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Abstract: In this study, a real-time fast parallelized processing technique for C-point locations 1s presented.
Singularity detector adopting a multiscale wavelet transform is used for impedance cardiography signal
processing. Both theoretical analysis and experimental results show the method reliability and sensitivity.,
Moreover, the algorithm noise immunity has been tested adding Gaussian noise with a variable variance to the
real ICG signal. Test results with minimum interferences from noise and artefacts have been obtained.
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INTRODUCTION

Patients with chronic heart failures have periodic
episodes of clinical decompensation that do not impair the
quality of life only but also consume substantial health
care resources such as hospitalization costs. Heart failure
management programs have been developed to reduce
frequency and severity of these clinical events, but their
effectiveness may be limited by physician difficulty in
identifying patients at imminent risk. Reliable prediction of
these events may avoid the clinicians to interveng
aggressively and may minimize potentially the need of
hospitalization. It has been hypothesized that the check
of hemodynamic variable values might identify critical
patients (Packer et al., 2006).

Frequent evaluation and use of these parameters is
limited because of the invasiveness of the most accurate
investigation technigues. Today, the introduction of
impedance cardiography (ICG) has overcome this
limitation. It has been widely adopted because it is
noninvasive, easy to use and suitable for long-term and
continuous monitoring  of  hemodynamic  function
(Jensen er al., 1995).

ICG principle is based on measures of the thorax
resistance variations caused both by air flow through
lungs and blood flow from left ventricle to aorta. The
value of these variations makes the recreation of cardiac
cycle process possible. Moreover, unexpected increasing
or decreasing of impedance can be related to pathological
causes such as heart decompensation, heart and valve
failures, hypertension and other chronic  diseases
(Treister ef al., 2005).

Wang et al. (1995) have been developed both to
study physiological mechanisms for understanding origin
and meaning of ICG signals and to improve effectiveness
and applicability of 1CG diagnostic test adopting
advanced signal processing technigues.

In particular, many efforts have been done to
implement automatic detection of reference points in
biological signals. However, existing peak detection
algorithms are difficult to automate for generic use
because either they rely on a number of parameters that
need to be customized for a particular application or they
use reference informations that are highly specialized for
a particular application,

Most of the proposed methods make use of filtering
technique (band pass filtering and temporal filtering)
(Leski and Tkacz, 1992; Pan and Tompkins, 1984), or
adaptive thresholding technique (Sun  er al. 2005;
Suppappola and Sun, 1994). All the previous technigues
exhibit limitations when real signal are adopted
(Sun et al., 2005). In fact, the first drawback of filtering-
based approach is that frequency variations in the signal
under test (due to different causes such as, for instance,
cardiac frequency changes) may adversely affect the
method performance. For instance, the frequency band of
some biological signal, such as ECG, differs for different
subject and can change for the same subject due to
particular events. The second problem in the filter based
algorithms is the frequency band overlapping of noise
and some biological signals. Therefore, the choice of a
suitable bandwidth is a trade off between noise reduction
and loss of high frequency details while the duration of
the shiding window 1s a trade off between false and missed
detections.
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Whereas, the main problem of thresholding
techniques are their sensitivity to baseline variations and
signal intensity, This high noise sensitivity can be a
problem for some types of signals having low signal to
noise (S/N) ratio.

An extensive overview of the various algorithm for
signal peak detention can be found in (Kohler et al., 2002)
which includes approaches based on neural networks,
adaptative  filters, Hidden Markov models, Hilbert
transform, too.

In this study,
technigque suited for the implementation in design tools,
is presented. The new technique implements a fast
parallelized algorithm based on singularity detector
adopting a multiscale wavelet transform. The obtained
simulation results show the method independence from
noise and artefacts.

an improved signal processing

ICG TECHNIQUE

Impedance Cardiography is the study of the cardiac
function by means of thorax electrical impedance
measurements. High frequency (20-100 kHz), low intensity
current (1-5 mA rms) is injected through the thorax by
some electrodes and the impedance change is sensed by
measuring a voltage across other electrodes. No risk of
physiological effects is present because various tissues
of human body are not excitable at this frequency and at
this low current level (Patterson, 1989). The impedance
variation can be used for diagnostic informations and for
Stroke Volume (SV) estimation by using blood flow
appropriate model. The term SV indicates the amount of
blood pumped by the heart left wventricle in one
contraction.

