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A Volume Decomposition Model to Determine Machining Features for Prismatic Parts

M. Houshmand and D.M. Imani
Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran

Abstract: Selection and development of machming features are the core activity in process plamming. Usually
the machining features development is done by experts according to elementary volumes. Performing this
process by experts develops a limited machining features and the optimum solution may be missed. In this
study a new method 1s developed to generate machimng features and analyzes them to extract feasible features.
The feasible solution is based on technical limitation of parts without any expert’s judgments. Also it uses a
set covering optimization technique to extract optimum one. Finally, the numerical results are presented and
performance of the proposed method 1s tested by some candidate parts.
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INTRODUCTION

Process planning plays an important role in optimal
development and operation of manufacturing systems. It
determines the sequence of operations and resources
needed to manufacture a part and generates a plan for
parts to be manmufactured. The plan should mimmize the
manufacturing cost and delay as well as maximizing the
rate of production and quality (Chang, 1994). Through
this process raw materials are converted to finished goods
by removing material volumes so called delta volume.
Delta volume is volume of material that must be removed
from stock and 1t 1s difference between part and stock
(Ciurana ef al., 2003; Dereli and Filiz, 1999).

In last decade lots of efforts have been devoted to
apply computer integrated manufacturing systems.
Automation of process planning has been a major
objective of researchers in this field. Till today, the work
to generate machine and tool sequence for part machining
15 still done manually and is experience-based activity
(Mascle et al., 2007; Alan et al., 199%).

Process planning activities require a variety of
human capability. These people called process planner
(Kueng and Yuen, 2003). However, there are a few people
who have enough experience to do process planmng and
even for single part they may develop different process
plans.

Computer Aided Process Planming (CAPP) is seen as
a communication agent between CAD and CAM. As a
widely accepted idea, CAPP has to interpret the part in
terms of features to play its role in domain of computer
mtegrated manufacturing. Feature recognition 1s
considered as a front-end to CAPP and plays a key role in

CAD/CAM mtegration (Han ef al., 2000). It 1s the process
of converting CAD data of a part mto a model of the
machining activities that required producing the part.
Many approaches are reported for feature recogmtion in
literature such as hint-based approaches, graph-based
approaches, knowledge-based approaches, volumetric
decomposition approaches and other hybrid approaches.

Hint-based approaches are more successful in
recognizing interacting features than the other existing
approaches (Han ef al., 1998; Ii et al., 1995). But they also
have some shortcomings (Rahmani and Arezoo, 2007). As
it is known that the principle of hint-based methods is to
match traces left by the motion of a milling cutter with
predefined features. A feature library does not include all
tool traces and for some complex features it is difficult to
find suitable traces (Mascle et al., 2007).

The graph pattern matching approach was first
formalized by Joshi and Chang (1988). Techniques based
on the graph matching algorithms have been used in
many subsequent research efforts and recently
incorporated into commercial process planning software.
A main problem with the graph matching pattern matching
approach 1s 1its difficulty to recognize mtersecting
features. While quite successful in recognizing isolated
features, this approach reveals many difficulties when the
face patterns of the part are altered due to feature
interactions.

Volumetric decomposition approaches mclude
convex-hull decomposition approaches (J1 et af, 1995,
Kim and Wang, 2002) and cell-based decomposition
approaches (Sakurai, 1995, Woo and Sakurai, 2002;
Sridharan and Shah, 2004). Cell-based decomposition
approaches decompose the delta volume of a partinto
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cells by extending the faces beyond its concave edges
and then combining the cells in to volumes. Different
combinations of cells results different features. Sakurai
and Dave (1996) proposed to combine cells in to volumes
called maximal volumes. They showed that multiple
feature interpretations can be generated systematically.
Also, they suggested that near optunal feature
mterpretation could be generated by sequencing the
maximal volumes for machining using some machining
rules. The maximal volume decomposition method (Sakurai
and Dave, 1996) consists of two steps: decomposing of
delta volume mto cells and merging the cells into maximal
volumes. The step of merging cells had the worst-case
computational complexity (Woo and Sakurai, 2002).
Various techmques were adopted to ease the
combinatorial complexity. Yet the method still suffers from
the combinatorial explosion for a delta volume that was
decomposed into a large number of cells.

