09 07 07 03

LV R S

managed effectively (Han et al, 2008). There are many
commonly used techniques for risk analysis (Cho et al.,
2002; Majdara and Nematollahi, 2008, Duyne et af., 2008),
these techmques generate list of risks that often do not
directly assist the manager in knowing where to focus
risk management attention. Quantitative assessment can
help to prioritize identified risks by estimating their
probability and impacts, exposing the most signmificant
rigsks. Tn this section, an application example which can
analyze project risks in non-parametric environment is
introduced.

Here, we show how the proposed approach can be
used in risk analysis according to lack of risk sample data
and periodic features of the projects. Hence, the
comparison of the mean and the SD between the original
sample distribution and the bootstrap resampled
distribution can produce a better result.

In risk analysis two indexes, i.e., probability and
impact, are considered. The probability of a misk 13 a
number between 0-1 but the impact of a risk 15 qualitative.
Though, it must be changed to quantitative number, just
like probability, a number between 0-1.

The RF; for ithrisk in jth observation is calculated as
the follow (Wang and Elhag, 2006, 2007):

RFiJ = P1J XIU (2)

Five different risks have been assumed for which we
contemplate five probabilities and five impacts each that
form our sample. It means that according to (2) we have P,
which is the probability of the ith risk m jth observation
and I; which is the impact of the ith risk in jth observation.
The assumed data is presented in Table 1.

A sampling distribution is based on many random
samples from the population. In place of many samples,
from the population, create many resamples by repeatedly
sampling with replacement from this one random sample.
Each resample is the same size as the original random
sample. Sampling with replacement means that after we
randomly draw an observation from the original sample,
we put it back before drawing the next observation. Think
of drawing a number from a hat, then putting it back
before drawing again As a result, any number can be
drawn more than once, or not at all. If we sampled without
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replacement, we would get the same set of numbers we
started with, though in a different order. In practice, we
draw hundreds or thousands of resamples, not just five.

The sampling distribution of a statistic collects the
values of the statistic from many samples. The bootstrap
distribution of a statistic collects its values from many
resamples. The bootstrap distribution gives mformation
about the sampling distribution.

The true value of the population characteristic is
denoted by RF. A set of n values are randomly sampled
from the population. The sample estimate RF is based on
the 5 values (P, P,, ..., Ps) and (I, I, ..., ;). Sampling 5
values with replacement from the set (P, P,, ..., P;) and
(1, I, ..., L) provides a bootstrap sample (B .P;....P;) and
(I.5;....1;) . Observe that not all values may appear in the
bootstrap sample. The bootstrap sample estimate RE* 1s
based on the 5 bootstrap values (P P;,..P;) and
(1.5....17) . The sampling of (P,, P,, .., Py and (I, T, ..., L)
with replacement 1s repeated many times (say B tumnes),
each time producing a bootstrap estimate RF*.

Call the means of these resamples Ry in order to
distinguish them from the mean RF of the original sample.
Find the mean and SD of the gF"’s in the usual way. To
make clear that these are the mean and SD of the means of
the B resamples rather than the mean RF and SD of the
original sample, we use a distinct notation:

mean, ., = %zﬁk (3)

1 oo :
SEus =y 2(FF - mean,., | )

The Bias can also be calculated for all the resamples
population which is the difference between the mean of
the resample mean and the original sample. This
delineates that the resampled mean is not far from the
original sample and 1t will not deviate from the original
sample. The data for this resamples are available in
Table 3-5, respectively for resample size 50, 100 and, 200.

Due to the fact that a sample consists of few
observed samples, which 1s the nature of the projects, we
use bootstrap resampling technique to ameliorate the
accuracy of the calculation of the mean, SD and
confidence interval for the RF of the risks which may
oceur in & project.

RESULTS AND DISCUSSION

To do the resampling replications, we used
resampling Stat Add-in of Excel. We compare the original
sample and the bootstrap resample of 50, 100 and 200

Table 2: Statistical data of the original sample

Risk P Toeen RF Psp I RF:

1 0.820 0.760 0.622 0.084 0.055 0.066
2 0.320 0.300 0.094 0.084 0.071 0.026
3 0.460 0.540 0.244 0.114 0.089 0.055
4 0.720 0.640 0.458 0.084 0.114 0.078
3 0.820 0.660 0.550 0.084 0.219 0.198

Table 3: Statistical data of the 50 resample

Risk Prw | . RFpw  RF,  Pogp Iip RF;p

0.821 0760 0624 0002 0033 0023 0031
0320 0300 009 0002 0032 0028 0013
0461 0538 0248 0004 0047 0035 0030
0720 0638 0460 0002 0033 0047 0041

h o oy =

0.820 0.658 0.539 -0.011 0.034 0.088 0.077
Table 4: Statistical data of the 100 resample
Risk Prean Lean RFpew  RFmy  Pop Lp RFsp

0.820 0761 0.624 0002 0034 0022 0.031
0.321 0300 0097 0003 0035 0027 0.014
0462 0539 0249 0005 0047 0036  0.031
0720  0.640 0461 0003 0034 0046  0.040
0.820 0.663 0544 -0.006 0033 0.088 0.074

o o =

Table 5: Statistical data of the 200 resample
Risk Pion Liveen RFppen  RFp: Psp Lp RFsp

1 0.820 0.758 0622  0.000 0.032 0.022 0.030
2 0.320 0300 0.09%  0.002 0.034 0.029 0.014
3 0460 0539 0248 0.004 0.045 0.035 0.029
4 0.719 0642 046l 0.003 0.033 0.0d6 0.040
5 0.821 0.665 0546 -0.004 0.033 0.089 0.077
Table 6: Confidence intervals for the three resamples

Resamples

50 100 200
Risk qQ Q@ q Q q Q@
1 0.562 0.686 0.562 0.686 0.562 0.686
2 0.072 0.122 0.072 0.122 0.070 0.122
3 0.190 0.312 0.190 0.312 0.187 0.302
4 0.384 0.544 0.383 0.533 0.383 0.546
5 0.386 0.672 0.388 0.671 0.386 0.686

population of the data provided by the Excel Add-in to
see what differences it makes. In Table 2, the statistical
data of the original sample is presented.