Figure 1 shows a typical impedance waveform
obtained from electrodes in which the characteristic
points are indicated.

Steady-state basal impedance comprises the major
component of total thoracic impedance and two
oscillating components: the respiratory and the cardiac
component. Since air 1s a poor electrical conductor, the
impedance () increases during inspiration and decreases
during expiration, resulting in an oscillation of Z equal to
the respiratory rate,

Pulsating blood flow through the thoracic aorta
causes shifts in the thoracic impedance as a function of
changes in blood volume. In fact, since blood is the most
conductive tissue between the electrodes, the rise of
blood volume causes the reduction of Z value. Moreover,
as blood flow increases, 7 decreases since the blood
speed causes alignment of erythrocytes to produce a
more conductive path. This oscillating component of total
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Fig. I: Typical impedance waveforms from the thorax
of a human subject, where, A: Atrnal activity,
B: Synchronous wave with first heart sound,
C: Largest decrease in impedance during systole,
X: Aortic valve closure, Y: Pulmunaary valve
closure and O: Largest decrease in impedance
during diastolw close in time to mitral valve
opening

thoracic impedance 15 displayed as pulsating variation in
impedance that can be expressed adopting the derivative
(dZ/dt). Measurements of thoracic impedance changes
(dZ/dt waveform) during the cardiac cycle are used 1o
calculate SV. There are several ways to calculate SV
(Bernstein, 1986; Kubicek er al., 1974; Sramek, 1982)
cenerally all the equations take into account position
and value of the C-point related to the B-point and the
X-point,

In this study, a fast parallelized real time method for
the exact localization of C points is presented.

THE WAVELET TRANSFORM

Biomedical signals are generally non stationary with
significant events characterized by both time location and
frequency content. Therefore, the frequency analysis of
such signals through Fourier technique is unsatisfactory,
because it is  efficient in  providing frequency
discrimination but poor in time localization. Vice versa the
wavelet transform  provides temporal and spectral
information  simultaneously, so it i1s  suitable for
determining characteristic points of non stationary
signals, such as the ICG signal. It decomposes a time
variant signal into several components having various
scales or resolutions, A suitable time and frequency
limited wavelet 1s chosen as the mother. Scaling and
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shifting the mother wavelet, a family of functions called
daughter wavelets is generated. For small values of the
scale factor, wavelet 1s constructed in the ttime domain and
gives informations about signal fine details. Therefore, a
global view of signal is obtained by large value of scale
factor (Haddad. 2003). The wavelet transform of a tme
signal at any scale is the convolution of the signal and a
time-scaled daughter wavelet.

There are essentially two  types of  wavelet
decompositions: the redundant ones (continuous wavelet
transform) and the nonredundant ones (orthogonal,
semi-orthogonal, or biorthogonal wavelet bases) (Unser
and Aldroubi, 1996). The first type 1s preferable for feature
extraction because it provides a description that is truly
shift-invariant. The second type is preferable for data
reduction or when the orthogonality of the representation
is an important factor. However, the choice between these
types of decompositions has to take into account
computational considerations, too. A decomposition in
terms of wavelet bases using Mallat fast algorithm is
typically orders of magnitude faster than a redundant
analysis, even if the fastest available algorithms are used
(Rioul and Duhamel, 1992; Unser, 1994).

As the aim of this paper is the implementation of a
fast parallelized algorithm, a nonredundant wavelet
decomposition has been chosen. To determine the best
wavelet function to be used, the ICG signal properties
have been studied, such as the shape and the time
localization of characteristic events. Since the temporal
signal shape is an important parameter, orthogonal
wavelets are unsuitable to be vsed. In fact they are unable
to provide symmetry in the time domain as a non-linear
phase shift is introduced during the analysis. Signal
shape is maintained if phase shift is linear. Thus, the
wavelet function to be adopted should be a symmetrical
function (Dinh, 2001). The Spline wavelets have
properties satisfving the previous requirements. The
higher order of the Spline wavelet results in the sharper
frequency response of the equivalent FIR filter, that is
always desirable. But the FIR equivalent filter of the
higher order Spline wavelet has longer coefficient series
leading to larger computational time consumption.
Therefore, the Cubic Spline wavelet is assumed to have an
order high enough for this application.