In thus research, a new heuristic model 1s proposed to
determine machining features as a phase of process
planning procedure. To facilitate automation of process
planning and solve combinatorial complexity of merging
elementary volumes, the Modified Combination Method
(MCM) 13 adopted to develop MVs. Also it reduces
efforts and time required by experts as well as
consideration of all elementary volumes. Tt analyzes the
feasibility of each machimng feature (manufacturability
and tool accessibility) by using dependency matrix. It
thus makes a contribution for automation of process
planning.

PROBLEM DEFINITION

The word feature sigmfies different meamng in
different contexts depending on the specific domain. For
example, in design it refers to a web or a notch section,
while in manufacturing it refers to slots, holes and
pockets, while in inspection it is used as a datum or
reference on the part.

To develop a feasible process plan 1t requires
interpreting part design data; selection of the
manufacturing processes, machines, tools and fixtures;
decomposition of the material volume (delta volume) to be
removed, selection of machimng features, generation of
precedence constraints and sequencing machining
features. Determination of Machining Features (MF) is
critical activity in process planning. In the process of MF
determmation, one must develop candidate MF, where
considering Elementary Volumes (EV) and technical
constraints.

A machiming feature 1s defined as a volume of
material or a set of part faces that a process planner would

consider machining with the same operation (Sridharan
and Shah, 2004). Manufacturing features and machining
features refer to different entity of a part. Manufacturing
features are extracted from CAD data and refers to
finished part features (Abouel and Kamrani, 2006),
whereas, Machining features are referred to features that
must be removed from stock to create fimshed part that
include manufacturing features.

Part modeling and generation of -elementary
manufacturing features (elementary volumes or cells)
are considered in past researches. To obtain final form
of part that determined (usually by design engineer) in
an engineering drawing, the delta volume (volume V in
Fig. 1) must be removed from stock. This volume can be
decomposed mnto volumes v, v,, v;, v, and v, (shown i
Fig. 2) through drawing planes adjacent to all surface of
the part. Seolving the multi pass machining model
results in one or more tool passes. It might be also
viewed as generating additional planes such as p, (shown
in Fig. 3) for the volume to be removed. The planes
decompose the volumes of v, v,, v, v, and v, in to
elementary volumes such as e, e, e, &, €, &, & and g
(shown in Fig.3). Finally machinable volumes must
be developed through merging elementary volumes
as canidate MVs that can generate various
interpretations.

Cost of machined part can be defined as the
summation of material costs, setup costs, tooling costs
and operation costs (Lin et al., 1998). Material costs
depend upon the costof stock being used. Set up costs

Fig. 1: Volume V and part P

Vi

v,
V.
v,

Fig. 2: Decomposition of delta volume V into v, v,, v5, v,
and v,
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Fig. 3: Segmentation of v, v,, v, v, and v; into e, e,, e,
€, €5, €, ¢;and g;

depend on how many setups are needed and fixturing
methods used in each setup. Therefore, setup costs
depend on how features are oriented in space and how
they interact with each other. Tooling costs depends on
tools being used. Therefore, tooling cost depends on
machining feature types.

Operation costs depend on the time taken to machine
various features and it depends on feature types,
dimensions and tolerances.

Total manufacturing cost components are tool
change cost, set-up cost, transportation cost, part
batch size and machining costs (Han et al, 2001,
Khoshnevis et al., 1999). Part handling includes loading
(setup) and unloading of a part. For the case of
manufacturing a particular part, costs for batch setup, part
unloading and tooling are approximately constant.
Machining cost can subdivide into costs for roughing
and fimshing.

Kusiak proposed an optimization model for
machining features, tools and fixtures selection
(Kusiak, 2000). The objective function of the model 1s:

MinZ=3 cXi+ > pYe+ ks (1

iel teT ieF

where, ¢ 1s the cost of jth maclimng feature, p; 1s the cost
of using tth tool and k; is the cost of using fth fixture. T is
defined as set of all elementary machining features of the
part, T 15 defined as set of available tools for machining
the part and F 1s defined as set of available fixtures. There
are upper limits of available tools and fixtures number in
model. X, Y, and 7 are MFS selection, tool selection and
fixture selection variables. They are zero/one decision
variables. Constraints of the model are: removal all of
elementary volumes, tools availability and fixture
availability and constraints. Considering
manufacturing environment, some constraints may be
added or removed from the model.

