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n-Approximately Weak Amenability of Banach Algebras
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Abstract: We introduce new notions of approximate amenability for a Banach algebra A. A Banach algebra

A 18 n-approximately weakly amenable, for neN, if every continuous derivation from A into the n-th dual space

A® s approximately inmer. First we examine the relation between m-approximately weak amenability and
n-approximately weak amenability for distinct m,neN. Then we investigate (2n+1)-approximately weak

amenability of module extension Banach algebras. Finally, we give anexample of a Banach algebra that
is 1 -approximately wealkly amenable but not 3-approximately weakly amenable.
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Banach algebras

INTRODUCTION

Let A be a Banach algebra and X a Banach
A-bimodule. A derivation from A into X is a bounded
linear map satisfying:

D(@b) =aDbHD@EDb  (a, beA)

For each x€X we denote by ad, the derivation D(a) = ax-xa
for all aeA, which is called imer derivation. We denote by
ZN{(A, X) the space of all derivations from A into X and by
B'(A,X) the space of all inner derivations from A into X.
The first cohomology group of A and X which is denoted
by H'(A,X), is the quotient space Z'(A, X)/B'(A, X). A
Banach algebra A is amenable if H'(A, X*) =0 for each
A-bimodule X (X* 1s the dual space of X which is an
A-bimodule as usual). The concept of amenability for a
Banach algebra A, introduced by Johnsen (1972). The
Banach algebra A is weakly amenable if H'(A, A*) = 0.
Ghahramani and Loy (2004) and Dales er al. (1998)
mtroduced several modifications of this notion. We recall
the defimtions in definitions 1 and 2, below:

Definition 1: A Banach algebra A is called approximately
amenable if for each A-bimodule X and for each derivation
D: A—-X* there is anet (x,) < X such that D(@) =limad, (2)
for all aeA.

Definition 2: A Banach algebra A is called n-weakly
amenable if H'(AA™ = 0, where, A® is the n-th dual
space of A.

Dales et al. (1998) investigated the relation between
m-weak amenability and n-weak amenability for

distinet mpneN. They obtaned important results
on Banach algebras and they characterized large
classes of them. Ghahramani and Loy (2004)
extensively studied approximate amenability of Banach
algebras and they opened a new research field on
amenability.

Many other researchers have followed these studies
and worked on this topic. For example, Dales et al. (2006)
investigated this topic on Banach sequence algebras.
Lashkanizadeh and Samea (2005) studied the approximate
amenability for large classes of semiegroup algebras.
Ghahramani and Loy (2004) developed valuable results
and gave new proofs for the characterization of
amenability for Beurling algebras. Also, Choi ef al. (2008)
developed the recent research and as a result, they solved
JTohnson’s (1972) problem which states that for any locally
compact group G, the group algebra 1L./(G) is n-weakly
amenable for each neN,

The contribution of this study is defining a new
notion of amenability which helps to characterize Banach
algebras. Such as amenability, n-weak amenability and
approximate amenability, present defimition determines
differences between two Banach algebras.

In this study, we compose two definitions 1 and 2
together and define n-approximately weak amenability and
we determine the relations between m-approximately weak
amenability and n-approximately weak amenability for
distinct m, neN (N denotes the set of all positive integers).
Then we mvestigate (2n+1 }-approximate weak amenability
of module extension Banach algebras. Fially, we give a
counter example which shows that approximately weak
amenability does not imply 3-approximately weak
amenability.
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n-APPROXIMATE WEAK AMENABILITY

Definition 3: Let A be a Banach algebra and neN. Then A
is n-approximately weakly amenable, for neN, if every
continuous derivation from A mto the n-th dual space A®
is approximately inner. We say that A is approximately
weakly amenable if A is 1-approximately weakly amenable.

Proposition 1: Tet A be a Banach algebra and neN.
Assume that A is (nt+2)-approximately weakly amenable.
Then A 18 n-approximately weakly amenable.

Proof: Let D: A~A® be a bounded derivation. Then
D: A—A"? i3 a bounded derivation, so there exists a net
(A,)=A"? such that D(a)=limad, (a). Tet P: A™? — AW
be the canonical projection and A, = P(A,). Then
D(a)= P(D(a)) = limad, (2) and so D is approximately inner.

Proposition 2: et A be a Banach algebra and neN.
Suppose that A 1s (2n-1)-approximately weakly amenable.
Then A’ is dense in A.