The traditional wavelet theory  considers the
decomposition algorithm with an iterative structure (in
particular an asymmetrical tree structure) that does not
efficiently merge with the novel computational
techniques, such as parallel processing, concurrent
programming and implementation in design tools (Cohen
and Kovacevie, 1996). In this study, the a’ trous and the
Mallat algorithms for parallelized filter bank design are
used (Yang ef al., 2005). The algorithm generates a set of

parallelized perfect-reconstruction filter banks for an
arbitrary number of end-nodes of a traditional tree
structure (Koh and Rodriguez-Marek, 2003).

Method description: The method presented in this section
processes the first derivative of the impedance
cardiography signal and allows to determine the C peak
positions in time domain (Fig. 1).

The tested 1CG signal has been sampled at 250 Hz
(Fig. 2).

For  the  method implementation, named
C_point_DETECTOR, no external trigger source is
necessary; therefore the 1CG signal is the only input.

Figure 3 shows the adopted algorithm model in which
the obtained results are indicated as:

«  C_point_Number that evaluates the number of peaks
presents in the frame under test

« (C_Indices that indicates the time position of the
located peaks

The method is carried out in two steps (Fig. 4):
Wavelet decomposition and C_point_detection.
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Fig. 3: Algorithm model realized with the software tool
MATLAB Simulink®
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Reconstruction wavelet function psi, (g) Reconstruction low-pass filter and (h) Reconstruction high-pass filter

Wavelet decomposition: A fit mother wavelet is
fundamental for high performance of the proposed 1CG
detection technique., A wide variety of functions can be
chosen as mother wavelet but wavelet bior 3.3 has been
adopted because 1t allows the perfect signal
reconstruction keeping phase shift linear. Wavelet bior 3.3
is a cubic spline which is characterized by high frequency
splitting and low band coherence (Fig. 5a-h).

To locate C points, the method decomposes the 1CG
signal to six  dyadic scales so to reduce noise
sensitivity, significantly (Fig. 6). It is evident that various
frequency components of input signal are presented in
the different scales. Lower frequency components are in
high level scales while higher frequency components are
in low level scales.

According to the power spectra of ICG signal, noise
and artefacts, it is evident that the larger contribute of the
true signal is located in scales 4, 5 and 6, while the scales
I, 2 and 3 are mostly affected by noise (Xu and Liu, 2003).

Adopting a soft thresholding technique applied to
levels 1, 2, 3, noise 15 reduced and then signal s
reconstructed in time domain for further processing.

ICG signal representation in wavelet domain is
particularly indicated for noisy signals. In fact for
searching characteristic points, processing of noise free
scales only, such as scales 4-5-6, 1s sufficient. The method
oreater advantage is evident in comparison with
frequency analysis which needs informations of the
overall bandwidths for the C point localizations,

The method vses an evolution of the classical Mallat
decomposition, called a’ trows algorithm. The a’ trous
algorithm for non-orthogonal wavelets uses the same filter
bank structure as the Mallat algorithm (Mallat, 1989), but
differs for high pass and low pass FIR filters. It has been
demonstrated that after the application of wavelet filters
for j-times, the precision of a’ trous algorithm is 2j time
higher then Mallat algorithm (Table 1) (Wang er al., 1995;
Shensa, 1992).
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Fig. 6: Decomposition of ICG signal over six diadic scales using a’ trous algorithm
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Table 1:  Precision of the Mallat and the a’ trous algorithms varying
decomposition levels

Resolution | 2 ]
Algorithm Precision Precisiom ... Precision
Mallat 1/512 /256 L 241024
a’ rous L1024 vioz4 L. 11024

Usually, wavelet decomposition algorithms make use
of filters in a tree structure. This is unsuitable for both the
parallel computing and the implementation in design tools.
To overcome these limits, equivalent parallel filter banks
are used. However, as it is well known, the output signal
realignment is necessary to equalize the delay introduced
by each filter. This structure makes the algorithm
attractive for a hardware implementation (Koh and
Rodriguez-Marek, 2003).