In the knowledge based approach, models based on
set covering technique

zero/one

is used to select optimal

combination of machining features (Kusial, 2000). The
objective function of set covering model is:

Minz = ¥ CX, (2)

i

The important issue in any optimization models used
for machining features selection 15 dependency of the
model to machining feature development activities. The
higher feasible machining feature developed, the better
solution is achieved. Each machining feature is a set of
elementary volumes to be removed. Therefore in the
process of machining feature development, following
criteria should be considered:

»  Feasibility of solution

+  Cost minimization

»  Removal of all elementary volumes
s  Computational time

PROPOSED MODEL

There are some limitations where candidates MFs are
generated manually. There are: (1) linited number of
generated feasible MFs that may result missing optimal
solution, (11) limited munber of available experts and (111) a
time consuming activity. Considering that the quality of
solution 1s depends on candidate MFs, a computer based
solution to generate MFs is required. In this research, a
new method 1s developed and coded to automate
generation, assessment and selection processes of MFs.
It determines machimng features that must be machined
and removed from stock to obtain the finished part. These
processes are performed by using (i) modified
combination procedure to generate MFs, (11) a rule-based
assessment procedure to eliminate infeasible MFs and (111)
a set covering model with modified cost function to select
the best combimation of MFs.

The other feature of proposed model is that the user
may reject selected MFs. In this case the model resolves
the problem and generates another solution.

The general structure of the model is shown in
Fig. 4.

GENERATION OF MACHINING FEATURES
ALTERNATIVES

In the first step of Machining Feature Determination
Problem (MFDP), candidate MFs should be generated
systematically. The machining features are a set of
elementary volumes. Thus Tn this step a combination
procedure is used to generate canidate MFs. In general,
the number of r combmation from n elements 15 defined as:
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Input required dat such as: i, m, Q,
elementary volumes attribute date, cost of

volume unit

4 L

Generate MFs by using modified
combmnn];ynpmmgedum

Eg=

Assess generated MFEs by using assessmient
rule-based procedure to eliminate anfeasible MFs

-~ >

Calculate csts of MFs and constract set
covering model and present solution

Cﬂf—(nJ— n! (3)
r] rin-nmt

Where:r < n

If n 13 defined as the number of EVs and r is defined
as positive integer number, the C,7 will present the number
of MFs that are included in r EVs.

The various of EVs should be
considered in Machining Feature Determination Problem
(MFDP). Thus the total number of all combmation in

MFDP 1s:

combinations

Total number of combinations (MFs) in MFDP =
CH+Ci+ .+ +Cpe 4

In large and complex MFDP, the numbers of all
combinations that must be generated by the model will
increase highly. Therefore, the computation time increases
and its performance decrease. In order to improve method
performance where a large and complex MFDP 1s
considered, two modification rules are used 1
combination procedure. These two verification rules are:

Rule 1: According to MF defimition, the maximum
numbers of EVs that may generate candidate MFs 1s
limited by technical constraint. The maximum number of
EVs is defined by m where, ms<n Therefore the
combination procedure in the proposed method shouldn’t

generate MFs having more than m EVs. Total number of
MFs required to be generated through combination
procedure 1s:

Total number of required MFs=C '+ C*+. . +C2  (5)
Where: m< n

This modification rule decreases highly the method
computation time and increases model performance in
large and complex MFDP.

Rule 2: Most of generated MFs by the model through
combination procedure aren’t feasible. Feasible MFs are
features that manufacturing systems can process them
with existing teclmologies in a single set up. Thus the
combination procedure should not generate MFs that are
certainty infeasible. A rule-based expert system is
embedded in the combination procedure recognizes in
feasible MFs and will not let generation of them.

Based on two modification rules, the combination
procedure generates MFs and constructs Primary
Machimng Feature Set (PMFS). The combination
procedure with two modification rules is called modified
combination procedure in this research.

RULE-BASED ASSESSMENT PROCEDURE

Lots of generated MFs through modified
combination procedure may be infeasible because of
techmcal constraints. Thus the model should assess the
generated MFs and eliminate infeasible ones. This
process is performed based on elementary volumes
positions and technical dependency among them
{machinability and accessibility).

Techmcal dependencies are defined by experts or
knowledge-based approaches. Adjacency graph is used
to present dependency relationships among EVs. The
nodes present EVs as defined by e's and arcs present
dependency relationships. Dependency mnformation i1s
defined as an attribute of EVs and determined by experts
or knowledge based system in upstream phases. There are
three states i1 dependency relationship. They are 0, 1 and
3. If relationship between two elementary volumes for
example el and e9 in Fig. 5 is zero, these elementary
volumes can not make a feasible machining feature. If
relationship between two elementary volumes for example
el and e2 1s one, these elementary volumes can make a
feasible machining feature. If relationship between two
elementary volumes for example e3 and e9 is S, They may
make a feasible machining feature if a specific set
of other EVs such as £ (e3, e9) = (e7) exists m the current
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Fig. 5: Part P with mine elementary volumes
=

N

Fig. 6 An
elementary volumes in adjacency graph

example

of part dependencies among

machiming feature. Thus feasibility of MV depends on
sets of EVs that generate MF. If there are EVs with zero
relation in MF, the MF will be infeasible. If there are EVs
with S relation in a MF, it is feasible where £ = (e, &)
exists in the MF.