Proof: By proposition 1, it i1s sufficient to prove the
proposition for case n = 1. Let ¢peA* and ¢f:* = 0.
Then D: A—A* with D{(a) = ¢(a)dp is a bounded
derivation. Thus there exists a net (¢,) = A* such that
Dia)= lién ad% (a).

Then for acA we have:

cj)(a)2 =D(a)(a) = ligna.q)ﬂ (a)— ¢, afa) = liin 02— ¢,(a")=0

Thus ¢ = 0 and so A’ is dense in A.

Let A be a non-unital Banach algebra. We denote by
A¥ the unitization of A which is A* = AeC with the
product:

(a,2).(b,u) = (ab + pa + b, Au) (a,bc AAucsC)

It is obvious that A is a Banach algebra as well. We
denote by e* the bounded linear functional on A* which
is zero on A and e*(1) = 1. By these notations we have the
following identifications:

AMED - AU o ARGERE) A G5 e (neN)
The module actions of A* on A*™ are same az the

multiplication on A* and so A*” is a submodule of A%,
The module actions of A* on A**™" are as follows:

{8, )P, ue®) = (WY + a W, Aue*+'F(a)e®)
(P, ue®).(a,A) = (A + Fa,lue*+¥(a)e®)

and so A is not a submodule of A%,

Theorem 1: Let A be a non-unital Banach algebra and
neN.

»  If A*is (2n)-approximately weakly amenable, then A
1s (2n)-approximately weakly amenable

»  If Ais (2n-1)-approximately weakly amenable, then A*
is (2n-1)-approximately weakly amenable

* Assume that A is commutative. Then A® is
n-approximately weakly amenable if and only if A is
n-approximately weakly amenable

Proof

s Every derivation D:A—A® can be extended to a
derivation Dy A*—=AWgeCe = A* with Dy(1) = 0.
Thus D, is approximately inner and so D is
approximately imer

+  Let D:A—A"YpCe* be a bounded derivation. Then
it is easy to see that D is of the form D(a) =
Dyar+d(a)e* where, D eZ(AA ™Y and deA*.
Thus there exists a net (P )cA®Y such that
Dy(a) =lim@.o, -, 2) for acA. Now let a, beA. Then
we have

dlab) =Dy (b)(a) + Dy(a)b) = lim(b.o, — ¢,.b){a) + lim{ad, - ¢,.a)(b)=0

and so ¢l*=0. By proposition 2, ¢ =0 and so
D =D,. Thus, D 1s approximately inner

s+ Since, A is commutative, n-approximate weak
amenability and n-weak amenability are the same
(note that every mmer derivation 18 zero in
commutative case). Thus this is immediate by
proposition 1.4 of Dales et al. (1998)

The following example shows that (2n+1)-weak
amenability and (2n+1)-approximately weak amenability

are two different notions of amenability.

Example 1: Let M, denote the algebra of kxk matrices over
C (the space of complex numberce), with norm:

112
2}

It is easy to see that M,™ =M, for each neN. Set
A, = (M,* and

(@)

ﬂ]]

-2

Where:

&(A,)= {@)la, 2 A, @) =sipfa, [ <eela] -0}
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By example 6.2 of Ghahramani and Loy (2004) and
proposition 1.2 of Dales et al. (1998), A is (2nt1)-
approximately weakly amenable (approximately amenable)
but 1t 15 not (2n+1)-weakly amenable.

We denote by o and ¢ the first and second Arens
product on A**, respectively. The Banach algebra A is
called Arens regular if o = ¢ (Palmer, 1994).

Proposition 3: Tet A be an Arens regular Banach algebra
and let every DeZ'(A**, A**) be approximately inner.
Then A 1s 2-approximately weakly amenable.

Proof: Let DeZ'(A, A**), then by thecrem 1.9 of
Dales et al. (1998) there exists De Z'(A** A**) such that
D(a)=D(a) where, i denotes the canonical mmage of
acA 1 A** Thus there exists anet (d,)cA** such
that

D(y)=Tim(y o, — ¢, 0y) (yeA**)

So that, for acA, we have D(a)=lim(a, - 6.2) and so A is
2-approximately weakly amenable.

Theorem 2: Let A be a Banach algebra such that A™ 2 is
Arens regular for each neN, (A” = A). If every DeZ'(A®,
A" i approximately inner, then A is 2n-approximately
weakly amenable for each neN.