C_point_detection: At the second step the method first
spots the positions of all ICG signal peaks, then the
C-point locations.

A point of maximum value is present in component
signals (scales 4, 5, 6) in the same location of each
singularity in [CG signal. Adopting a parallel algorithm,
the proposed method looks for local maximum points
inside scale 4, scale 5 and scale 6 using a thresholding
technique: only maximum points higher than the adopted
threshold value are taken into account. Occurrence of too

close peaks is solved replacing them with one new virtual
peak located in a middle position between them.
Figure 7 shows the spatial representation of local
maximum points alter the replacement of too close
maximums. For instance, peaks P and Q of scale 4
selected by the method as too close points, are replaced
by the point R in a new spatial representation named
scale 4a,

Each processed scale gives information about the
same signal, so points located inside each scale are
related to each others. For this reason, the method
executes a tracing across scales to locate overlapping
singular points, However, as the perfect coincidence of
two or more points is almost impossible, a confidence
interval of occurrence 15 associated to each point.

For software implementation, a window having a
suitable size 1s constructed around each singular point
considering one scale at a time.

The generic window 1n a generic scale 1s analyzed to
determine if peaks of other scales are located inside it. The
research is iterated for both all the windows of a scale and
for all the scales. The method defines as valid peaks,
those that are present in two out of three scales at least.
The best estimate of the valid peak position (the true
C-point position) is obtained averaging peak positions
inside the different scales.
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Figure 8a shows the characterization of a new spatial
representation named scale 4b for peaks of scale 4a
consequently to the definition of a confidence interval for
each point. For instance, the method defines a window for
peak S and verifies if peaks of other scales are located
inside this window. In this example, point T of scale 6a is
inside the window. Therefore point U is defined as valid
value in the new representation named scale 4b. U point
location is in the middle between S and T positions.
Figure 8b and ¢ show the same analysis for points
belonging to scales 5a and 6a, respectively.

Points of scales 4b, 5b and 6b are grouped in one
spatial representation indicated in Fig. 9 with TEMP.
Points that are too closed in TEMP are replaced with one

peak having the middle location as shown in
representation named OUTPUT.
il s 5
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Fig. 8: (a-c) Parallel procedure for peak validation
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Fig. 9: Procedure last step for C point location

In conclusion, the following steps characterize the new
method:

Signal processing in PARALLEL filter banks for
wavelet decomposition

« PARALLEL searching for local maximum points
inside scales which contain the widest noise free
signal contribute

»  Replacement of too close peaks in each scale

«  validation of peak points for each scale with respect
to peak position in other scales

«  C-point localizations adopting a simple decisional
algorithm

RESULTS AND DISCUSSION

Generally speaking, the absence of standard and
validated 1CG data bases, such as those used for ECG
signals, makes the algorithm efficiency evaluation difficult
and provides results poorly reproducible and comparable.
For this reason a real ICG signal has been tested
containing the typical noise sources: electromyographic
interferences, powerline interference, baseline drift due to
respiration and electrode motion artefacts (Fig. 10),

Moreover, the algorithm noise immunity has been
evaluated in fact this ICG signal was corrupted by a
Gaussian additive noise with zero mean value and several
variance values,

To evaluate the method detection performance, the
following parameters are adopted (Benitez e al., 2001).

TP
Sensitivity: Se=
TP+ FN
N TP
Positive predictivity: P =
TP+ FF
2.0
1.3+
1.0+ i i .
2
-
= 0.5
3
%
0.0 \ \F\J
0.5 1l‘L\. q\'
I[l L] I I
0 SO 1 (R | 500

Sample

Fig. 11): Detail of tested frame
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Detection error rate; DER = FP+ FN
TP + FN
Where:
TP = No. of true positive detections

FN = No. of C points present in the signal that the
algorithm 1s not able to detect (the number of
false negatives)
No. of C points detected by the algorithm but
really not present in the signal (the number of
false positives)

FP =

Two different test situations have been considered
denoted as case (a) and case (b), respectively,
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Fig. 11: Se and P parameters for different threshold values
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Fig. 12: Trend of Se and P parameters vs. threshold
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Case a: The frame under test presents C-peak wvalue
Muctuations in the range (1+1.5C/sec).
The algorithm gives Se and P parameters of about

99.8% for a threshold value in the range (30-40%) of C*
denoting with C* the C point average value (Fig. 11).