Part P 1s shown in Fig. 5 includes nine elementary
volumes. Adjacency graph is depicted to represent
dependency relationship among elementary volumes.
Figure 6 shows a part of adjacency graph that 1s depicted
for part P.

Dependency  matrix
adjacency graph. This

may be obtamned from
matrix defines as D matrix
and 1s symmetric. The D matrix for part P 1s shown in
Fig. 7.

Assessment procedure to identify feasible MFs is
designed and implemented in the model based on
dependency relations. Tt is rule based procedure.
Therefore D matrix 1s extracted and assessment procedure
recognizes infeasible MFs and eliminates them from
PMFS. After removing mfeasible MFs from PMFS,

candidate MFs set (CMFS) 1s obtained.

ell- 1 1 11 0 0 0 0]
e2l1 - 1 1 1 s 8 O
e3)1 1 - 1 1 s 1 s s
edf1 1 1 — 1 s 1 0
D=e5/1 1 1 1 - 0 0 0
e6/0 1 s s 0 — 1 s 0O
e7/0 s 1 s 01 - 11
el 0 S 0 1 - 0
e 0 0 s 00 0 1 0 —]

Fig. 7: Dependency matrix
DETERMINE OPTIMAL MACHINING FEATURES

The set covering model as an optimization model is
used to select optimal combination of MFs from CMFS.
Before the set covering model 1s presented, the following
notation needs to be defined:

I = Set of all elementary volumes (elementary machimng
features) of the part
I = Set of all candidate MFs

"o Otherwise
CJ = Removel cost of MF], jel

{1 IfEv, corresponds to MEF,
§ =

x IEMF; is selected,
°0 Otherwise
The set covering general model 1s:
MinZ= ¥ CX, (6)
el
subject - to:
- (7
YaxX, =1 Foralliel
el
X, = 0,1 ForalljeT (8)

Equation 6 is objective function that minimizes the
total removal cost. Equation 7 ensures that all EVs are
removed from stock and 1s cover constraint. Equation 8 1s
zero/one constraint.

To calculate MFs removal cost (C), the model
calculates MF volume as the sum of related EVs. If C 1s
defined as the cost of unit volume removal and V; 1s

defined as volume of MF, the cost for each MF,; that
defined as ¢;, is calculated by following equation:
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C=C*V, )

Other cost elements such as setup cost are not
considered m Eq. 9 and the total cost of process planming
optimization in downstream phases such as sequencing
phase may be increased. Thus the proposed method
should use modified cost function in the optimal selection
step. Modified Cost Function (MCF) 1s defined as:

MCF= ¥ (y+CiXj (10)

jel

where, C, obtained from Eq. 9. vy is defined as modified
factor that is calculated from following equation:

=T H (an

jel

where, 0.1<I'<0.4 and is defined as penalty factor that
depends on part complexity so that wherever part
complexity enhances, the I' value will increase. p 1s the
number of CMFS elements.

Thus the proposed model is used set covering model
with modified cost function Eq. 10. Modified cost function
reduces the number of MFs in optimal selection step as
possible. The set covering model with modified cost is
called modified set covering model in this research.

The set covering model 15 constructed and solved as
a final step of proposed method. The MFs are selected
from CMFS by using this step. The software of proposed
method has been implemented on a Pentium system in
MATLAB7. The performance of proposed model 1s
assessed through solving candidate parts.

NUMERICAL RESULTS

In order to assess the model performance, some
candidate MF problems (for example part pl and p2
Shown in Fig. 8 and 10 are solved by the proposed
method. Basic data and the results given by the model are
depicted in Fig. 9and 11.

Solution time, Technical feasibility of selected MFs
(SMF) and removal cost are important measure of method
performance. It should be noted that the maximum number
of EVs m a MF, m plays important role in modified
combination procedure.