Proof: The case n=1 is proposition 3. Assume that
every Banach algebra with the stated properties is
2k-approximately weakly amenable. We show that A 1s
(2k+2)-approximately weakly amenable. Let DeZ'(A,
APy and let P: AP — A% be the canonical projection.
By propositions 1.7 and 1.8 of Dales ef al (1998), we
have D**eZ'(A**, A®") (D** is the second dual
of D) and P is an A**-bimodule homomorphism. Let
D=PoD** so De Z'{A** (A*5)@) By applying A**
instead of A, since A™* iz 2k-approximately
weakly amenable, there exists a net (9,) = A% such that

Doy = limCy, — o,y Tor ye A=+

Therefore, D@ =limad, (2) for each a€A and so A is
(2k+2)-approximately weakly amenable.

Tt has been discussed by Dales et al. (1998) that any
commutative, weakly amenable Banach algebra (or
equivalently commutative, approximately weakly amenable
Banach algebra) is n-weak amenable for each neN.

The next theorem is the partial result for general
case of the earlier fact in special case. First, we note
that (AP, o) i3 the second dual of (A®, o) for neN. Also,
(A™9 o) is a subalgebra of (A", o) fork, neN and k<n.

Theorem 3: Let A be an approximately weakly amenable
Banach algebra such that A is an ideal in (A**, o). Then
A 18 (2n+] )-approximately weakly amenable for each nelN.

Proof: Let A® be the linear span of {a,..aa,..a,¢€ A}
Since, A is an ideal in (A**, o), the operators T, and R
A—A (the left and night multiplication, respectively) are
weakly compact for each acA. Thus L™ and R
A=A (the n-th dual operators of L, and R,) are
weakly compact. Now we have A A®™, A™ AcA®™? for
neN and so AA A ACA  Since, AUV = A*eAr
and A 1s approximately weakly amenable, it suffices to
show that every derivation D: A—A* is approximately
inner. For such derivation D and for a, be A" and TeA®
we have:

D(ab)(¥) = D(@).b(F) + a(bIH) = Da)b.F) + Db)(F.a) = 0

Since, P.a and b.PeA. Thus D(ab) = 0 and 0 D|z = 0.
Since, A™ is dense in A, by proposition 2, we have D = 0.
Therefore, A 1s (2n+1 )-approximately weakly amenable.

Corollary 1: Let A be a Banach algebra such that A is an
ideal in (A**, o). Then the following are equivalent:

» A 1s approximately weakly amenable

*  Ais(2nt])-approximately weakly amenable for some
neN

* A s (2nt])-approximately weakly amenable for each
neN

Dales et al (1998) proved that every C*-algebra is
n-weakly amenable for each neN, so obviously every
C*-algebra 1s n-approximately weakly amenable for each
neN.

(Zn+1)-APPROXIMATELY
WEAK AMENABILITY OF AeX

Let A be a Banach algebra and X be a Banach
A-bimodule. Then the module extension Banach algebra
corresponding to A and X 1s AeX, the /,-direct sum of A
and X with the algebra product defined as follows:

{a,x).{a",x") = (aa’,ax’+ xa") (a,2’c Ax,xeX)

We investigate  (2n+1)-approximately — weak
amenability of module extension Banach algebra AeX. As
it has been discussed by Zhang (2002), according to
Dales et al. (1998), X** is a Banach A**-bimodule, where,

A™* s equipped with the first Arens product. The module
actions are defined as follows:
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For xeX, feX*, ¢peX** and uc A**, define ¢f, fxe A* and
ufeX** by
{a,0f) ={fa,0), {(afx)=(xaf),

{x,uf}={fx,u) (ag A)

Then, for peX** and ue A**, define ud, bueX** by

{f.uph={pf.u), {(f,pu)={uf,¢) feXh

These give the left and right A**-module actions on X**.
Also, the definition for uf with ueA** and feX* gives a
left Banach A**-module action on X*. When u = a€A, all
the above A**-module actions agree with the A-module
actions on the corresponding dual modules X* and X**.

Viewing A" as a new A and X*¥ as a new X, the
preceding procedure will successively define X" as
a Banach A”*?-bimodule. The first Arens product is
consistently assumed on each A" Now suppose that
the bimodule action of A on X® has been defined,
where, nz1. Then in a natural way, X®*, k=1, is a Banach
A®_himodule with the module multiplications uA and
AueX™™® for AeX™™ and ue A, defined by:

{nuA)={yu,A), (v, Au}={uy,A) {(ye Xy

If u=aeA, these module actions coincide with
A-module actions on X" Then, for FeX®" and
GeX®? define Fd, pFeA™ " by:

(uFo}=(F.pu), {uoF)=(Fup}  (uecA®")
For a Banach space Y and an element yeY denote by ¥ the
image of y in Y** under the canonical mapping. When
FeX®™ and peX“”, we denote Fj by F and §F by GF.
Tt is easy to check that:
(WFo)={ouF}, {uoF)={uo,F}  (ue A®)

By using the canonical image of F or ¢ in the
appropriate 2/-th dual space of the space that it belongs
to, we can then signify a meaning for F¢ and ¢F for every
FexX™" and peX™; they are elements of A" where,
k=max {m-1, n}. Now for pe A”? and FeX""", we define
LFeX®™ by

(0.0F) = {Fo.u; (pe XO)

This actually defines a left Banach A®*'*-module
action on X",

Finally, for peA®™” and ¢eX “? define pud,
GueX ™= by:

{F.up) = (¢F.n}, (Fonj={uF.¢) (FeX*")

These actually define the A®**-module actions on X®"?,
It is easy to see that (AeX)™" can be identified with

Al g KO the [ ~direct sum of A% and XV, Also,

the (Ae@X)-bimodule actions on A8 X" are as

follows:

(a,%).(F,G)=(aF + xG,a@) and (F,G).(a,x) = (Fa+ Gx,Ga)

where, a€A, xeX, Fe A® and GeX®™*Y,

Tt is assume that A is a Banach algebra, X is a Banach
A-bimodule and AeX is their corresponding module
extension Banach algebra.

Lemma 1: Let T:X—A™" be a continuous A-bimodule
homomorphism. Then T:A®X (A2 X" defined by
T((a,x)) = (T(x),0) is a bounded derivation. The derivation

T is approximately inner if and only if there exists a net
(F =X such that 12158793 598 9797 7979

lim(aF, —F a)= 0 and T(x) = lim(xF, - F_x)

for all aeA and xeX.

Proof: It is routinely checked that T is a bounded
derivation. Let T be approximately inner. Then there are
nets (G,)cAP " and (F,)c A" such that

T((a,x)) = lim(a,x).(G,.E,) - (G,.E,).(a,x)

Thus (T(x),0)=1im@G, -G a+xF, -FEx, aF -Fa) and so
lim(aF, ~E2) =0. Since, T ((a, 0)) = (0, 0), we have
lim(aGi, - G.a) =0 andso T((a,x)) = lim(a,x).(0,E,) - (0.F,).(a,%).
Therefore, T(x) = im(xF, - Ex). For the converse let such a
net (F,) exists. Then

T((a,x)) = (T(x),0) = lién(xFﬂ —F x,aF, —Fa)= li{n(a,x).(O,Fﬂ)f (0,F,).(a,x)

Therefore, T is approximately inmer.

Lemma 2: Let D: A—X""" be a bounded derivation and
D' be the {2n+1)-th dual operator of it. Then D:
AeX—+(AaX)™"” defined by D((a, x)) = (-D™ (x).D{a)),
for all acA and xcX, 1s a bounded derivation. Moreover,
if D is approximately inner, then so is D. Also, if D is
approximately mmner, then there is a net of bounded
derivations D_ : A®X — (A®X)®™ such that D_((a,0)) = 0, for
all & and for all acA and D-D,_ is inner.

Proof: By lemma 3.4 of Zhang (2002), D is a bounded
derivation. If D is approximately inner, then there are nets
(G, ¢ A" and (F,) < X% such that;
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Di(a,x)) = lim(a,x).(G_,F,) - (G _,F,).(a,x)

Thus

)

(0,D(a)) = lim{(a, 0).(G,. F,) - (G, F, )-(a.x)) = lim(aG, - G,a,aF, - Fa)

Therefore, D(@ =lm@E, ~Fa) for all aeA and so D is
approximately mmer. For the converse let
D(a)=lim(aF, ~F.a)  for aeA and (F)cX®". Let T,
X—+A®"be defined by:

T,(x)=-D*"(x)-xF, +Ex (xeX)

andlet D :A®X - (A®X)™ be defined by:

D, (a,x) = (T (x),0) (acAxeX)

Then for acA and xeX we have D_((2.00)=0 and
(D-D_)(a,x)=(xF,-FEx,aF, —F a)=(2,x).(0,F, }—(0.F ).(a,x)
Thus D-D, isimmer and so (D-D,) 1s the net as required.

Lemma3: Let D: A=A 10, be a bounded derivation.
Then D: A®X —(A@X)™" defined by D((a.x))=(D(a),0)
is a bounded derivation. Moreover, D is approximately
mner if and only 1f D 1s approximately mner.