Case b: Predictivity and sensibility parameters vary with
both the adopted threshold value (T) and the Gaussian
additive noise level represented with the wvariance
parameter (v) (Fig. 12a-d).

Threshold in correspondence to the cross point of
the sensitivity and the predictivity curves, for which Se =
P and consequently FN = FP, depends on the variance v
as indicated in Fig. 13. Simulations show that this is
almost the best value to obtain the lower number of FN
and FP, with the near optimum shifted slightly toward
lower values of T.

In Figure 14 the curves of P and Se vs. the noise
variance in the range up to 0.1 (CY/sec)’ are shown
keeping T = 0.45C*, P and Se decrease of about 19 and
8%, only.,

However with higher noise levels up to v = (.2
(Q/sec)’ and the same threshold value T = 0.45C%,
reductions are much higher especially for P which
decreases to 0.66. The previous value represents a
reduction of about 34% with respect to the case with
v =0 (Fig. 15).

Anyway it is to noted that wvery heavy noise
conditions have been chosen to test the algorithm noise
immunity. An additional Gaussian noise signal with
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Fig. 13: Cross point curve for different noise levels
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Fig. 14: Sensitivity and positive predictivity curves vs.
noise level
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v = (1.2 (sec) corrupts heavily the 1CG signal as it is
shown in Fig. 16. In particular the noise, besides changing
the ICG signal shape, introduces many false peaks while
cancels a minor number of true peaks.

A second major remark is the necessity to adapt the
threshold value to the particular noise conditions in order
to obtain the best results, To confirm this assumption,
several simulations have been drawn out to determine
DER parameter values vs. noise variance (00 = v = (0.2
(£d/sec)’) for the previously used T values (T = 0.45C*
and T = 0.55C*) (Fig. 17). It is evident that up to v = (1.1
(£d/sec)” DER values obtained adopting T = 0.45C* are
lower that the corresponding wvaluwes obtained with
T = 0.55C#*, while for the remaining variance range values
best performance is obtained with T = 0.55C#, Therefore
it is mandatory to fit threshold values to noise conditions.

)=

—0— S
—0—
B3
i
ERIE
=
9
E 754
[~
704
65 . . . - i
0,10 0,12 0.14 0.16 0.18 0.20

Moise variance
Fig. 15: Sensitivity and positive predictivity curves vs.
noise level
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Fig. 16: Detail of the tested ICG signal corrupted by a
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Test results show that the optimal position of the
threshold is related to the additonal noise intensity
valuable from the first three dyadic scales in which the

ICG signal is decomposed (scale 1-2-3).
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In Fig. 18, 3d analysis of Se and P is shown in which
it is evident their dependence from wariance and
threshold.

Moreover, the absence of standard and validated 1CG
databases makes the algorithm efficiency evaluation
difficult and provides unreproduceable and incomparable
results.

CONCLUSION

In this study, a real-time method has been developed
for the analysis of the impedance cardiography signal.
The wavelet transform is used to detect the C points on
the dZ/dt signal. The adopted algorithm optimizes the
computational time as it processes the ICG signal with a
parallel procedure. In this technique good sensitivity and
predictivity values are obtained. In fact the algorithm
applied to a real ICG signal has sensitivity and positive
predictivity equal to 99,8%. Moreover in presence of very
noisy signals such as those obtained adding a Gaussian
noise with variable variance to the real 1CG signal, the
algorithm performance can be easily improved using
variable threshold level depending on the noise level
evaluated from the first scales of the wavelet
decomposition. Also in this sitwation, results with
minimum interferences from noise and artifacts have been
obtained, confirming the algorithm high noise immunity
degree.
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