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Predictive Infiltration Rate Mapping with Improved Soil and Terrain Predictors
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Abstract: This study addresses the issue of incorporating soil and terrain covariates into predictive mapping
of infiltration rate (IR) values in a semi-arid region in Iran. Besides, multiple linear regression of IR values
against some soil and terrain variables, three geostatistical models including ordinary kriging, ordinary
cokriging and simple kriging with varying local means were used. A 10 fold validation approach was used with
the mean MAE and RMSE as validation indices to judge the prediction quality. The best prediction model was
ordinary cokriging followed by simple kriging with varying local means. These methods were best in

combination with some soi1l and terrain covariables.
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INTRODUCTION

In the context of a growing demand of high-
resolution  spatial  information for environmental
protection and management, efficient and accurate
prediction models are needed. Many studies have shown
that usetul predictive relation exist between environmental
variables and soil properties (McBratney er al., 2003;
Scull er al., 2003). Environmental correlation 15 a method
of digital soil mapping (or predictive soil mapping) that
exploits these relations (Mckenzie and Ryan, 1999,
Mckenzie and Gallant, 2007). In the past 20 years, a
number of prediction models that use cheap and easily
measured ancillary information has been developed and
tested. These models vary widely from simple linear
regression (Moore ef al., 1993a) to advanced nonlinear
regression methods such as regression trees (Mckenzie
and Ryan, 1999) and geostatistical models such as
cokriging (Ersahin, 2003), simple kriging with varying local
means (Meul and Van Meirvenne, 2003; Goovaerts, 1999)
or the hybrid models (McBratney er al., 2000) such as
kriging with external drift (Hudson and Wackernagel,
1994, Bourennane er al., 1996; Goovaerts, 1999,
Bourennane and King, 2003) and regression-kriging
(Odeh et al., 1994; Knotters ef al., 1995; Hengel er al.,
2004). Wherever auxiliary variables are uvsed; they are
most commonly sourced from digital elevation models
(McBratney er al., 2000).

Soil hydraulic properties like infiltration rate (IR) and
their inter-dependencies constitute an important part of
data and information needed in many pedo-hydrological
predictions. They are the main variables controlling the
key processes such as water and chemicals movement

and transport in the soil profiles. Among the various soil
hydraulic properties, infiltration rate (IR) is reported to
have the highest variability at different spatial scales
(Mallants ef al., 1996: Tsegaye and Hill, 1998; Ersahin,
20003). Measurements of soil hydraulic properties are
relatively cost  and tme-consuming and become
impractical when hydrologic predictions are needed for
large areas. Therefore, predicting soil hydraulic properties
such as IR from auxiliary data becomes an alternative to
measurements in many applications (Pachepsky er al.,
2006). A close spatial relationship between soil hydraulic
properties and other easily measured soil and terrain
attributes, as auxiliary variables, can be exploited to
predict these hydraulic characteristics, as target variables,
with a reasonable accuracy at unobserved locations.

In this study, two geostatistical models (ordinary
cokriging, simple kriging with varying local means) were
used to incorporate secondary information (soil properties
and terrain attributes derived from digital elevation model)
into the spatial prediction of infiltration rate values at a
catchment scale. A 10 fold jackknifing procedure was
used to compare the prediction performances of these two
predictions models with the straightforward ordinary
kriging and multiple regression models.

MATERIALS AND METHODS

Study site, soil sampling and laboratory analysis: The
study area 1s located in central Zagros region of the
ChaharMahal Va Bakhtan Province, Iran, about 65 km
South-west of the city of Shahrekord (Fig. 1). The main
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Fig. 1: Study area with sampling locations

landform features within this 92 km” catchment include
plateaus, upland terraces, gently rolling hills and alluvial
plains surrounded by mountains. Elevation ranges from
2393 to 2944 m above sea level with slope gradients
approximately 3 to 30%. The catchment is predominately
underlain by quaternary deposits composed of limestone,
sandstone and conglomerate. The primary land uses
within the catchment include degraded rangelands and
dry farming. Irngated farming is conducted in a very small
portion of the catchment.

The study area was sampled on a pseudo-regular
initial grid spacing of 1 km during June and July
2007, Sampling was performed at different spatial
scales resulting  in the minimum distance between
samples of about 150 m. In total, 111 sample points
were considered for different soil analysis. All 111 soil
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samples were analyzed for sand, silt and clay contents
by the hydrometer method (Gee and Bauder, 1986).
In addition, at each sampling site, undisturbed soil
samples were obtained from the topsoil using 200 cm’
steel cores to determine soil bulk density. Infiltration
tests were conducted on all 111 sample sites using
double-ring wvariable-water level infiltrometers. The
internal diameter was 30 cm for inner and 45 cm for
outer ring.