That means as m reduces, the computation time and
costs will also reduce. To analyse the impact of m, part P1
15 solved with varying m values from 2 to 10 without
changing other parameters. The results are shown in
Table 1.

As shown in Fig. 12 when parameter m 1s increased,
the number of generated MFs 1s increased highly. It

el e2 e3 ed | eS
e6 e7 [ e9 |ell
ell gl2leld
eld]els
el6lel?
el8
Fig. 8: Part pl
Part no: pl
Number of EVs: 18
m=10

Number of generated MFs =199139

Number of feasible Mfs =148

Selected MFs:

MFL = {ell}, MF2={ed,e0,el2,eld,el6}
MF3 = {el, ¢2,63,06,67,¢8}

MF4 = {e5,el0,e13,el5,el7,el8}

Solution time = 6824

Solution cost =22

Fig. 9: Solution result for part pl

els eld el3 el2 |ell
el7 elé
el
eld
9
e6 e7 e8
¢l c2 e3 | ed c5
Fig. 10: Part p2
Part no: p2
Number of EVs: 18
m=10

Number of generated MFs =199139

Number of feasible MFs=61

Selected MFs:

MFI1 = {0}, MF2={el 8}

MF3 = {el0, ell }, MF4={¢16,¢17}, MF5={¢6,c7,e8}
MF6 = {el2,el3,eld,el5}, MF7={el,e2,e3,e4,e5}
Solution time = 2666

Solution cost =25

Fig. 11: Solution result for part p2

reduces the model performance for complex parts with
high Elementary Volumes (EVs).

Figure 13 shows the effect of increasing m on
numbers of feasible MFs. It shows that the number of
feasible MFs increases proportionally when m increases.
It remamns nearly constant when m reaches a specific
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Table 1: Analysis proposed method performance against m for part P1

Solution No. of No. of
Run time generated feasible  Solution
No. m n (sec) MFs MFs cost
1 2 18 1.07 171 58 27
2 3 18 11.844 987 95 25
3 4 18 56.215 4047 126 24
4 5 18 111.172 12615 135 23
5 6 18 301.234 31179 142 22
6 7 18  1070.969 63003 142 22
7 8 18 2266.350 106761 146 22
8 9 18  4116.391 155381 146 22
9 10 18  6824.187 199139 148 22
2500
% 200000
o 150000
ﬁ 100000
g 50000
0+ 44— —4 t 1 1 3
0 2 4 6 3 10 12
m
Fig. 12: Generated MFs against m
160
w140
S120
5100
Z 80
2 60
= 40
20
01 T T T T 1
0 2 4 6 8 10 12
m
Fig. 13: Feasible MFs agamst m
304
254 - R
L+
§ 201
_g 15-
5 104
@
5
G L} ] T T T 1
0 2 4 6 8 10 12

Fig. 14: Solution costs against changes of parameter m

value. Considering results of proposed model for different
parts, it showed that where m>[n/2], the number of
feasible MFs remains nearly constant.

Figure 14 shows the effect of m on modified
cost fimction in the modified set coverng model.
Cost is decreased when m is increased. Results also
show where m>[n/2],
rarely.

reduction of cost 13 observed

BOOO

Fig. 15: Solution time against of parameter m

The results also show when m 1s mcreased, solution
time of model increases (Fig. 15). This effect is happen
because of increasing generated MFs.

CONCLUSION

Machining feature determination phase is very
important i process planmng. Usually machimng features
development 15 done by experts manually according to
elementary volumes. There is some limitation in
generation of candidate MFs manually, such as (i) limited
number of generated feasible MFs that may result missing
optimal solution, (11) limitation in nmumber of available
experts and (iii) a time consuming activity. The quality of
solution depends on candidate MFs. Therefore a
computer based solution to generate MFs 1s required.
Feature recogmtion techmque such as decomposition
methods still suffered from the combinatorial explosion for
a delta volume that was decomposed into a large number
of cells. In thus paper, a new method 1s developed so that
automates generation, assessment and selection process
in MFDP for prismatic parts. The proposed method can
generate primary machining feature set through modified
combination procedure, assess and eliminate infeasible
MFs through rule-based assessment-procedure and select
optimal MFs through modified set covering model. Also
it can generate other solutions that are interested by
users.

The proposed method has good performance in
machining feature determination problem and has shown
a good performance in solution time and costs. Therefore
the proposed model has such as (1)
decreasing expert's role in MFDP, (11) obtaming optimal
solution, (iii) decreasing solution cost and time
(iv)automation of process planning.

advantages
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