Proof: It is routine to check that D is a bounded
derivation. Now let D be approximately inner. Thus
D(a)=lim(aF, ~F.2) for some net (E)cA“*" and for all
acA. Then

Di(a,x) = lién(aFﬂ —-Fa,0)= lium(a,x).(Fﬂ,O) —(F,,0).(a,x)

and so D is approximately inner. Conversely, let D be
approximately inner. Thus there exist nets (F,} < A®" and
(G c x@n such that

D((a.x)) = lim(a,x).(E,, G,) - (F,. G,).(a,x)

Since,
Di(a,x)) = D({a,0)),

D((a,x)) = lim(aF, —F,a,aG, — G a)

and so D(a) = lim(aF, - F.a)

Lemmad: Let T: X—>X* n=0, be a continuous A-
bimodule homomorphism, satisfying xT(y)+T(x)y = 0 for
all x,yeX. Then T:A®X-A&X)*™ defined by
T((a,x)) = (0, T¢(x)) 1s a bounded derivation. Moreover, T is
approximately mner if and only if T = 0.

Proof: It is routine to check that T is a bounded
derivation. Let T be approximately mner. Thus
T((a,x)) = lium(a,x).(Fﬂ,Gn) —(F,,G,).(a,x) for some nets

(F)c AGH g0 (G) X @

SjIlCG, T((as X)) = T((Oa X))s We hﬂVe (O’T(X)) = liDl:n(XGn - GﬂX’O)'
Therefore, T = 0.

Theorem 4: For n=0, the module extension Banach
algebra AaX is (2nt1)-approximately weakly amenable if
and only if the following conditions hold:

(1) A is (2ot )-approximately weakly amenable;

(ii) Every derivation from A into X®™” is approximately
inner;

(iii) For each continuous A-bimodule homomorphism
T X->A"Y n>0, there is a net (F =X such that
lim(aF, ~F,2)=0 for acA and T()=lm&E, ~F.x) for
xeX;

{(iv) The only A-bimodule homomeorphism T: X—X®*,
n=0 for which xT(yHTX)y = 0, xyeX in A®"is
T=0.

Proof: Tet AaX be (2ntl)-approximately weakly
amenable. Then by lemmas 2 and 3, A is (2ntl)-
approximately weakly  amenable and every
derivation from A into X“'" iz approximately inner.
Furthermore, lemma 1 gives condition (iii) and
lemma 4 gives condition (iv). For the converse, let

P:(A® X)(2n+1) N B, (A @X)(2n+1) )

be the cancnical projections and letu:A—>A®X and
,:X>A®X  are the canonical inclusion maps.
Obviously, P, and P, are A-bimodule homomorphisms and
Y is an algebra homomorphism. Let D: A® X — (A @ X))
be a bounded derivation. Then Doy A —»(ADX)™™ i3 a
bounded derivation and so PoDoy:A— A and
BoDoy, : A - X gre bonmded derivations. Thus they are
approximately immer by conditions (1)and (11). Therefore, Doy
is approximately inner. By lemmas 2-4:

Do, = PoDaoy, + PoDo @ A — (A ®X)E0

1s a bounded derivation and there 1s a net of bounded
derivations D, 1A X —{A @ X" such that D, ((a,0))=0,
for all ¢ and for all acA and

Bor- D,

is imner. We have
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(D - Do, ){(a,0)) = D({(a,0)) - Doy {(a,0)) = Doy{a)-Doyia)=0 (acA)

Let:

Then, for all @, D :A®X>(A®@X™ is a bounded

derivation that satisfies D_(@on=0 for all aeA.

Moreover:

D, {(0,2x)) = D, ((,0).(0,x )= (201D, {(0.,)) =aD,{(0.x)) (ac AxeX)
and

D, ((0,xa) = D, ((0,x).(2,0)) = D, {(0.x))a,0) = D, (0.x))a  {ac AxeX)
Clearly D o, : X —(A@X)®" {5 a continuous A-bimodule
homomorphism. By condition (iii), for each ¢, there exists

anet (F)yc X such that:

lign(aFE? -Fa)=0

for acA and Rof)uog(x):lign(ng‘—Fg‘x) for xeX. On the
other hand:

([P,0D, 01, (x)]y +x[P,0D, 01, (¥)1.0) = (P,0D,(0,x )]y, 0) + (x[B,0D, (0,5)],0)
= D,{(0.5)(0,y) + (0,x).0,{(0,5)
=D, {{0,5).(0,5))

=D,{(0.0))
=(0,0)

Thus
[P,0D, o1, (x) ]y + x[P,0D ot (¥)] = 0

xyeX)

Therefore, P,oD o, =0 by condition (iv). Thus we have
D, ((a.x) =D, {(0.x) = D01, (x)

= (P,o]n)ﬂol2 (x),PZO]")ﬂotz(x))
= lign(xF; —-Fx,0)

= lign(a,x).(O,Fg)— (0,I).(a.x)
So, D, is approximately inner. Thus
D=D,+Doy-D.,)

is approximately inner.