Slope gradient, slope aspect, contour curvature and
profile curvature were derived from a 100 m resolution
digital elevation model in accordance with the procedure
of Moore er al. (1993b).

Prediction models: A brief description of the prediction
models used 1s given below:
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Statistical linear regression: In classical least-squares
regression technique, regression model was created by
relating the target variable (IR) to the soil and terrain
covariates. This model then used to predict the target
variables to testing sample locations where all variables
and co-variables have been determined.

Ordinary kriging: Ordinary kriging (OK) is one of the
most popular and basic univariate kriging methods with
extensive applications in soil science. The basic idea 1s to
estimate the target variable at unsampled location as a
linear combination of neighboring observations. It relies
on a weighting scheme where closer observations have
oreater impact on the final prediction. The weighting
scheme is dictated by the variogram. The weights are
determined such as to minimize the esiimation variance,
while ensuring the unbiasedness of the predictor

(Goovaerts, 1997),

Ordinary cokriging: Cokriging (COK) is a multivariate
extension of OK in which the predictor is calculated
by wsing  simultaneously  the interrelationships
(auto-correlation) between the target data values and
spatial co-dependencies  (cross-correlation) between
target and co-variables. In the early cokriging studies
(Goulard and Voltz, 1992), the ancillary variables were
other soil variables, indicating that other soil variables
are themselves useful predictors of the target variable.
Later, this geostatistical multivariate algorithm  was
performed with detailed ancillary information of
environmental variables derived from digital elevation
models and satellite images (Odeh er al., 1994; Goovaerts,
1999).

Simple Kriging with varying local means: In simple
kriging with varying local means (SKLM), the unknown
local stationary mean from the OK prediction is replaced
by known varving local means derived from ancillary
information (Goovaerts, 1997). Local means can be derived
from the secondary information using a linear first order
relationship. If the local means are derived using a linear
statistical regression model, the SKLM estimate can be
considered as the sum of the regression estimate and the
simple kriging estimate of the residual value at unsampled
location (Goovaerts, 1999),

In the case of hybrid models, ordinary cokriging and
simple kriging with varying local means were performed
using covariates that had significant correlation
coefficient (r) with IR (p<0.03).

Validation of prediction performance: In comparing the
performance of different methods, a modified jackknifing

method was used (Bishop and McBratney, 2001). The
procedure involves randomly splitting the data into two,
the prediction and validation subsets. The prediction set
is used to create a model. which i1s then used to predict
onto the validation sites, thus providing an independent
assessment of the prediction performance. Various
validation indices can be used as a measure of prediction
quality, the most common of which are root-mean-square
error {RMSE) and mean absolute error (MAE). The latter
yields a more balanced perspective of the goodness of fit
at moderate IR, whereas the RMSE measures the
goodness of fit relevant to high IR predicted values (Kisi
and Ozturk, 2007). The RMSE and MAE can be used
together to diagnose the variation in the errors in a set of
predictions. The RMSE will always be larger or equal o
the MAE. The greater difference between them indicates
the greater variance in the individual errors in the sample.
If the RMSE equals MAE, then all the errors are of the
same magnitude.

To overcome the problems arising with single
jackknifing method when researchers faced with a small
sample size, a multiple jackknifing approach (10 fold
jackknifing) was adopted (Bishop and McBratney, 2001 ).
This involved random selection of both the prediction and
the validation sets a number of times; in this case 10
times. Each time, the sample size is 86 for the prediction
set and 25 for the validation test. For each of the 10
random selections, all of the different predictions models
werg created which were used to predict onto the
validation set. Therefore, 10 realisations of RMSE and
MAE were obtained for each of the prediction models.
Finally, the mean RMSE and MAE values for each of the
prediction models were presented.

RESULTS AND DISCUSSION

Statistical characterization of soil properties: The global
mean for IR was 4.31 cm h™' and the median was 3.40 cm
h~". IR values ranged from 0.37 to 14.12cm h™', witha CV
of 72% (Table 1). Comparing with earlier study, variation

in IR at the regional scale is large. Ersahin (2003) found a
mean value of 5.11 ecm h™" and a CV 37% for 50 field-
measured IRs.