After 50, 100 and 200 resampling replications, we
obtamn the mean for P, I and RF and then the SD for them.
Moreover, we calculate RFy;,, to show the mean provided
by the resampling is not far from the original sample
mean. The data are reported in Table 3, 4 and 5 as
follows.

The confidence interval of the resamples with 50, 100
and 200 replications are calculated with « = 5%. The q,
and q, are presented for each of the risks i Table 6.

We analyze risks using proposed approach bases on
non-parametric bootstrap technique in project. The
inference of results is applicably feasible, appealing and
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0.250 7 —— Risk 1
—a— Risk2
—— Risk 3
0200 1 —w— Risk 4
—m— Rigk §
0.150 1
g
0.100 1
0.050 - &_\"
L s —
0.000 —
Original 500 160 200
sample Resample Resample Resample

QOriginal sample and B-Resamples

Fig. 3: SD Comparison between Original Sample and
B-Resample (B = 50, 100 and 200) for Project RFs

interesting in risk management. We calculate SD for RFs
of each risk for original sample and B-resample (B = 50,
100, 200), as shown in Fig. 3. As 1t is clear the SDs are
reduced remarkably and it shows the efficiency of non-
parametric bootstrap technique in risk analysis. The
results show that the proposed approach is reasconable for
estimating the SD.

SD Reduction Rate: Comparison between the SD of the
original sample and the three resampled SD with 50, 100
and 200 replications show that SD for each risk has been
reduced remarkably through non-parametric bootstrap
technique, for instance the SD of risk 1 of the original
sample 15 0.066 where the SD of the same risk with 200
resample 1s 0.030, can depict that the bootstrap techmque
is making a better result in accuracy of the RF for each
risk. And then, SD reduction rate 1s calculated as follows:

sD,._—SD
SD,, , (%) = % ()

Org

where, 5Dz, (%) denotes the rate of SD reduction through
nen-parametric bootstrap technique, SDy,, represents SD
for origial risk factor data sample and SDy mdicates SD
for B size bootstrap. Rate of SD reduction is presented in
Table 7 for each risk.

For instance, the comparison between original risk
factor data sample and B-resample (B = 50) as SD
reduction point of view is shown in Fig. 4.

Moreover, the span of the confidence interval of the
risks 18 calculated, although the confidence mnterval
between the resamples with 50, 100 and, 200 replications
are not different by far. For the risks with smaller SD, the
confidence interval is smaller too. So the results are more
precise for the resampled data.

Table 7: Rate of 8D reduction for each risk

8D Reduction (%)

Risk 50 100 200
1 53.03 53.03 54.55
2 50,00 46.15 46.15
3 4545 43.64 47.27
4 47.44 4872 4872
5 6111 62.63 6111
02090 8D for original sampler
0.13-0 8D for B =50
0.16
1.14
0.12-
Bonl & ¢
) &
0.06 Q_@ <P . &
004 SN 2
0.02-
0.00 . . i
1 2 3
Risk No.

Fig. 4. SD Comparison between Original Sample and
B-Resample (B = 50) for Project RFs

We have shown that resampling-based procedures
can be easily applied to lots of different types of problems
yielding meaningful results, results that often cannot be
obtained using conventional approaches. Routines for
implementing the procedures described mn this paper were
calculated in Stat Add-in of Excel.

Tt is firmly recommended to take advantage of this
proposed approach in large projects; because of the fact
that mega projects have following characteristics:

¢ They are unique

»  They are contemporary

*  They have elaborative progress

» Investment and financing are main issues

¢ They are being managed in risky environment

s Projects' data and samples are too small

»  Distribution of projects’ data and samples are not
always defmite

Having considered all different aspects involved in
projects’  characteristics, non-parametric  statistical
approach particularly bootstrap 1s very useful for risk
analysis in each project, because it provides accurate
calculation.

CONCLUSION AND FURTHER RESEARCH
Non-parametric statistical approach was presented to

use m risk management process, proposed approach had
two specific sections; first risk observation data or
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original risk data was evaluated, then in second step non-
parametric bootstrap was applied for original risk data. On
the other hand, section two had three mam steps
mcluding; non-parametric  bootstrap technique, SD
calculation for each risk and calculation of confidence
interval for each risk. We found that bootstrap has greater
accuracy for estimating SD of RFs and greater accuracy in
terms of level of significance than analyzing original risks
data. SDs for RFs were remarkably reduced when non-
parametric bootstrap was applied. In application example
section, SD reduction rate was calculated and acceptable
results were conducted, for mstance the reduction rate for
risk 5 in B = 50 resampling process was about 60%.
Moreover, RF,, was calculated to show the mean
provided by the resampling 1s not far from the original
sample mean.

The bootstrap is extremely an attractive tool because
it requires very little assumptions in the way of
modeling, assumptions, or analysis and it can be applied
In an automatic way. Further, bootstrap techmique is
extremely valuable in situations where data sizes are too
small, which is often the real case in risk analysis
applications.

In the future work, we may work on the topic that
considers the non-parametric regression model for project
RFs and we may compare different non-parametric
resampling techmiques for choosing the best way for
analyzing R¥s.
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