A COUNTER EXAMPLE

Here, motivated by Zhang (2002), we consider the
case that the module action on one side of X 1s trivial.
Then we give a counter example which shows the
converse of proposition 1 is not correct.

We denote by X, and Y, the A-bimodules X with
trivial right module action and Y with trivial left module
action, respectively. By proposition 2, in case X = X it 18
easy to see that conditions (11) and (iv) of Theorem 4 are
reduced as follow:

(iii), for each continuous A-bimodule homomorphism
T: X,—~A"™", there is a net (F,)=X,*"" such that limF,a=0
for ae A and T) =limxF, for xeX,;

(1v), AX, 1s dense in X,

Proposition 4: et A be a (2nt+] )-approximately weakly
amenable Banach algebra with bounded approximate
identity and let AA®Y = AP Then AeX, is (2n+1)-
approximately weakly amenable 1f end only if AX 1s dense
in X,

Proof: By proposition 1.5 of Johnson  (1972),
condition (i) in theorem 4 always  hold. Let
T: X ~A™Y be a continuous A-bimodule

homomerphism. Then {aF, T(x); = (F, T(xa); = O for all
aeA and FeA"™. Thus T(x)|,.e = 0 and so T = 0 since
AA® = A 34 condition (iii), holds.

For n= 0, an easy application of Cohen Factorization
Theorem (Bonsall and Duncan, 1973) implies that:

Corollary 2: Let A be an approximately weakly amenable
Banach algebra with bounded approximate identity. Then
AweX, 15 approximately weakly amenable 1f and only if AX
1s dense in X,.

A dual result to corollary 2 is as follows:

Corollary 3: Let A be an approximately weakly amenable
Banach algebra with bounded approximate identity. Then
Aa,Y is approximately weakly amenable if and only if A;Y
is dense in Y.

If X and Y are Banach A-bimodules, we denote by
XY the 1,-direct sum of X and Y.

Proposition 5: Suppose that AeY and AsY are
approximately weakly amenable. Then the following are
equivalent:

(1) Aa(Xe,Y) 18 approximately weakly amenable;

(i) There is no mnonzero, continuouws A-bimodule
homomorphism T: X—Y*;

(111) There 1s
homomorphism 3: Y—X*;

no nonzero, contimuous A-bimodule
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Proof: The proof is quite similar to the proof of lemma 7.1
of Zhang (2002) and so we omit it's proof.

Corollary 4: The algebra Ae(X®,Y) 1s approximately
weakly amenable if and only if both AeX and AaY are
approximately weakly amenable and condition (11) or (111) in
proposition 5 holds.

Proof: This is an immediate consequence of theorem 4
and proposition 5.

Let H be an infinite dimensional Hilbert space. We
denote by B(H) and K(H) the space of all bounded linear
operators and compact operators on H, respectively. By
lemma 7.4 of Zhang (2002), there 1s an element
a,€ B{H)K(H) such that a; 1s not right mvertible in B(H)
and a,K(H) 18 dense in K(H) For such element
a,eB(H)K(H), a,B(H) 1s a proper right 1deal of B(H). Thus
cl(a,B(H)), the closure of a,B(H), s also a proper right
ideal of B(H). So there 1s 0z A¢B(H)* such that A.a, = 0.
Then AB(H)# {0} is a right B{H)-submodule of B(H)*. Set

Xy = (K(HY), and Y = (cKABE))

Example 2: By above notations, B(H)a(X;, &, ,Y) 1s
(approximately) weakly amenable but not 3-approximately
weakly amenable.

Proof: By example 7.5 (Zhang, 2002), B(H)&(X, &, ,Y) is
weakly amenable. Also, it is shown that B(H)&(X; @, Y)
fails condition (iv) theorem 2.1 (Zhang, 2002) form =1,
which is condition (iv) of present theorem 4 for n = 1.
Thus B(H)&(¥;, @, ,Y) is not 3-approximately weakly
amenable.
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