Table 1: Descriptive statistics of infiltration rate (cm h™") for the surface soil

Mumber of sample points [11
Mean 4.31
Median 340
Minimum 0.37
M aximum 14.12
Standard deviation (50) 312

Coefficient of variation (CV)% 72.30
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Table 2; Simple pearson correlation coefficients (r) between field-measured infiltration rate (IR ) values and soil and terrain attributes

Bulk Slope Slope Profile Contour
Paramelers IR density Clay Silt Sand Elevation eradient aspect curvalure Curvalure
IR 1.00 0.23 -0.24 0,110 0.22 0.21 -0.07 0.09 .17 0.06
Bulk density 1.00 .42 (.31 0.51 18 -iL14 0.209 (.05 (.01
Clay 1.00 =00 (.62 011 (.25 -0.22 (.0 -0.14
Silt .00 .79 0.01 017 118 -0.06 -0.07
Sand 1.00 .10 ()24 0.27 .13 0.05
Elevation 100 (L15 0110 (.31 0.26
Slope gradient 1.0} 0136 -(0.28 -0.12
Slope aspect 1.00 =04 017
Profile curvature |00 0.63

Contour curvature

1.00

Statistical relationships between infiltration rate values
and soil and terrain attributes: IR showed some
correlation with clay, sand and bulk density (p<0.03).
These correlations, though not particularly strong, may be
used to enhance the prediction performance of different
models. No significant relationships (p<(.035) between
IR walues and terrain attributes, except elevation and
profile curvature, were found (Table 2). Spatial resolution
of the digital elevation model can significantly affect the
terrain attributes. Thus, the correlation between soil and
terrain  depends on the resolution of interest. For
resolution of <100 m, as described by McBratney er al.
(2003), local terrain attributes such as slope gradient,
slope aspect and curvature, are found to be good
predictors of soil variability.

Comparison of model performance: OK, Which uses only
primary data (IR values), was considered as a reference to
assess the actual gain of accounting for environmental
covariates (Table 3). Overall, the best prediction methods
were COK followed closely by SKLM. Multiple linear
regression performed worst of all. Goovaerts (1999)
compared linear regression and ordinary kriging with
simple kriging with varying local means and cokriging for
rainfall erosivity mapping purposes, favouring the latter.
Bourennane er al. (1996) showed that prediction of
horizon thickness is more accurate with the use of a slope
map as external drift.

Whereas, the SKLM approach use covariables only
to inform on the local mean of infiltration rate,
cokriging incorporates the secondary variables directly
into the computation of the estimate (Goovaerts, 1997).
Cokriging may seem more demanding in that several
variograms must be inferred and jointly modeled.
However, the results presented here show that this
complexity pays off for this data set. Maps of IR
created by models indicate that all kriging- based maps
clearly reflect the similar global and local spatial
distribution of IR wvalues over the study area.
However, comparing these maps with ones generated by
statistical linear regression indicates that more details of

Table 3: Mean MAE and RMSE of different prediction models

Prediction models Mean MAE Mean RMSE
REG 245 423
0K |83 3.34
COK (.83 1.78
SkLM [.25 207

86
8.1

5.1

0

Fig. 2: Map of infiltration rate {(cm h™') created by
(a) statistical linear regression model and

(b) ordinary cokriging model

spatial variability of IR values were revealed by maps
created by kriging- based models (Fig. 2).
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CONCLUSIONS

Due to high cost and time-consuming nature of soil
hydraulic properties, research in developing models for
the creation of digital map of soil properties from sparse
soil  data wsing secondary variables 1s  becoming
increasingly important. Recently. sources of ancillary
information are increasingly available from digital terrain
madeling parameters to various air-and space-born remote
sensing  Images.  Under  these  circumstances,
environmental correlation is now feasible for predictive
soil mapping across large areas. Hence, the classical
statistical models and generic geostatistical techniques
such as ordinary kriging are likely to be replaced with
hybrid models. The results here indicate that even when
only the poorly correlated ancillary variables are available,
the hybrid models may still perform better than the
classical regression models and generic geostatistical
models, such as ordinary kriging that use only the target
variable.

Measuring soil hydraulic properties like saturated
hydraulic conductivity in the field 15 expensive and time
consuming. Therefore, prediction of these properties with
a reasonable accuracy 1s crucial. The results presented
here show potential to improve model predictions by
using hybrid models such as ordinary cokriging and
simple kriging with varying local means.

Finally, this study showed that multiple jackknifing
would be more suitable validation approach for situations
where the sample data set is not sufficiently large. In this
study, only 10 realisations of random selection of both
prediction and validation set, with ratio of 3.4, were
created. Further research is needed to find the optimum
number of realisations and ratio for robust estimation of
validation indices.
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